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Abstract 

The paper describes a modeling strategy for multi-scale analysis and optimization of 

stiffened panels, made of three-dimensional woven composites. Artificial neural network 

techniques are utilized to generate an approximate response for the optimum structural 

design in order to increase efficiency and applicability. The artificial neural networks are 

integrated with genetic algorithms to optimize mixed discrete-continuous design variables 

for the three dimensional woven composite structures. The proposed procedure is then 

applied to the multi-objective optimal design of a stiffened panel subject to buckling and 

post-buckling requirements. 

Keywords: 3D woven composites; stiffened panels; genetic algorithms; multi-scale 

analysis; optimal design. 

1. Introduction 

Stiffened panels are extensively used in the aeronautical field, and are often subjected to 

buckling phenomena under a certain level of compression load. The buckling load does not 

represent the maximum load that the structure can carry, and indeed, on the contrary, 

failure may not occur until the applied load is several times the buckling load [1, 2]. 

Consequently, the post-buckling strength capacity has significant potential for further 

weight saving. 
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For this reason a large number of researchers [3-9] focused their attention on 

optimization procedures concerning buckling load maximization or weight minimization 

under buckling and post-buckling constraints. 

Bisagni and Lanzi developed a global approximation strategy for a post-buckling 

optimization procedure for laminated composite stiffened panel combining neural network 

and Genetic Algorithms (GA) to reduce the cost and computation time [3]. Rikards et al. 

[10] developed an optimization approach based on building surrogate models and genetic 

algorithms. Kang and Kim [6] implemented a parallel computing scheme using GA, 

considering buckling and post-buckling behaviors, to obtain minimum-weight design. 

Bisagni and Vescovini [11] prosed an optimization strategy of a fuselage composite 

stiffened panel relied on a semi-analytical approach for the analysis and on GA for the 

optimization. Todoroki and Ishikawa [12] described a new strategy for Design Of 

Experiment (DOE) to obtain a response surface of buckling load of laminated composites, 

and then implemented the stacking sequence optimizations with GA using the response 

surface approximation.  

Three common main characteristics can be identified in literature for the optimization of 

composite stiffened panels. Most of the researchers make use of meta or surrogate models 

to approximate the response of the stiffened panels in order to reduce the computational 

resources needed for the optimization. The solution of the optimization problem of 

composite stiffened panels is generally obtained with genetic algorithms. Most of the 

examples reported in literatures investigated laminated composite stiffened panels, while 

few investigations consider the weaving optimization of 3D woven composite stiffened 

panels.  

The internal architecture of 3D woven composites is more complicated compared to 

laminated composites, but also more benefits could be obtained. Besides, the weaving 

parameters and routes of 3D woven composites can significantly influence the mechanical 

performances [9-14]. A large number of researches were performed to predict the 

mechanical properties of 3D woven composite via experimental [13, 14], numerical [13, 15, 

16] and analytical approaches [14, 16]. The limited analytical solutions for composite 

structures, especially for complex topological and geometrical woven composites, prevent 
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their use in the design optimization. Numerical approaches are a good choice for 

optimizing existing fabrics and for creating new textile model, but the optimization based 

on numerical approaches can result computationally expensive for analyzing complex 

structures. Besides, the time dedicated to the geometry preparation and mesh generation, to 

the definition of the weaving architecture and the application of the appropriate boundary 

conditions, must be added too. 

The surrogate and approximated modeling techniques are a promising solution because , 

when the approximated models are properly built, these models mimic the behavior of the 

numerical analysis accurately and, at the same time, are computationally cheaper. For this 

reason the optimization strategy is generally based on combining a global approximated 

technique with genetic algorithms [3, 6, 10, 12, 17, 18].  

Typically, the optimization problems of composite stiffened panels are characterized by 

the combination of continuous and discrete design variable, e.g. the number and kind of 

stringers, the selection of material, the number of strands in weaving architectures and the 

number of plays. The genetic algorithms are a reliable tool to address discrete variables 

optimization problem [19]. They use implicit enumeration procedures, based on Darwin’s 

theory of survival of the fittest [20]. The main advantage of this approach is that no 

derivative information is needed. Three operators including reproduction, crossover and 

mutation are usually adopted and these three steps are carried out for successive 

generations of the population until no further improvement in the fitness is attainable.  

In the present paper, GA are combined with neural networks to solve the continuous and 

discrete optimization of the 3D weaving composite stiffened panels. At first, the paper 

focuses on the development of multi-scale analysis models for 3D weaving composite 

stiffened panels, starting from the fibre, through the models of yarn and textile, till the 

complete model of the structure. This is done by a dedicated Python script able to manage 

both discrete and continuous variables and to create all the requested models for the 

successive analysis and optimization phases. The DOE technique, coupled with the finite 

element code ABAQUS, is then used to reduce the number of sample points to create an 

accurate approximate model based on Neural Networks capable of reproducing the 

structural responses. Finally, the neural network-based approximate model is integrated 
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with the GA module to setup and solve the optimization problem of stiffened panels, 

aiming at the minimum weight structure in presence of buckling and post-buckling 

requirements. Details of the implemented procedures together with an application example 

are reported in the following sections.  

2. Multi-scale modeling of 3D woven composites 

Textile composites are based on the combination of a resin system with a reinforcement, 

that is usually composed of thousands of fibres bundled into yarns which can be woven, 

braided or knitted into two dimensions (2D) or three dimension (3D) textiles. In particular, 

three-dimensional composites utilize fibre preforms constructed from yarns or tows 

arranged into complex three-dimensional structures. While they date back to 1960s, the 

increased global interest in recent years in 3D fabrics for resin, metal and ceramic matrix 

composites has led to the current expansion of their application from secondary to primary 

load-bearing applications in various engineering structures.  

The modeling technique here adopted is based on a multi-scale simulation process 

including micro, meso and macro scale, as shown in Figure . In order to predict macro scale 

behavior of 3D woven composite, it is necessary to know the weaving fabric characteristic 

and the yarn’s profile.  

The micro-scale modelling involves the study of the orientation and mechanical 

properties of the constituent yarn. The meso-scale modelling is based on the concept of 

homogenization and evaluates the mechanical properties of a fabric Representative Volume 

Element (RVE), which is typically used to determine the effective stiffness of textile 

fabrics. The macro-scale modelling deals with predicting the mechanical behaviors of 

completed textile structure under complex deformation state, assuming the fabric to be a 

continuous medium. The homogenization techniques provide the response of a RVE 

(global level) given the properties or response of the structure constituents (lower level). 

Since textile materials are heterogeneous and periodic, a RVE is adopted to account for the 

microstructure, which results in significantly reducing the size of the problem of numerical 

modelling. The reason for emphasizing the concept of the RVE is that it appears to provide 
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a valuable discriminator between continuum (macroscopic) theories and microscopic 

theories: for scales larger than the RVE one can use continuum mechanics and reproduce 

properties of the material as a whole [21]. The modelling hierarchical strategy adopted for 

textile composite in this work integrates the three different modelling stages (see Figure 1). 

Homogenizing techniques are then applied to link the different scale analyses.  

 
Figure 1: The proposed multi-scale modeling approach. 

A square-arrangement RVE is used to represent the unidirectional material behavior of 

the Twintex 1398, the material adopted in this study, and loop yarn, as shown in Figure 1. 

It is assumed that the fibers are arranged in an even distribution with the measured volume 

fraction and same-average-filament diameter. Based on the hypothesis of square packing 

array, fiber and matrix are assumed to be in a perfect bonding condition. Fiber within the 

yarn cross-section can be packed into rectangular packing arrays; the circular shape is used 

to describe the fiber cross-section in yarn. 

The effective elastic properties of RVE with right periodic boundary condition can be 

calculated through ABAQUS simulating six independent load cases. The basic principle 

and calculating process of RVEs effective elastic properties are obtained applying 

generalized concentrated forces with dimension of force per length, to the different degrees 

of freedom of RVE [22]. It corresponds to apply macroscopic stresses to the unit cell and 

the macroscopic stresses are related to these concentrated forces from a simple energy 

equivalence consideration. For example, if a force Fx is applied to the degree of freedom  

of a unit cell while all the other extra degrees of freedom are free from constraints, the 

work done by the force is:  

RVE of Twintex yarn

RVE of Loop yarn

Meso-scale RVE

Fabric

Fabric + matrix

Structure

MICRO SCALE MESO SCALE MACRO SCALE
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=                              (1) 

The strain energy can be written as  = =                       (2) 

where V is the volume of the unite cell. Equating W to E yields a relationship between the 

concentrated force and the macroscopic stress applied: = ⁄ , = ⁄ , = ⁄ ,                     (3) = ⁄ , = ⁄ , = ⁄ ,	                 (4) 

Once obtained the macroscopic stresses, the elastic properties are then easily recovered. 

The multi-scale modeling procedure, sketched in Figure 2, has been developed 

combining already available codes with ad-hoc developed pieces of software. The open 

source software TexGen, developed by University of Nottingham for modelling the 

geometry of textile structures [23], was used to pre-process input files for ABAQUS/CAE. 

Combining ABAQUS with TexGen was proven as a useful strategy to deal with textile 

composite modeling and structural analysis problems, since they both have an application 

programming interface (API) accessible through the Python programming language, 

allowing for an easy methodology to link the two codes. Hence, a Python script can be 

executed within ABAQUS/CAE interface, which is able to call TexGen library function 

written in Python language without real-time intervention from the user. The methodology 

here developed, even if tested here only to the case of a stiffened panel, was intended to be 

applicable to any arbitrary architecture of RVE and structure, thorough a standardized 

procedure ranging from the geometry and mesh generation, the definition of the weaving 

architecture and the application of the appropriate boundary conditions. Python scripts, in 

particular, allow the creation and modification of the geometry and properties of the 

ABAQUS model, the submission of ABAQUS analysis jobs, as well as the output 

post-processing [24, 25], becoming so a very efficient tool to develop parameterized 

models to be analyzed with ABAQUS.  

In the present study, the architecture of the micro and meso RVE, the stringer size, the 

thickness of the skin and the number of the stringers were changed according to the actual 
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input design variables. Besides, the dedicated Python code not only integrated the 

multi-scale analysis [25], the data extraction and the communication, but also automatically 

repeated this analysis process according to the optimization needs. This point is of 

particular importance for GA optimization.  

 
Figure 2: Overview of the proposed multi-scale approach for 3D woven composites. 

3. Definition of the optimization problem 

3.1. Description of the stiffened panel and the design domain 

The considered structure is a compression loaded stiffened composite panel, having the 

width of 700 mm and length of 840 mm, with a variable number of T-shaped stringers, as 

shown in Figure  (left). The upper and lower edges of the panel are simply supported 

while the longitudinal edges are free. The panel is made by Twintex○R1398 and by loop yarn, 

whose properties are shown in  

.  

Based on the material data available and on the fiber fraction, the elastic constants of 

Twintex 1938 and of loop yarns, keeping the width and height of weft and warp yarn, as 

well as of the loop yarn fixed and equal to 2 mm and 0.3 mm, respectively, can be 

computed. The constants are summarized in  

. 

INPUT: Material properties
for yarn fibers and matrix,
fiber fraction

Pyton: RVE Geometry and
input preparation for TexGen

TexGen: ABAQUS input
preparation

ABAQUS: Homogenization

Pyton: Extracting elastic
properties and density into

Pyton: Geometric model of
textile fabric RVE

TexGen: Generation of the
RVE solid model for ABAQUS

ABAQUS: Extraction of
elastic properties, density
and thickness info

Python: ABAQUS run
preparation and material
data recovery

ABAQUS: Extraction of
buckling analysis results

ABAQUS: Homogenization

MICRO SCALE MESO SCALE MACRO SCALE
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Table 1. Properties of Twintex 1398 and loop yarn 

TW TR PP82 NUTURAL 1398 Loop Yarn 
GF [% by weight]             82
PP [% by weight]              18
Linear density [ypp]    345.83
Linear density [kg/m]   0.001398
Fibre area [mm2]        0.4443
Matrix area [mm2]        0.2796
Total area [mm2]         0.7239
Fibre Volume fraction [%]  61.4

GF [% by weight]             50 
PP [% by weight]             50 
Linear density [ypp]       3701 
Linear density [kg/m]    0.00134 
Fibre area [mm2]        0.0264 
Matrix area [mm2]      0.0733 
Total area [mm2]        0.0997 
Fibre Volume fraction [%]     26.4 

 
Table 2. Elastic constants of Twintex○R1938 and loop yarns 

 Twintex○R1398 Loop yarn 
Volume fraction of fibre 61.4% 26.4% 
Density ρ [kg/mm3] 1.93E-6 1.35E-6 
E11 [MPa] 45170 21140 
E22 [MPa] 8298 2737 
G12 [MPa] 2318 886 
G23 [MPa] 1549 750 
ν12 0.26 0.31 
ν23 0.23 0.45 

The analysis and optimization of the panel is based on the identification of seven mixed 

discrete-continuous geometric design variables shown in Figure : x1 is the spacing between 

weft and loop yarns; x2 is the spacing between two close warp yarns; x3 is the number of 

weft yarn layers in the skin; x4 is the number of weft yarn layers in the stringers; x5 and x6 

are the stringers width and height, respectively; and x7 is the number of stringers. The 

design domain is reported in Table 3, together with the initial values of the design 

variables.  
Table 3. Optimization domain of design variables 

 Design parameter Domain  
Spacing between weft and loop yarns [mm] x1 [0 1]  
Spacing between warp and loop yarns [mm] x2 [0 1] 
Number of weft yarn layers in skin x3 {4,5……10} 
Number of weft yarn layers in stringer x4 {10,11……20}
Stringer width [mm] x5 [10 30] 
Stringer height [mm] x6 [10 30] 
Number of stringers x7 {3,4,5,6} 
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Figure 3: The stiffened panel and the design variables. 

3.2. Objective function 

The objective function is usually formulated according to the optimization problem by 

combining structural and manufacturing performances. In the present study, the mass of the 

considered composite stiffened panel is used as objective function. It is directly obtained 

from the panel geometry and the density of the representative volume elements, and can be 

expressed as: 

= 800 × 700 × ×  + + × 700 × ( + ) × ×              (5) 

where: = _                                 (6) = _                              (7) = ( × + × + × )/ _          (8) = ( × + × + × )/ _       (9) 

_ = + +                        (10) 		  is the number of stringers,  and	 	are width and height of each 

stringer,		 _ ,	 ,	 ,	 ,	 ,	 , 	depend on RVE weaving 

architecture of the skin and stringers.  

One of the difficulty in using GAs for optimization is due to the fact that they solve 

unconstrained problems. So, a specific strategy based on penalty functions has been 

introduced to solve the constrained optimization problem here considered.  

The method here adopted [26] proposes to use a tournament selection operator, where two 
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solutions are compared at a time, and the following criteria are always enforced: 

1. Any feasible solution is preferred to any infeasible solution. 

2. Among two feasible solutions, the one having better objective function value is 

preferred. 

3. Among two infeasible solutions, the one having smaller constraint violation is 

preferred. 

The fitness function ( )  is defined as equation (11), where infeasible solutions are 

compared based on only their constraint violation values 〈 ( )〉: 
( ) = ( )																																	 	 ( ) ≥ 0	∀ = 1,2,⋯ , ,+ ∑ 〈 ( )〉 																																	 ℎ .                   (11) 

The parameter 	is the objective function value of the worst feasible solution in the 

population. Thus, the fitness of an infeasible solution not only depends on the amount of 

constraint violation, but also on the population of solutions at hand. However, the fitness of a 

feasible solution is always fixed and is equal to its objective function value. 

3.3. Buckling and post-buckling constraints 

A sketch of a typical load-shortening curve of the analyzed category of stiffened panels 

in the post-buckling field under axial compression is shown in Figure 3.  

 

  Figure 4: Typical load-shortening curve of a stiffened panel. 

It presents two relevant regions. The first one is the linear part where the load is smaller 

than the buckling load Pcr,. The corresponding displacement is identified with ucr. The 

second part corresponds to the post-buckling region.  
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For simplicity, the load-shortening curve can be piecewise linearized using two lines, 

where the slopes Kpre and Kpost characterize the pre- and post-buckling stiffness, 

respectively. Before performing the optimization design, the minimum allowable design 

values 	 , 		  and	  have to be defined according to the design structural 

requirements. 

4. Optimization strategy 

The optimization of stiffened panels made of 3D woven composite material combines 

the difficulty of multi-scale analysis with the high fidelity non-linear simulation requested 

by buckling and post-buckling analysis, which leads to an increasing computational 

analysis time. Besides, the optimization problem involves the simultaneous presence of 

mixed continuous and discrete variables, that suggests the use of a non-gradient-based 

method as GA to perform optimization design. The main drawback is that GA require a 

large number of iterations compared with gradient-based algorithms. Consequently, it 

becomes extremely time-consuming performing optimization using genetic algorithm 

together with high fidelity non-linear finite element analyses. The surrogate and 

approximated modeling techniques become necessary. The approximation technique here 

adopted is based on Neural Networks (NN) that appears as a reliable choice in combination 

with GA to perform structural optimization. When the NN-based system is properly setup, 

the approximated model mimics the behavior of the numerical analysis accurately, and is 

computationally cheaper.  

The optimization process can be summarized into two main parts. The first one includes 

the multi-scale analysis to supply data source for constructing the approximated model. 

This part is implemented into a dedicated Python script interfacing TexGen and ABAQUS 

codes. The second part integrates the Neural Networks with the GA module to build-up the 

approximated model and to perform the structural optimization. This second part is 

implemented into a dedicated Matlab module. 

The main steps in the optimization procedure can be summarized as follows: 
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• The DOE techniques identify the number of analyses requested to set-up a reliable 

approximated model depending on the type and number of design variables. Using 

the SAS-JMP software a total of 308 cases were defined and included into a test set.  

• Multi-scale finite element analysis of the composite stiffened panel is implemented, 

considering mixed continuous and discrete design variables in the test set. The Python 

module integrated the pre-processor TexGen and ABAQUS code to automatically 

perform the multiscale analysis and to extract the response data. They are the 3D 

weaving composite properties in the case of RVE, and eigenvalues and 

load-shortening curve in the case of the complete stiffened panel. 

• The NN architecture is defined so to be able to approximate the selected structural 

responses. 

• The optimum problem is formulated in terms of fitness and constraint functions. 

• The optimization problem is solved combining GA and NN-based approximations. 

• The optimization results are verified using finite element analysis performed with 

ABAQUS. 

5. Determination of Neural Networks architecture 

5.1. Neural Networks 

Artificial Neural Networks (ANNs) consists of an information processing paradigm that 

is inspired by the way biological nervous systems are used to approximate functions that 

can depend on a large number of inputs and are generally unknown. It is composed of a 

large number of highly interconnected processing elements (neurons) working in unison to 

solve specific problems. The connections have numeric weights that can be tuned based on 

experience, making neural networks adaptive to inputs and capable of learning. The back 

propagation neural network algorithm (BPNN), in particular, is a multi-layer feed forward 

network trained according to error back propagation algorithm and is one of the most 

widely applied neural network models. BPNN can be used to learn and store a great deal of 

mapping relations of input-output model. The idea of the back propagation algorithm [27] 
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is the repeated application of the chain rule to compute the influence of each weight in the 

network with respect to an arbitrary error function. The training begins with random 

weights, and the goal is to adjust them so that the error will be minimal. In present study, 

BPNNs are utilized to construct approximations of the structural responses of the 

composite stiffened panel. 

The optimization strategy is then composed by two main steps: 

• Build a system of neural networks that is capable to surrogate the solution of the FE 

model. 

• Combine the neural networks with genetic algorithms to perform the global 

optimization. 

5.2. Training and test sets 

Based on the variables and ranges summarized in Table 3, a sample of cases was created 

for BPNN training. In order to generate the distribution of simulation parameters, Design 

Of Experiment (DOE) approach was used. This method is recognized to be able to generate 

a small yet representative sample of cases. As much as 308 cases had to be computed 

according to design of experiment. 

All the simulation cases were run in ABAQUS 6.10 software. A single analysis needs 

about 10 minutes on an i7-3520M CPU Intel processor at 2.9 GHz speed, that means about 

two days to complete the whole process. 

The training data set is used to build-up different approximated models dedicated to each 

structural response. The training set is divided in a pure training set, including 266 sampling 

points, and one verification set, based on 42 sampling points.  

5.3. Architecture of the neural network system 

The original input-output problem has seven input variables and three output parameters, 

and required the definition of four different NNs able to simulate the considered structural 

responses. The entire process has been implemented using the Matlab NN Toolbox that 

offers the complete set of tools requested for the identification of the most suitable NNs 
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architecture and supports a variety of training algorithm and learning functions. In particular, 

the data scaling option has been applied because the way in which the data are presented to 

the network affects the learning of the network. Therefore, pre-processing data are required 

before passing the training patterns to the network.  

Neural networks are typically organized in three layers (input layer, hidden layer and 

output layer). Each layer is made up of a number of interconnected nodes which contain an 

activation function. Each node receives an input signal that is the weighted sum of its input 

links and computes an activation signal sent to the next layer along the output links. The 

transfer functions are defined to compute activation signal, and the three typical transfer 

functions, i.e. Tan-sigmoid, Linear and Log-sigmoid have been applied in this study for the 

definition of the optimal architecture. Most ANNs contain some form of learning rule 

which modifies the weights of the connections according to the input patterns. Although 

there are many different kinds of learning rules used by neural networks, the back 

propagational neural networks (BPNNs) are currently the most widely used networks in 

engineering applications. Hence, the BBNNs are here used to deal with the weights of 

neural networks.  

The training process in the network involves connecting a set of sample points (input data) 

with known outputs (target outputs). The system adjusts the weights of the internal 

connections to minimize errors between the network and target outputs. The ANN was 

trained in present study using Bayesian regularization algorithms. The training was 

considered to have reached convergence if the sum of squared error stabilized over certain 

iterations. After the NN is satisfactorily trained and tested, it is able to generalize the rules 

and to predict reliable outputs corresponding to unknown input data within the domain 

covered by the training examples. 

Table 4 shows the adopted BPNN architecture for each relevant structural response 

together with the mean approximation error when the verification set is applied, while Figure 

4 shows the correlation plots for the buckling load and the pre-buckling stiffness. The 

approximation error in the case of buckling load and pre-buckling stiffness is very low (less 

than 1%), while in the case of the post-buckling stiffness is much higher, around 17%. This is 

mainly due to the highly non-linear behavior of this response that strongly depends on the 
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evolution of load-shortening path in the deep non-linear region. This aspect suggests to 

revise the definition of this response index in a more stable way for future applications.  

After building the NN architectures and checking the accuracy, the NN system is able to 

surrogate the finite element analysis of 3D-woven composite stiffened panels. 

Table 4. BPNN architecture 
Output parameters Nodes Transfer functions Approximation 

Hidden layers Output layer Error [%] 
Pcr 7, 27, 4, 1 logsig, tansig, purelin purelin 0.75 
Kpre 7, 27, 1, 1 logsig, tansig, purelin Purelin 0.70 
Kpost 7, 46, 1, 1 tansig, logsig, purelin Purelin 17.0 

 

  
Figure 5: Correlation plots for buckling load and pre-buckling stiffness. 

6. Structural optimization results and model validation 

Once the approximated models have been constructed by Neural Networks, GA [20] was 

adopted to optimize the weaving parameters of composite stiffened panel. In the present 

investigation, Matlab GA toolbox was exploited to solve the minimum weight, global 

optimization problem.  

6.1. Optimization  

The objective and domain of constraints for weaving textile composite optimization 

problem have already been defined and is reported in Table 5. The population is initialized 

with 200 individuals, randomly generated in the design domain. Crossover is applied with a 

probability of 0.85. The probability of mutation is 0.01 for all the operators. The initial 
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penalty of constraint parameters was set equal to 1 and penalty factor to 10. The stopping 

criterion is defined allowing a maximum number of 200 generations without improvement. 

The best fit was obtained after the evolution of 200 generations.  

The best fitness value, who’s trend is shown in Figure 6, was 4.11 kg, corresponding to 

the following design variables vector: = {0	mm, 1	mm, 10, 12,15	mm, 28.20	mm, 6}	 
Table 5. Optimization problem using NN. 

Objective Function:  Minimize mass M   
Design Variables: 0 ≤ ≤ 1 0 ≤ ≤ 1 { |4,5,6,7,8,9,10} { |10,11……20} 10 ≤ ≤ 30 10 ≤ ≤ 30 { |3,4,5,6} 

Constraints: ( ) > 80	( )( ) > 40	( /( ) > 20	( / ))

6.2. Model Validation 

The last step of the optimization procedure requires the validation of the optimal design 

configuration using Finite Element (FE) models in place of the approximated ones based on 

NNs. In particular, the complete multi-scale analysis has to be carried out, starting from the 

generation of the RVE model based on the optimal values of design variables, till the 

non-linear analysis using ABAQUS. 

 
Figure 6: Optimization results. 
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Figure 7 and 8 show the buckling shape of the optimized stiffened panel in terms of the 

out-of-plane displacement and the load-shortening curve, respectively, while Table 6 

reports a comparison between the approximated and the FE structural responses. Looking 

at the reported results, it is possible to highlight the accuracy of the obtained results, with a 

maximum error between the approximated and the real value less than 10% in the case of 

critical load, and less than 4% in the case of pre- and post-buckling stiffness. The mass 

saving is equal to 26% but in this case it must be pointed out that the initial design was not 

optimized. 

 
 

Figure 7: Eigenvalue analyses  
(first buckling mode) 

Figure 8: Load-shortening curves for 
optimized stiffened panel. 

 
Table 6. Comparison NNs and FE results at the optimum design point. 

 Allowables NNs results FE results Error (%)
Critical load [kN] ≥80 80.4 89.20 9.8 
Pre-buckling stiffness [kN/mm] ≥40 55.2 56.91 3.0 
Post-buckling stiffness [kN/mm] ≥20 40.5 42.10 3.8 
Mass of model [kg] - Initial 6.24 Final 4.59 - 

7. Conclusions 

The paper proposes a fast optimization strategy for the design of composite stiffened 

panels made of 3D woven composite. The development of an optimization procedure based 

on multi-scale finite element analysis, neural network and genetic algorithms resulted in a 

minimum weight design of a stiffened panel subject to buckling and post-buckling 

constraints.  
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A three-level hierarchical modelling approach for woven composite structures was 

developed to describe the fibre, the yarns, and the mechanical properties of the material at 

the micro scale of a Representative Volume Element, till the macro-level behaviors of the 

structure. Representative Volume Element and periodic boundary conditions are utilized to 

homogenize elastic properties of woven composite. A dedicated module written in Python 

language was used to interface TexGen and ABQAUS codes for the pre- and 

post-processing data resulting from finite element analysis.  

The optimization part of the procedure here proposed was based on the combination of 

approximated models, obtained using Neural Networks with Genetic Algorithms. 

The numerical example reported concerns the minimum mass of a stiffened panel subject 

to buckling constrains, involving continuous and discrete design variables related to the 

weaving parameters, as well as the architecture of the panel consisting in the number of 

stringers.  

The optimal configuration was finally verified using the proposed multi-scale finite 

element analysis. The critical load, pre-buckling and post-buckling stiffness predicted by 

Neural Networks appear in good agreement with the ones obtained by finite element 

analysis, so validating the proposed approach based on the use of approximation techniques. 

Finally, the paper proves that the proposed optimization strategy is efficient and reliable for 

the optimization of 3D woven composite structures in the preliminary design stages. 
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