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The paper presents the design of a symmetric active Gust Load Alleviation system

for a regional transport aircraft, based on a Static Output Feedback with a constrained

structure. The design is carried out on a comprehensive �nite state aeroservoelastic

model, including sensor units and actuator transfer functions, saturated in position,

rate and hinge moment. The controller is designed within a quadratic optimal frame-

work, through a second order, Hessian based, optimization algorithm, exploiting block

diagonal Schur transformations of the closed loop state equations and performance

weightings. An accurately chosen worst discrete gust and reference �ight condition

provide a baseline design, which is signi�cantly e�ective in alleviating also continuous

turbulence loads. Such a reference design proves itself robust enough to alleviate at-

mospheric loads over the complete �ight envelope and is eventually further improved

and robusti�ed through a simple bilinear q∞ −M∞ algebraic scheduling.
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Nomenclature

Diag[(·)] = Diagonal matrix of the diagonal of a square matrix (·)

h = Flight altitude [m]

Ham, HaΣam = Aerodynamic transfer matrices due to structural motions

Hag, HaΣag = Aerodynamic transfer matrices due atmospheric motions

k = ω la
V∞

Harmonic reduced frequency, imaginary part of p [−]

L = Turbulence scale [m]

la = Aerodynamic reference length [m]

M∞ = Asymptotic Mach number, [−]

nd = Denominator order of a rational transfer function

nm = Numerator order of a rational transfer function

np = Number of design parameters

ω0 = Natural frequency of a second order system [rad/s]

p = s la
V∞

Complex reduced frequency [−]

pwo = Pole of a �rst order washout �lter [rad/s]

q = Modal displacements vector

q∞ = Asymptotic dynamic pressure, [Pa]

ρ∞ = Asymptotic air density, [Kg/m3]

s = Laplace variable [rad/s]

Σa = Aerodynamic contributions to internal loads

ta = la
V∞

, Aerodynamics reference time, [s]

V∞ = Asymptotic air speed, [m/s]

vg = Gust/turbulence velocity [m/s]

ξ = Damping factor [−]

I. Introduction

Atmospheric gusts and continuous turbulence can signi�cantly a�ect aircraft ride qualities,

increase airframe loads and be detrimental to on board equipments [24]. Their importance has
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been recognized since the very beginning of aviation [20], and, by requiring the analysis of both

discrete gusts and continuous turbulence, nowadays regulations impose stricter design requirements

for atmospheric loads [1]. An optimized compliance with the related rules can be achieved through:

an optimally strengthened airframe, active load reducing maneuvers, the integration of both. In such

a view an early attempt toward active Gust Load Alleviation (GLA) was carried out in the late 1940s,

on a Bristol Brabazon [34], which never went into production. In the late 1960s and early 1970s

the USA further promoted the idea, supporting researches for an active gust load alleviation for the

XB-70 bomber [29] and a more general Load Alleviation and Mode Suppression (LAMS) program

[4]. Follow on applications of such researches could be devised in the operational applications to the

Lockheed C-5A, Lockheed L-1001-500 and B-1 Lancer [40]. In the previously cited examples active

GLA was added to already certi�ed aircraft, so to extend their operational capabilities and be of

help in solving unexpected marginal airframe problems. In fact, according to [10], prior to the 1980s

that was a general tendency in the use of automatic control in aeronautical applications. Later on,

instead, since its all wing design made it very sensible to gust/turbulence loadings, the GLA system

of the B-2 bomber was designed from scratch along with its inception [12], [40]. In Europe, from 1976

to 1982 Dornier GMBH and DFVLR developed and tested a system named Open Loop Gust Load

Alleviation (OLGA) [40]. It was based on a measurement of the angle of attack and was designed

to operate within a low frequency range: i.e. between 0.3 and 1.0 Hz. It eventually became part of

a Load Alleviation and Ride Smoothing (LARS) system, developed by the DLR [23], [40], whereas

the open loop controller was used for the low frequency alleviation, while the overall aeroelastic

response of the aircraft was regulated by a feedback controller. In recent years the development of

lighter and more e�cient transport aircraft has led to a widespread increase of the emphasis put on

atmospheric load reduction, leading to commercial aeroplanes, e.g. the Airbus A380 and the Boeing

787, natively equipped with active controllers for load alleviation and comfort enhancement [40].

Moreover, new classes of vehicles, such as High Altitude Long Endurance (HALE) aircraft [49] and

sensorcraft [31], because of their stronger weight reduction speci�cations, make it mandatory the

use of active GLA systems as well. Finally, an aggressive combination of Manoeuvre and Gust Load

Alleviation (MLA&GLA) technologies could be necessary in the case of more advanced aerodynamic
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designs, such as those based on the Natural Laminar Flow (NLF) concept, holding the potential

of signi�cantly improving both the weight and the aerodynamic terms of the well known Breguet

range equation.

The active GLA system developed in the present work is based on a Static Output Feedback

(SOF) controller. The design of the related gain matrix is carried out within the framework of a

quadratic optimal control, whose cost function is optimized by using a second order, Hessian based,

algorithm, having as unknowns just the elements of an algebraic gain matrix and, even if not used

in the present work, any system parameter available as design element.

The great simplicity of SOF controllers makes them advisable in many applications where simple

control laws are desired. For example they are particularly well suited for massively controlled

distributed systems, whereas actuator clusters are commanded only through a co-located set of

sensors [32]. To increase its overall performance, it would be easy to complement a SOF with a low

order dynamic regulator, designing the coupled static-dynamic controller through the same tools

used for a purely static counterpart [44]. Owing to their simplicity, SOF regulators can also be used

as backups, activated after a failure of a master system [5]. Another situation in which SOF design

techniques can be used occurs when some parameters of an existing controller must be (re)tuned,

while preserving its structure [30]. Finally, it is far simpler to schedule and interpolate the elements

of a SOF gain matrix than the parameters of a dynamic controller, making it suitable for varying

operating conditions.

An example of an aeronautical application of SOF controllers is provided by the work of Patil and

Hodges [38], where a SOF was used for the �utter suppression and gust alleviation of a HALE. They

also showed that a proper choice of the sensor locations provided results similar to those achievable

by the use of an ideal full state Linear Quadratic Regulator (LQR). Miyazawa and Dowell [35] used

a SOF �utter suppression based on a multi models approach, i.e. weighting several di�erent models

within a single quadratic cost function, thus leading to a controller insensitive to the uncertainties

structured within the accounted models. A further SOF active �utter suppression, using a direct

digital design and including a size constrained dynamic compensator, can be found in [13].

A common optimization approach of a SOF is based on the solution of Lyapunov equations, hav-
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ing the closed loop state matrix as coe�cients. Within such a framework, many existing algorithms

support a �rst order, gradient based, optimization, such as the, legacy, Levine�Athans algorithm

[28], often revised as in [36], while a di�erent approach can be found in Anderson�Moore [3]. Second

order optimization algorithms have also been proposed, [8], [16] and [17], where the optimization is

carried out on a state variance matrix instead than on the gain matrix, with the result of being com-

putationally very expensive when dealing with relatively large problems. Anderson�Moore method

[3] was modi�ed to achieve super linear convergence in [45], by introducing an approximation of

the gain Hessian matrix. In [39] it was further enhanced with the computation of exact second

derivatives of the cost function with respect to the gain matrix. Actually, its implementation was

based on the iterated solution of a system of three coupled matrix equations, without any explicit

actual calculation of the gain Hessian matrix. Another, often used, solution method is the adoption

of general purpose, state of the art, optimization functions, either unconstrained or constrained, for

which the user has to provide the support to compute its own objective, gradient and, possibly,

Hessian [26] and [37].

This work will develop and adopt its own Lyapunov based method, providing a simple and

direct second order approximation of the objective function by e�ectively calculating its true gain

Hessian matrix, so that the optimization can be carried out speci�cally as an iterated solution of the

stationary condition, through a simple Levenberg-Marquardt modi�ed Newton-Raphson iteration.

A more recent alternative approach to SOF design is based on its formulation as a system

of Linear Matrix Inequalities (LMI) [11]. LMI based designs can take into account a varied set

of requirements and constraints, but their computational demand can be high [30], especially for

relatively large order systems. A few comparisons of the results provided by LMI and Lyapunov

based approaches are presented in [21] and [30].

This paper summarizes the design, the implementation issues and the results obtained by apply-

ing a static output feedback controller to the gust/turbulence alleviation of a two engines regional

transport aircraft. It is organized as follows: section II introduces the aeroelastic model and the

gust/turbulence input considered for this research; section III describes the adopted control design

guidelines, including their objectives and layout; section IV describes the controller optimization;
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section V reports the actual control design as well as its veri�cation results, while section VI draws

some conclusions.

II. Aeroelastic model and gust/turbulence input

The main goal of this work is the design of the active gust alleviation system for a next generation

regional transport aircraft, whose main geometrical and mass data are summarized in Tab. (1).

This model is freely inspired to the the Green Regional Aircraft (GRA), under development within

the Clean Sky research program with the aim to develop and test new technologies to reduce the

enviroinmental impact of aircraft.

overall length 40.69 m wing span 34.96 m horizontal tail span 12.30 m

overall height 7.884 m wing root chord 5.453 m horizontal tail root chord 3.762 m

Total mass 52266 Kg wing tip chord 1.498 m horizontal tail tip chord 1.349 m

Table 1 GRA geometric properties.

Its aeroelastic model has been obtained through the use of NeoCASS [14], [15], a GPLled

open source suite of Matlab modules combining state of the art computational, analytical and semi-

empirical methods, tackling all the aspects of a conceptual aero-structural analysis (www.neocass.org).

Starting from a reduced set of aircraft geometrical data and mission requirements a fairly detailed

conceptual sizing of the airframe and its mass distribution has been easily determined by using

NeoCASS Weights-Balance (WB) and Generic Unknowns Estimator and Structural Sizing (GUESS)

modules.

A. Structural and aerodynamic models

The NeoCASS symmetric structural stick model, generated through its own aeroelastic design,

is shown in Fig. 1a. It is composed of 53 beams: 10 for the fuselage, 18 for the wing, 11 for the

vertical tail and 14 for the horizontal tail.

NeoCASS symmetric dynamic analyses have been successively validated through the use of

NASTRAN [42]. The �rst wing bending mode of the aircraft has a frequency of 3.76 Hz, while its

clean laminar wing has a very high torsional sti�ness, driving the �rst wing torsional mode up to
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(a) Structural model. (b) Aerodynamic model.

Fig. 1 Structural and aerodynamic models.

31.74 Hz. An overview of a few signi�cant low frequency vibration modes is presented in Tab. (2).

Both NeoCASS and NASTRAN showed no �utter for all con�gurations within the design �ight

envelope, its only mild, long term, numerical instability being related to the integrator associated

to the simply stable plunge mode at the imposed straight and level �ight speed.

frequency [Hz] Description

3.763 First wing bending

4.784 Wing and fuselage bending

9.339 Horizontal tail and fuselage bending

9.662 First wing in-plane bending

12.205 Second wing bending

Table 2 Selected low frequency vibration modes.

The Doublet Lattice (DL) [2] based aerodynamic mesh shown in Fig. 1b is composed by 1000

panels, 764 on the wing and 180 on the horizontal tail. It provides the converged harmonic General-

ized Aerodynamic Forces (GAF) associated to the lowest 19 vibration modes of the free-free aircraft

and gust boundary conditions. Such a relatively high number of modes is strictly not required

for well converged motion responses, but, combined with a mode acceleration based on the direct

summation of the unsteady aerodynamic loads, ensures the obtainment of well converged internal

forces.
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Fig. 2 Aircraft control surfaces and accelerometer locations (◦).

B. Control surfaces and actuators

The aircraft has �ve control surfaces: a doubly split aileron, elevator, and two �aps. Since any

conceivable bandwidth of the actuators controlling the �aps will not be adequate to provide any

gust load alleviation, only the elevator and the ailerons will be exploited for the design of the control

system, as shown in Fig. (2).

The two ailerons can be moved either independently or with the same command. It is anticipated

that the best control will be chosen by comparing the design performances obtainable for each of

the two operational modes.

The control surfaces are left free to move within the vibration mode calculations, their dynamics

is thus mostly determined by the position servo-actuators controlling them. The related compliant
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servos are approximated through a transfer function of the form:

δ(s) =
ω2

0

s2 + 2ξω0s+ ω2
0

δc(s)−
Mh(s)

Kδ
|δ| ≤ δs |δ̇| ≤ δ̇s |Mh| ≤Mhs (1)

where δ is the control surface de�ection, δc the commanded de�ection, Mh the hinge moment and

Kδ the residualized static approximation of the lumped sti�ness transfer function related to the

actuator and its mounting structure, the s su�x indicating the related saturation values. The

values of ξ and ω0 are chosen so to provide a �at nominal 3dB passband of 3.25 Hz for the aileron

and 0.95 Hz for the elevator. For both control surfaces Kδ is preliminarily given a value leading to

a reasonably assumed, control surface only, oscillating frequency of about 30 Hz.

Clearly, the nonlinear saturations, δs, δ̇s andMs, cannot be cared of in a linear controller design,

but will be accounted for in the time domain simulations aimed at its validation.

It might be likely that, while the bandwidth of the elevator transfer function is well within

the reach of the actual technology, that of the aileron is a somewhat demanding requirement.

Nevertheless it is the lowest speci�cation allowed for a sizeable reduction of the wing bending

moment, as obtained through repeated designs of the type presented in the following parts of the

paper.

C. Finite State Space Approximation of the Aerodynamics

To provide a state space model for the whole aeroservoelastic system a �nite state Linear Time

Invariant (LTI) approximation of the aerodynamic model has to be adopted. Therefore, a matrix

fraction representation of the aerodynamic transfer matrices [41] has been determined:

Ha(p,M) = D−1(p,M)N(p,M) (2)

where Ha(p,M) is the aerodynamic transfer matrix, with D(p,M) and N(p,M) being matrix

polynomials in the reduced Laplace variable p = sla/V∞ = σla/V∞ + jωla/V∞ = h + jk. The

aerodynamic contributions to the internal loads are computed at selected points of the airplane

structure, e.g. the wing root, and are recovered through the mentioned mode acceleration method.

Thus, the aerodynamic transfer matrix is augmented to include the contribution of the aerodynamic
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forces to the internal load at such points, resulting in
Qa

Σa

 =

 Ham Hag

HaΣam HaΣag




q

vg
V∞

 (3)

where Qa is the vector of the GAFs, Σa the contribution of the aerodynamic forces to the internal

stresses of interest, q the vector of the modal amplitudes, and
vg
V∞

the gust/turbulence input. The

numerator matrix polynomial N(p,m) is an order of two higher than that of D(p.M) and thus the

resulting transfer function is not strictly proper and can be expressed as:

H(p,M) = D0 + pD1 + p2D2 + C(pI−A)
−1 (

B0 + pB1 + p2B2

)
(4)

The presence of the terms D1, D2, B1 and B2 comes from the mentioned non strictly proper

assumption, indicating that system input is not only the input vector

[
q

vg
V∞

]T
, but also its �rst

and second time derivatives. The inclusion of these derivatives can be interpreted as a low frequency

residualization of the high frequency part of the aerodynamics. See also the following comments in

relation to keeping such a second order residualization for the generalized gust forces.

D. Gust and turbulence

The time shape and amplitude of discrete gusts is prescribed by airworthiness regulations. The

European Aviation Safety Agency (EASA) [1] dictates a 1-cos shape for deterministic gusts

vg =


Ug

2

[
1− cos

(
πs
H

)]
0 < s ≤ 2H

0 s > 2H

(5)

where s is the gust penetration distance, H the gust gradient and Ug the peak gust velocity in

equivalent airspeed, which depends upon the gust length and altitude. The gust pro�les for various

values of H are shown in Fig. 3a, where their amplitudes have been computed by assuming a �ight

altitude of 8000 m and an air density ρ∞ = 0.53 kg/m3.

It is remarked that a 1-cos gust has a simple jump discontinuity in its second time derivative,

so it poses no problem to a second order residualization of its generalized aerodynamic forces.

Since, as it will be seen in a following section, the adopted optimal quadratic formulation will be

based only on a response optimization with respect to impulsive and white noise disturbances, a
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Fig. 4 1-cos gust and shaping �lter for H = 50 m..

deterministic LTI shaping �lter is needed to well match a 1-cos gust shape through the application

of appropriate impulses. So the 1-cos shape is approximated as an impulse response by matching its

Fourier transform through a non linear least squares identi�cation [41]. A sample result of such an

identi�cation, based on a strictly proper rational �lter with four poles and two zeroes, for H = 50 m,

is shown in Fig. 4.

According to EASA regulations, also continuous turbulence loads, with a Von Karman Power
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Spectral Density (PSD), must be taken into account. Such a model well approximates experimental

data, but, due its non rational form, it is precisely matched only by a relatively large order time

invariant shaping �lter. Thus the simpler Dryden spectrum [48]:

Φ(Ω) =
σ2
wL

πV∞

1 + 3
(
ωL
V∞

)2

[
1 +

(
ωL
V∞

)2
]2 (6)

is retained to be an adequate approximation for our design aims. It should be noticed that it has

a 1/ω2 asymptotic frequency decay. Therefore, to avoid the time derivative of the white noise, a

�ctitious high frequency pole is added to its own shaping �lter, ending with:

Hgsf (s) = σw

√
L

πV∞

1 +
√

3 sL
V∞(

1 + sL
V∞

)2 (
1 + sL

100V∞

) (7)

It is here anticipated that, following a set of extended simulations, a deterministic gust will

drive the design of our load alleviation system. Such a choice is related to the extended frequency

content of the chosen gust pro�le, capable of exciting an adequate frequency range, wider than that

of the continuous turbulence, over the all �ight envelope. Therefore, a good discrete gust design

will invariably lead to an at least as good turbulence alleviation.

III. Control Design Guidelines: objectives and layout

The term Static Output Feedback is often a kind of misnomer as, even if it is true that it is

related to a design directly feeding back a set of given output, it is not said that they are related

only to actual measures. In fact, as it will be shown shortly, a signi�cant part of the design of a SOF

might be devoted to setting up an appropriate processing of the available measurements so to enrich

the controller with structurally constrained and easy to realize compensations, further improving

its e�ectiveness. It is then of interest to highlight the feature of such a design part for the problem

at hand.

Furthermore, the simpli�cation associated to a SOF controller should not signi�cantly penalize

its performances with respect to a supposedly better more complex solutions. In such a view an

LQG-LTR reference design will be carried out in parallel, determining its state feedback and observer

by using the same augmented aeroservoelastic model part previously presented, along with all the

�lters and compensations to be shortly presented. The adoption of such a reference solution is based
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on past experiences, which have shown that with the frequency weighting implied in the adopted

design model, an LQG-LTR solution can be quite robust and e�ective. Eventually, to simulate

a truly viable implementation, a reduced order LQG-LTR controller will be the one used for the

actual comparisons, always caring to keep it close to its full order best performances. Since the SOF

controller will anyhow provide a far simpler structure than its reduced order LQG-LTR counterpart,

a fair check of the (dis)advantages of each solution should be of help in evaluating the possible merits

of the preference given to a SOF solution.

A. Control objectives

The main objective of the alleviation system is to reduce the internal loads acting on the airframe

under gust/turbulence loads. Since one of the related most critical points for the airframe is the

wing root, its shear, bending and torsional moment will be taken as the main control objectives,

the root bending moment being the reference performance for comparing various controller designs.

Nevertheless, the achievement of the above objective should not penalize other signi�cant internal

loads unduly. Therefore, further guard objectives will be set on the internal forces at the horizontal

tail plane root and at the fuselage section just behind the wing root. In addition to a load alleviation,

the control system should also provide some ride quality enhancement, thus enforcing the need of

keeping under control a few accelerations along the fuselage. Finally, all of what above cannot be

separated from the whole aircraft longitudinal �ight mechanics, with the consequent need of keeping

the state of aircraft motion as a part of the performances to be controlled. Nevertheless, the SOF

controller activity on the aircraft state should emphasize its load alleviation function, coupled to

a mild stabilization of the mentioned long term instability related to the model approximation,

already pointed out in the aeroelastic modeling paragraph. Therefore, it should have a low authority

interaction with the maneuvers commanded by a possible external �ight control system.

According to the airworthiness rules the above objectives should be achieved both for discrete

gusts and continuous turbulence, so setting the need of a multi objective optimization, somewhat

mimicking a mixed H2/H∞ design. Nonetheless, a comprehensive initial design familiarization

phase has shown that the choice of an appropriate discrete gust condition could have con�dently

been adopted as a reference design point, adequate enough to provide acceptable performances also
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for a continuous turbulence, thus simplifying the design process signi�cantly. As already anticipated,

such a choice �nds its justi�cation in the wider frequency content of the discrete design gust with

respect to the turbulence design spectrum, which shows less demanding control actions.

In such a view, an adequate baseline design has been set at a reference �ight condition charac-

terized by M∞ = 0.71 and V∞ = 220 m/s, for a worst discrete gust having a gradient of H = 40 m.

In order to assess the robustness of the controlled system, the gain and phase margins for the

simultaneous breaking of all input loops were evaluated [9] and the design weights tuned to guarantee

the right compromise between the previously illustrated design objectives and a close attainment of

a ±6 dB gain and ±45◦ phase margins.

No bandwidth speci�cation is assigned, as it is implicitly de�ned by having fully taken into

account in the design model the dynamics of the actuators, already presented, and the sensors, to

be described next.

It should be now remarked that, apart from the precise statement of the control margins and

implied bandwidth, the somewhat loose speci�cations set above are what is needed to de�ne a

quadratic performance index, which will drive the actual determination of the controller parameters,

whose structure, i.e. feedback paths layout, measurements and their compensations, are an assigned

designer's choice.

Then, the satisfaction of the varied speci�cation set will be the outcome of appropriately iterated

veri�cations over the weights de�ning the quadratic objective function.

B. Controller layout

As previously stated the controller can either move the whole aileron with a single control law

or provide separate commands to each split part. Even if the former needs only a single actuator

resulting in a simpler and more economical system, it is likely that a coordinated double actuation is

better suited to help in satisfying the bandwidth requirements. In fact many in service commercial

aircraft, already have a doubly split ailerons for their �ight control and load alleviation purposes.

Thus, both the design of a single coordinated and a double independent actuation, will be carried

out, the more complex split solution being preferred only if it will achieve better performances.

Since the layout of the measurements and their compensation is an important part of the de-

14



sign of a direct feedback controller, the next paragraph is speci�cally deserved to them. Moreover,

it is here anticipated that we will also explore both a full direct feedback of each measure and

compensatied output to the actuators and a partially decoupled design. In fact, in view of further

simplifying the structure of the controller, the latter will constrain the feedback paths in a loosely

co-located way, i.e. all the measurements and compensations taken at the tail will a�ect only the

elevator motion, while those taken at the wing will command the ailerons. All the other mea-

surements, fuselage sensors, speci�cally installed for the load alleviation, and the available Inertial

Measurement Unit (IMU) �ight mechanics data, being fed back to both.

C. Measurements and Compensations

The choice of the type of sensors, along with their positioning and compensation to derive further

signals enriching the knowledge of the structural motions, are an essential part of the designer guided

design associated to a SOF. In our case, albeit being far away from the ideal one, it is driven by the

idea of a close co-location of the sensed motions and the aerodynamic control forces. Moreover, as

already said, they should serve a substantially stand alone internal control loop, at a relatively high

frequency, not unduly interfering with the �ight control system.

Along the above cited guidelines the basic sensors employed will be a set of accelerometers,

in the direction normal to the lifting surfaces, placed at selected points on the wing, fuselage and

horizontal tail plane. Their transfer function is designed so to be uni�ed by the following model:

ameas =
s

(s+ pwo)
· ω2

o

(s2 + 2ξω0s+ ω2
0)
a (8)

which will become part of the system state, with ameas becoming the related strictly proper output of

the actual acceleration a. Its �rst order part is clearly a standard wash out �lter, aimed at reducing

the interference with the �ight control system. The second order part is to be associated mainly

to the anti aliasing �lter required by a digital implementation. In fact any viable accelerometer

choice will feature a signi�cantly wider low pass band than the one to be sampled, thus there is

only need to care for a gain and phase adequate to well measure the frequency range of the modes

of interest, i.e. between 3 and 30 Hz. It should be remarked that the wash out �lter is embedded

in the accelerometer itself in the case of the choice of a piezoelectric type. In accordance with what
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said above the high pass band will be set at 0.3 Hz and the second order low pass at 35 Hz, in a 3

dB attenuation sense.

From the accelerometers it is possible to derive the co-located elastic velocities, v, and displace-

ments, d, through an approximated double integration, of the type:

v =
s

s2 + 2ξω0s+ ω2
0

ameas d =
s

s2 + 2ξω0s+ ω2
0

v (9)

with f0 = ω0

2π = 0.2 Hz, which, by rejecting biases and low frequency drifts, allows safe long term

integrations, providing an approximation close to the ideal 1/s within the range of the previously

given modes of interest. The above integrations must not be interpreted as an open loop compen-

sation. In fact they will become a part of the �nal design model, so that their output will be a

combination of the system state components.

From the implementation point of view it should be noticed that both the accelerometer �lters

and the integrators can be realized analogically, each unit providing three output to be sampled.

Alternatively one could sample just the accelerometer output and code the wash out �lter, if it is not

of the piezoelectric type, along with the double integrators, within the control computer. Whatever

solution is chosen, all together, they will provide an integrated three output sensing unit. As a

further notice it is pointed out that, contrarily to the actuators, possible sensor saturations will be

guarded, but not cared of, during the design veri�cations. In fact, it is worth anticipating that none

ever happened.

Six such sensing units will be placed across a few span wise locations of the aerodynamic surfaces:

two at the wing tip, two at about 75% of the wing span, two at the tip of the horizontal tail, so

that each couple can sense the related section bending and torsional motions.

Another three sensing units will be located along the fuselage, one at the nose, one at the wing

root crossing, one at the tail. The position of all of them is sketched in Fig. (2).

In addition to sensing peculiar elastic motions a set of complementary measures are assumed

to be available for free, i.e. the control surface de�ections and the state of the aircraft reference

frame. The former should come from the actuators servo positioning, while the latter, in terms of:

altitude, pitch and their rates, from an Inertia Measurement Unit (IMU) of adequate quality, whose

installation on an aircraft of the kind to be designed is taken for granted. Their dynamics and anti
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aliasing �lters are modeled as �rst order low pass at 10 Hz.

D. Delay Filter

A SOF of the kind here adopted requires a digital implementation. Taking into account the

digitalization of the wash out �lter and the double integration associated to the accelerometer based

sensing units, the per sample number of multiply-add operations will, roughly, be in the range of

150. Therefore, even for a nowadays low end control computer and data acquisition, the related

delay is estimated to be sub millisecond, thus well tolerated within the previously speci�ed phase

margins. Consequently, the digital delay will mostly be related to the output sample and hold, i.e.

half of the sampling time, which, assuming a conservative 100 Hz sampling frequency, amounts to

5 milliseconds. Such a not so negligible delay will erase a signi�cant part of the phase margin, so

it must be cared of when designing a continuous SOF gain matrix. Therefore, a standard Padé

transfer function is placed in series to each of the three control output, adopting a strictly proper

rational approximation [46], with a numerator of order 4 and denominator of order 5. The strictly

proper rational Padé approximation is preferred to its simply proper counterpart of the same order,

because it provides a no jump initial transient, as shown in Fig. (5), where the two are compared.

It should be noticed also that, to avoid hybrid simulations, the above continuous approximation of
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Fig. 5 Padé �lter step responses, delay τ = 5 ms.

the digital delays will be kept, as it is, also for the post design veri�cations.
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E. Complete Model

The �nal aircraft model adopted for designing the SOF controller comprises the following num-

ber of states:

• 38: structure; 19 structural modes: 6 rigid, airframe motion and control rotations, 13 de-

formable.

• 20: aerodynamics.

• 6: actuator transfer functions.

• 63: 9 accelerometer based sensing units; 7 states each: wash out plus 2 integrators.

• 15: 3 delay �lters.

• 4: low pass, IMU.

• 3: low pass, control surface de�ections.

• 4: discrete gust shaping.

totalling 153 states and 34 measurement output.

IV. Controller Optimization

This section presents the second order optimal quadratic formulation adopted to �nalize the

design of a SOF controller. Even if it will not be exploited in this work, the chosen approach

can combine the related feedback design with the optimization of any other system parameter,

thus making it possible the integrated tuning of di�erent design facets, e.g. passive and active

components, placement of sensors and actuators and their technological requirements.

A. Quadratically Optimized SOF Controller

Considering the generic Linear Time-Invariant (LTI) model



ẋ = Ax + Buu + Bdd,

y = Cyx + Dyuu + Dydd + n,

z = Czx + Dzuu + Dzdd.

(10)
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where x ∈ Rn is the state vector, u ∈ Rmu the available control input, d ∈ Rmd the external distur-

bances, y ∈ Rly the measures, corrupted by the noise n ∈ Rmn , z ∈ Rlz the response performances

of interest. A SOF controller will provide the control input u = −Ĝy, which, by exploiting the

de�nition of y in Eq. (10), can be rewritten as:

u = −
(
I + ĜDyu

)−1

Ĝ

Cyx +

[
Dyd I

]
d

n


 = −G

(
Cyx + D̂yd̂

)
(11)

with G(Ĝ) =
(
I + ĜDyu

)−1

Ĝ, leading to the following closed loop system dynamics and perfor-

mances:

ẋ = (A−BuG(Ĝ)Cy)x +

[
(Bd −BuG(Ĝ)Dyd) −BuG(Ĝ)

]
d

n

 = Âx + B̂d̂

z = (Cz −DzuGCy)x +

[
(Dzd −DzuG(Ĝ)Dyd) −DzuG(Ĝ)

]
d

n

 = Ĉzx + D̂zd̂.

(12)

The gain matrix G(Ĝ) is computed by minimizing a user de�ned quadratic performance index J

of the type:

J = E
(
zTWzzz + uTWuuu

)
. (13)

with the de�nition of the expected value E depending upon the characterization chosen for the

vector d̂, here modelled either as an impulse or as a null mean white noise. In the former case, the

related expectation will be the covariance over the set of all possible impulse intensities while in

the latter case, assuming ergodicity, it will be the time averaged correlation over any representative

casual realization. Such expectations allow to de�ne the disturbance covariance matrix:

E
(
d̂ d̂

T
)

=

Vdd Vdn

Vnd Vnn

 . (14)

It must now be remarked that having the term D̂ d̂ in a quadratic performance implies an inappro-

priate multiplication of impulses and white noises. So if any such term does appear in z it will be

either assumed to be negligible or forced to be part of the state x through an appropriate shaping

�lter, the convenience of �ltering the components of z containing d̂ or d̂ itself being a designer's

choice. It goes without saying that whenever such a choice will be applied directly to any component
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of d̂, it will make it a state component, so disappearing from the corresponding disturbance term

of all the closed loop system equations. It will be therefore always possible to write:

J = E
(
zTWzzz + uTWuuu

)
= Tr

[(
Ĉ
T

z WzzĈz + CT
y G(Ĝ)

T
WuuG(Ĝ)Cy

)
E
(
xxT

)]
(15)

so that, de�ning Π = E
(
xxT

)
, we have

J = Tr (WΛΠ) (16)

with Π being the solution of the following Lyapunov equation:

ĀΠ + ΠĀ
T

+ WΠ = 0 (17)

where WΛ, WΠ, (re)extended to explicitly show G(Ĝ), are:

WΛ(G(Ĝ)) = Qxx −QxuG(Ĝ)Cy −CT
y G(Ĝ)

T
QT
xu + CT

y G(Ĝ)
T
QuuG(Ĝ)Cy (18a)

WΠ(G(Ĝ)) = Sxx − STyxG(Ĝ)
T
BT
u −BuG(Ĝ)Syx + BuG(Ĝ)SyyG(Ĝ)

T
BT
u (18b)

with:

Qxx = CT
z WzzCz; Qxu = CT

zxWzzDzu; Quu = DT
zuWzzDzu + Wuu, (19)

and

Sxx = BdWddB
T
d ; Syx = DydWddB

T
d + WndB

T
d ;

Syy = DydWddD
T
yd + WndD

T
yd + DydWdn + Wnn (20)

Within such a framework the optimization cycle will be based on a numerical optimization, either

constrained or unconstrained depending upon the speci�c design at hand. Therefore, having set the

determination of the optimization objective through Eq. 16, considering for the sake of brevity the

unconstrained optimization problem of interest in this work and aiming at a full freedom in choosing

a performing optimization algorithm, we have to evaluate the objective function, its gradient ad

Hessian matrix. In such a view, following a well known approach [27, p. 434] the �rst derivative of

J with respect to a generic design parameter u can be simpli�ed, by avoiding any di�erentiation of

Π, though the adjoint Lyapunov equation:

ΛĀ + Ā
T
Λ + WΛ = 0 (21)
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so that

J/u = Tr
(
WΛ/uΠ + WΛΠ/u

)
= Tr

(
WΛ/uΠ + 2ΛĀ/uΠ + ΛWΠ/u

)
whose �nal expression requires just the solution of two Lyapunov equations for the computation of

the matrices Π and Λ, in place of the np needed for computing the Π/u sensitivities associated to the

trivial adoption of its left parent form. Nevertheless, to proceed to the calculation of the Hessian

matrix J/uv, where u and v are generic design parameters, we continue from its left expression,

J/u = Tr
(
WΛ/uΠ + WΛΠ/u

)
, so that,

J/uv =
1

2
Tr
[
WΛ/uvΠ + WΛ/uΠ/v + WΛ/vΠ/u + WΛΠ/uv

]
Then, exploiting matrix commutativity under the trace operator and substituting WΛ = −(ΛĀ +

Ā
T
Λ), from Eq. 21, in the above equation, we are led to:

J/uv =
1

2
Tr
[
WΛ/uvΠ + WΛ/uΠ/v + WΛ/vΠ/u −Λ

(
ĀΠ/uv + Π/uvĀ

T
)]

(22)

whose term,
(
ĀΠ/uv + Π/uvĀ

T
)
, containing the second derivatives of Π, can be modi�ed so to

avoid having them in the Hessian matrix. In fact, taking the second derivative of Eq. 17 we obtain:

ĀΠ/uv + Π/uvĀ
T

= Ā/uvΠ + ΠĀ
T
/uv + Ā/vΠ/u + Π/uĀ

T
/v + Ā/uΠ/v + Π/vĀ

T
/u + WΠ/uv

so that the substitution of its left hand side in Eq. 22, after a few matrix commutations and

reassemblies under trace, leads to:

J/uv =
1

2
Tr
[
WΛ/uvΠ + ΛWΠ/uv + 2ΛĀ/uvΠ +

(
WΛ/u + ΛĀ/u + Ā

T
/uΛ

)
Π/v

+
(
WΛ/v + ΛĀ/v + Ā

T
/vΛ

)
Π/u

]
(23)

thus ending with the need of computing only the �rst np derivatives of Π:

ĀΠ/u + Π/uĀ
T

+ Ā/uΠ + ΠĀ
T
/u + WΠ/u = 0 (24)

along with the two evaluation of Π and Λ, required for the objective function and its gradient.

All the (np + 2) Lyapunov equations are associated to the same dynamic system, having the closed

loop state matrix Â. At each iteration, it is then possible to apply a similarity transformation

setting it into a form more convenient for the e�ective solution of the (np + 2) Lyapunov equations.
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Moreover, to avoid the expensive repeated back substitutions of the transformed solutions needed

for computing the quadratic performance in term of the untransformed state, such transformations

are applied also to the weight and variance matrices, once for all at each iteration. The standard,

numerically stable approach, is based on a reduction of Â to a Schur form [6], making it possible

to solve the transformed equations with a computational cost of the order of (np + 2)O(n3) �oating

point operations. Somewhat more e�cient formulations are also viable, e.g. Schur-Hessemberg

forms [18, p. 269], but they will remain of the O(n3) type. A signi�cantly more e�cient approach,

(np + 2)O(n2), is possible by using a transformation based on the closed loop eigenvectors. It is

nonetheless often plagued by a signi�cant bad conditioning, making it unsuitable for its repeated

blind application in an optimization procedure, often leading to a premature termination of the

optimization or to a di�cult convergence to the optimum. Thus, while being not to be excluded

a priori, it requires a well founded knowledge of the impact of its conditioning on the problem at

hand. A solution which allows to choose the best compromise between the Schur and eigenvector

transformation, while granting an acceptable numerical conditioning, is the adoption of a block

Schur diagonalization [7], [47] [22, p. 397]. In fact, it will provide the most sparse block form of

Â obtainable for a given acceptable conditioning. Depending on eigenvalues clustering, it will thus

lead to a Hessian calculation cost in between (np + 2)O(n3) and (np + 2)O(n2), at the expense of a

factorization cost which, even if it could skyrocket to O(n4), is mostly only up to �fty per cent, often

less, greater than that of a plain Schur form [7], [47]. As discussed in [7] the numerical conditioning

of the transformation matrix can become very bad if clustered eigenvalues belonging to marginally

separated eigenspaces are forced into di�erent blocks. Therefore, the eigenstructure of the state

matrix is the main factor driving the size of the diagonal blocks of the resulting Schur matrix. It

should be remarked that the determination of a numerically acceptable block diagonal structure

embedded in the determination of a block diagonal Schur form needs not to be carried out at each

iteration. In fact, since the block structure tends to stabilize as the optimization progresses, it can

be assigned a priori to the Schur factorizing function, thus avoiding the block reordering part of the

algorithm, with a reduction of the related computational time.
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B. Optimization algorithm

Despite the availability of many e�ective optimization codes, it has been veri�ed that it is

possible to reach a faster solution with the implementation of the Levenberg-Marquardt algorithm

[25], [37, p. 262] and [26, p. 47], here described.

Given our objective function J(g), g ∈ Rn , g being the vectorization of Ĝ, with gradient

f(g) ∈ Rn and Hessian H(g) ∈ Rn×n , the algorithm provides the iteration gk+1 = gk + ∆g by

solving a sequence of unconstrained quadratic approximations of the form

min
∆g∈Rn

J̃(∆g) = min
∆g∈Rn

[
J(gk) + f(gk)T∆g +

1

2
∆gT

(
H(gk) + λ2Diag[H(gk)]

)
∆g

]
(25)

where gk is the solution available from the previous step and ∆g its increment toward gk+1, λ2 being

introduced to assure a reduction of J(g) while limiting the magnitude of ∆g. Since the cost function

and its derivatives are de�ned only for a stable system, a necessary condition for the convergence

of the procedure, the safeguarding of such a property throughout the whole optimization is a must.

Therefore, as the objective function will grow when approaching the stability boundary, the step

magnitude containment will automatically maintain the solution search within the set of stabilizing

solutions. Thus, there remains only the need of initiating the algorithm with an asymptotically

stable closed loop system. Consequently, whenever the system at hand is not so already, the non

trivial problem of providing an appropriate initial SOF Ĝ has to be solved. Possible solutions can

be devised by adopting the penalty shift method described in [33] or an initial full state controller

whose contribution is driven to the constrained SOF structure through a continued optimization

procedure.

The above Levenberg-Marquardt scheme can be seen as a modi�ed Newton-Raphson solution

of the stationary condition f(gk) = 0, i.e.

[
H(gk) + λ2Diag[H(gk)]

]
∆g + f(gk) = 0 (26)

In such a view, when its zero is approached, as witnessed both by a small step length ∆gk and

factor λ, signi�cant improvements can be provided by a plain modi�ed Newton-Raphson iteration,

i.e. keeping H(gk) constant, possibly improved, almost for free, through BFGS updates [25, p. 113],

[37, p. 198] and [26, p. 71]. By limiting the number of Hessian evaluations the latter variation can
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further enhance the computational e�ciency of our Hessian based approximation.

C. Comparing Computational Performancees

After remarking that the above optimization scheme has shown better or equal results over

alternative methods reported in the literature [39] [30] [45], for a set of simple and commonly

used examples. An overview of the performances related to its application in this paper is now

shown, it is based on a sample of the design results to be presented next and is related to the most

computationally demanding con�guration with 153 states, three control surfaces and a fully coupled

SOF (3 output × 34 measures = 102 elements) gain matrix. The related block diagonal Schur form

has a single, relatively large, block of 36 elements, associated to the double integrators, all the rest

being of 1 or 2 terms. Before the optimization all variables were scaled, using the related maximum

values obtained through an open loop simulation. The presented results, as well as the following

design procedure, have been obtained by using a single core of a four cores personal computer, with

an INTEL i7-3630QM processor, a clock frequency of 2.4 GHz and 6 Gb RAM. The optimization

was assumed to have converged when both a tolerance of 10−4 on the relative gain changes and

of 10−5 on the relative change of the objective function were satis�ed, using the gradient as a

further a posteriori convergence veri�cation. The outcomes of di�erent optimization algorithms are

summarized in Tab. (3), where the initial solution had J = 106.73.

order Algorithm Lyapunov solution
Number of Evaluations

Cost Function Norm of gradient Time [s]

J f H

�rst BFGS Schur 555 555 − 85.1883 1.71× 10−3 11.14

�rst BFGS BdSchur 554 554 − 85.1883 1.71× 10−3 12.11

second LM Schur 56 17 17 85.1837 6.54× 10−6 8.45

second LM BdSchur 47 14 14 85.1837 1.45× 10−6 5.42

second LM-BFGS Schur 50 17 12 85.1837 5.30× 10−5 6.16

second LM-BFGS BdSchur 44 16 11 85.1837 4.39× 10−5 4.38

Table 3 Results obtained by using di�erent optimization algorithms.

It should be noticed that the, supposedly state of the art, Quasi-Newton-BFGS method, as

implemented in Matlab function fminunc, was used for the �rst-order, gradient only, based opti-

mization. Then, after remarking that the core cost, associated to computing any of the two used
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Schur forms and the solution of the Lyapunov equations, is the same for all the shown results, the

above table makes it clear that the Hessian based approach clearly bene�ts from using the block

diagonal form, while the gradient based results do not, albeit only marginally. Moreover, at least

for the size of the problem under scrutiny, it is evident that the number of Lyapunov solutions is

much higher for the Hessian based, (11 to 17)×102, than for the gradient based solutions, (554 to

555)×2. The above remarks clearly addresses the fact that, once a Schur form is available, a Lya-

punov solutions costs signi�cantly less than a Schur factorization. A fact witnessed by the sizeable

time gain of the Hessian base methods, all showing a roughly close number of optimization cycles,

i.e. for almost the same number of Schur factorizations. In fact it has been veri�ed that a block

diagonalized Lyapunov solution is approximately half of that related to a full Schur form. A further

evidence of the above statement comes from the gradient based approach for which, having to solve

just two Lyapunov equations for each iteration, the adoption of the block diagonal form causes

an increased computational time, roughly 10%, in accordance with the measured time di�erences

between the two di�erent Schur factorization. It is then to be remarked that, for the application at

hand, such a cost is well below the practical 50% upper bound suggested in [7], [47]. Such a point

evidences furthermore that much of the computational cost per iteration is associated to the Schur

factorization.

Along with the above highlighted points it appears that the gradient based optimizations failed

to reach a precise stationary point, ending with an O(10−3) gradient norm, despite its high number

of optimization cycles, 555. Such a somewhat incomplete, albeit acceptable, convergence is likely

due to the fact that J is fairly �at near the minimum and the quasi-Newton method misses the aim

of reconstructing a Hessian matrix adequate enough to achieve the required step increments. It is

thus clear that the Hessian based approach leads to a signi�cant reduction of the computational time

required for a well converged optimization. Within its framework, the advantage of adopting a block

diagonal Schur form is always signi�cant, perhaps with the unexpected e�ect that a reduction of its

conditioning, produces a small reduction of the number of iterations to convergence. Moreover, the

modi�ed Newton-Raphson method, with BFGS updates, further reduces the computational cost of

the Hessian based optimization, making it a premium choice for the design of our SOF based load

25



alleviator.

As said, all the presented results have been obtained with a single CPU. So, it is worth pointing

out that the Hessian based method can linearly scale its performances through a trivial large grain

parallelization of its, numerous but independently solvable, Lyapunov equations. A scaling that will

be limited only to a factor of two for a gradient only based optimization.

As the design of a control system may require many iterations to appropriately tune the cost

function capable of providing a controller meeting all the design speci�cations, it is clearly of the

utmost importance to exploit the fastest possible optimizer.

V. Final Design and Veri�cations

The here preferred SOF controller will be compared against a reference solution based on a

standard LQG-LTR design [19]. The adopted LTR procedure provides a full order observer based

controller with a ±11.1 dB gain and ±62.3◦ phase margins at its input. However, to be closer

to a real implementation its validation is based on a reduced order realization. Then, using a

Hankel norm based reduction of its transfer function [43], it is possible to maintain a gain margin

of ±7.46 dB and a phase margin of ±44.10◦ with just 56 states, out of the original 153.

The leading parameter driving the quadratic design objective is the ratio between the control

weights Wzz and Wuu, which is chosen to achieve an appropriate trade o� between the optimization

of the leading performance, i.e. the wing root bendingi moment, and the need to contain the activity

of the control surfaces.

Moreover, in order to avoid the subtraction of an excessive elevator excursion to a possible

external �ight control system, its authority was somewhat reduced with respect to that allowed to

the ailerons, by increasing its weight Wuu.

It should be remarked that, both for the LQG-LTR and SOF controller, the performances of

the adopted quadratic index are, either explicitly or implicitly, of the frequency weighted kind. In

fact so are the objective responses, containing only components within the state bandwidth, while

the aileron rotation, which is the actual control force generator, is frequency weighted the opposite

way through its transfer function.
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A. Reference Design Model and Validation

Despite a model of not so trivial size, the numerical e�ciency of the previously illustrated

controller optimization allows to viably tackle weighted multi model designs. Nevertheless both a

few tries of such an approach and extensive simulations suggested that, with enough con�dence, a

single design based on a well chosen discrete gust at a well chosen �ight condition would provide

a solution capable of a load alleviation over a range of di�erent �ight conditions. The determined

reference design is at h = 8000 m, M∞ = 0.71, q∞ = 12.826 × 103 Pa, for a worst discrete 1-cos

gust providing the highest peak wing root bending moment with H = 40 m.

After the design all simulated validations will add the sensor disturbances given in the following

list:

• accelerometers: o�set of plus uniform white noise with amplitude 5% of the measurement

range;

• acceleration integrators: o�set of plus uniform white noise, both with amplitude 1% of the

measurement range;

• velocity integrators: o�set plus uniform white noise, both with amplitude 1% of the measure-

ment range;

• IMU: uniform white noise with amplitude 5% of the measurement range;

It should be remarked that the o�set disturbances for the high pass integrated sensing units is more

a kind of checking of the simulation code than something of real value.

Possible actuator saturations were accounted for with:

• control surface de�ections: ±10◦, authority allowed to the load alleviation, the overall value

doubled;

• control surface de�ection rates: ±50 deg/s;

• stall hinge moment: the steady state hinge moment at full overall de�ection.

All the related simulations were carried out using the explicit, second order, Heun method, with
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a time step of 5× 10−4 s, adequate for caring of any saturation-desaturation instant just at the end

of each time step.

B. Validation and Chosen Final Design

The �rst part of the validations was aimed at checking the pros and cons of a segmented aileron

with respect to a uni�ed de�ection of the its two parts. For such cases no constraint was imposed

to the structure of the gain matrix Ĝ and thus all the wing and tail measurements were fed back

to both the aileron and the elevator. To obtain a fair comparison between the two con�gurations,

the related weighting matrices were selected in a way providing gain and phase margins closed to:

±7.50 dB and ±45◦.

The wing root bending moment obtained in the two cases is displayed in Fig. 6a, showing that

the split aileron is capable of a slightly better bending moment reduction. Fig. 6b, shows that such

a reduction is obtained through an incremented de�ection of the inboard aileron, while the outboard

aileron has a lower de�ection, both being adequately contained and far away from any saturation.

Having chosen the split aileron solution, the e�ect of imposing a partially decentralized structure

on Ĝ has then been tested, once more adjusting the design cost function of the new solution so

to maintain margins close to those of the single aileron. The split controller has now only 76 free

gains, against 102 of the its full counterpart, a gain margin of ±7.14 dB and a phase margin of

±42.53◦, see Fig. (7), eventually making it the preferred solution. Fig. 7 shows also he response of

the dynamic LQG-LTR controller. As it can be seen the SOF performances are comparable with

those of the more complex LQG-LTR controller, the wing root bending moment peak being reduced

by a 23.5% with the former, against a marginally better 26% of the latter, mostly related to the

fact that it can exploit its explicit knowledge of the discrete gust through the observer.

From Fig. 8, it is possible to ascertain that the de�ection of the control surfaces is always well

below their allowed saturations, the inboard aileron having a larger motion, up to a peak value of

5.9◦. A saturation of the de�ection rate is reached by the inboard aileron, as shown in Fig. 9. The

fact that the controller ful�lls is task even when such a saturation appears for a relatively sizeable

time lapse is an indications of the possible robustness of the SOF design.

It should be also remarked that the bending moment alleviation is obtained through an in-
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Fig. 6 Single and split aileron performances, H = 40 m. h = 8000 m, M = 0.71,

q∞ = 12.826× 103 Pa.

creased peak of the torsional moment, as shown in Fig 10. Nonetheless, the controller is capable of

attenuating the torsional moment along the rest of the response, as further witnessed by the Power

Spectral Density (PSD) plots of Figs. 11a and 11b. They show a comprehensive overall e�ectiveness

in limiting continuous turbulence loads, both in bending and torsion, con�rming also what suggested

by the initial design familiarization phase. It is furthermore noticed that such a �gure contains an

indication of the possible improvements obtainable with an increased elevator bandwidth, up to

the same as that of the ailerons. To provide a more complete picture of the e�ectiveness of the
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Fig. 7 Full and decoupled controller performances, H = 40 m. h = 8000 m, M = 0.71,

q∞ = 12.826× 103 Pa.

partially decentralized controller, Fig. (12) displays the PSD of the vertical accelerations, related to

ride qualities weighted within the performance index.

The improved peak bending moments for discrete gusts having gradients over the range between

18 and 110 meters are shown in Fig. 14. Such outcomes should point out that a leading discrete

design gust of 40 m was appropriately chosen.

Nevertheless, the response to the shortest gust, i.e. with a gradient of H = 9 m, shown in

Fig. 13, displays the somewhat worsened performances related to its higher frequency content.

In fact, as shown in Fig. 13b, it demands signi�cantly higher de�ection rates, leading to longer

saturations. However, Figure Fig. 13a shows that the maximum wing root bending moment is

nonetheless reduced, with the static controller giving better performances than the LQG-LTR one.

In fact, having embedded the knowledge of the reference discrete gust and �ight condition in its

design, the latter is strongly biased toward the nominal design, so being signi�cantly a�ected by

discrete gust changes. On the contrary, as it will be shortly shown in the next paragraph, a SOF

controller is much more insensitive to changes of the operating conditions.

C. Gain Scheduled Implementation

The reference SOF controller proved to be able to alleviate gust and turbulence loads over the

all �ight envelope, without destabilizing the system but at the expense of a loss of its margins, from

7.01 dB to 3.59 dB and from 42.34◦. Even if such a result indicates that the adopted design frame-
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Fig. 8 Control surface de�ection, H = 40 m, h = 8000 m, M = 0.71, q∞ = 12.826× 103 Pa.

31



In
bo

ar
d 

A
ile

ro
n 

D
ef

le
ct

io
n 

R
at

e 
[d

eg
/s

]

−60

−40

−20

0

20

40

60

Time [s]
0 0,5 1 1,5 2 2,5 3

SOF - decoupled
LQG-LTR

Fig. 9 Inboard aileron de�ection rate, H = 40 m, h = 8000 m, M = 0.71, q∞ = 12.826× 103 Pa.

W
in

g 
ro

ot
 to

rs
io

na
l m

om
en

t [
N

m
]

−5×104

0

105

Time [s]
0 0,5 1 1,5 2 2,5 3

Open loop
SOF - decoupled
LQG-LTR

Fig. 10 Wing root torsional moment, H = 40 m, h = 8000 m, M = 0.71, q∞ = 12.826× 103 Pa.

work provides a signi�cant overall robustness, to achieve the best load reduction while maintaining

robust margins over the all �ight envelope, a gain scheduling is adopted. The algebraic nature of

the SOF controller makes it very suitable for a trivial scheduling, based on pure per gain element

bilinear algebraic interpolation, over a set of gain matrices designed at a discrete set of operational

conditions.

The reference designs are then carried out over the following assigned values of the �ight enve-

lope: M∞: 0.5, 0.6, 0.71, 0.8; q∞(Pa): 5.9625× 103, 12.826× 103 and 20.776× 103.

In order to keep adequately safe margins and acceptable performances, the weights used in

the de�nition of the cost function were appropriately set for each design point. In fact, because

of the high torsional sti�ness, higher dynamic pressures increase the aerodynamic forces and the
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Fig. 11 Wing root bending and torsional moment PSDs, L = 300 m, h = 8000 m, M = 0.71,

q∞ = 12.826× 103 Pa.
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Fig. 12 Vertical acceleration PSDs, L = 300 m, h = 8000 m, M = 0.71, q∞ = 12.826× 103 Pa.

control activity must be reduced to maintain an acceptable robustness. On the contrary, the control

activity can be increased at lower dynamic pressures, without a�ecting the robustness properties of

the controllers. It should be pointed out that, to speed up the repeated designs of the gain matrices,

it is possible to use as initial guess the controller optimized at its closer design point. Since there

are not dramatic variations of the system and its cost function, such a rough continuation procedure

greatly reduces the number of iterations with respect to a cold start, typically by a factor two at
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Fig. 13 Short gust response, H = 9 m, h = 8000 m, M = 0.71, q∞ = 12.826× 103 Pa.

least.

Figure Fig. 15 shows the peak wing root bending moments and the inboard aileron de�ections

at a set of di�ering �ight conditions with a gust gradient of H = 40 m. It is recalled that the

reference controller was designed for Mach M = 0.71 and q∞ = 12.826 × 103 Pa, It can be seen

that at higher speeds the reference controller is even more e�ective than the properly scheduled

local one, albeit at the expense of already mentioned margin reductions. On the contrary the local

controller has more authority at lower speeds, and thus is more e�ective. The maximum aileron

de�ection, shown in Fig. 15b, is a further indication of the greater activity of the local controller at

lower speeds which is instead lowered at higher speeds.

Figure Fig. 16 shows the variance of the response to a continuous turbulent excitation. The same
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Fig. 14 Samples of peak responses for di�erent gust gradients, h = 8000 m, M = 0.71,

q∞ = 12.826× 103 Pa.
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Fig. 15 Samples of peak responses at di�erent �ight conditions H = 40 m.

behaviour found for the peak responses is con�rmed, showing, once more, that the deterministic

design provides a controller capable of alleviating both the deterministic and the stochastic loads.

VI. Conclusions

The SOF design of an active gust/turbulence load alleviation presented in this paper provides

a simple, partially decentralized, controller whose performances are comparable to those of a robus-

ti�ed LQG-LTR design. The simple and straightforward second order, Hessian based, optimization
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Fig. 16 Sample response variances at di�erent �ight conditions H = 40 m.

procedure adopted for its design, combined with block diagonal Schur factorizations, shows signif-

icant computational improvements with respect to state of the art gradient based Quasi-Newton

methods. The e�ective SOF controller has been designed with reference to a well chosen worst

discrete gust and reference �ight condition, resulting in a good solution also for a continuous turbu-

lence. Beside the quite acceptable gain and phase margins it can achieve, its robustness is further

proven by its capability to remain e�ective over a signi�cantly, wider set, of �ight conditions. Yet, to

regain adequate margins over the whole �ight envelope, a scheduled solution is eventually adopted,

whereas the algebraic nature of the SOF controller makes it possible a scheduling based on a simple

bilinear algebraic interpolation over just a few reference designs.
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