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Abstract The objective of the present paper is to describe
a procedure to identify and modelling the non-linear be-
haviour of structural elements. The procedure herein applied
can be divided into two main steps: the system identification
and the Finite Element model updating. The application of
the Restoring Force Surface method as a strategy to charac-
terize and identify localized non-linearities has
been investigated. This method, which works in the time-
domain, has been chosen because it has ’built-in’ character-
ization capabilities, it allows a direct non-parametric iden-
tification of non-linear Single Degree of Freedom systems
and it can easily deal with sine-sweep excitations. Two dif-
ferent application examples are reported. At first a numeri-
cal test case has been carried out to investigate the modeling
techniques in the case of non-linear behavior based on the
presence of a free-play in the model. The second example
concerns the flap of the Intermediate eXperimental Vehicle,
that successfully completed its 100-minute mission on 11
February 2015. The flap was developed under the respon-
sibility of Thales Alenia Space Italia, the prime contractor,
which provided the experimental data needed to accomplish
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the investigation. The procedure here presented has been ap-
plied to the results of modal testing performed on the article.
Once the non-linear parameters were identified, they were
used to update the Finite Element model in order to prove
its capability of predicting the flap behaviour for different
load levels.

Keywords Non-linear system identification· Restoring
force surface method· Finite element model updating·
Space structure

1 Introduction

The most popular approach to perform linear system identi-
fication is modal analysis, however, in the presence of non-
linearity the principles that form the basis of modal analysis
are no longer valid and it becomes necessary to apply a dif-
ferent strategy to detect, characterize and identify localized
non-linearities.

Among the well-established methods presented in [2],
there exists the Restoring Force Surface method (RFS) in-
troduced by Masri and Caughey. A parallel approach, named
Force-State Mapping technique, was developed independently
by Crawley and Aubert and an application can be found in
[3].

This method, which works in the time-domain, has been
chosen because it has ’built-in’ characterization capabilities,
it allows a direct non-parametric identification of non-linear
systems (in so far as Single-Degree-of-Freedom systems are
considered) and it can easily deal with sine-sweep excita-
tions, which has become a quite common type of excitation
since it allows a shorter testing time compared to stepped-
sine test and provides a higher excitation level compared
to random excitation. However, the method is not meant
to deal with Multi-Degree-of-Freedom (MDOF) structures
although there have been attempts to extend it to lumped
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parameter MDOF structures [4]. Another limitation of the
method comes from the fact that it is not able to provide any
information about the location of the non-linearity.

A comprehensive explanation of the method can be found
in [4], whereas experimental applications can be found in [5]
to [10].

Further details on the results presented next can be found
in [1], on which this paper is based.

2 The Restoring Force Method

The starting point of the method is the Newton’s second law
of motion written in the Single-Degree-of-Freedom (SDOF)
form

mÿ + f(y, ẏ) = p(t) (1)

wheref is the internal restoring force which acts to return
the system to equilibrium when disturbed. Sincef is as-
sumed to be dependent only on displacement and velocity,
it can be represented as a surface over the phase-plane. A
rearrangement of Eq. (1) gives the restoring force as

f(y(t), ẏ(t)) = p(t)−mÿ(t) (2)

If the massm and the excitationp(t) are known and the
acceleration̈y is measured, all quantities on the right side of
Eq. (2) are known, and so isf . If velocity and displacement
are also known (from direct measure or from numerical inte-
gration), the triplet(yi, ẏi, fi) is known at each time instant:
the first two values indicate a point in the phase-plane and
the third the height above that point. The visualization of
the surface represents a quick way of determining the type
of non-linearity involved and the determination of the func-
tional form is straightforward.

Data processing.Two main ways to obtain simultaneous
displacement, velocity and acceleration data at each sam-
pling instant are available depending on what are the quan-
tities measured during the test. The easiest approach is to
measure the acceleration and estimate the other two by means
of numerical integration and filtering. The second approach,
instead, relies on acceleration and displacement measure-
ments in order to retrieve the velocity by means of a discrete
Kalman filter. The first approach is the one applied to both
the numerical and the experimental case presented next and
therefore it will be explained in the following, whereas the
explanation of the second technique will be presented in Ap-
pendix A since it has not be applied in this case. However,
an application on experimental data of the second approach
can be found in [1].

As said, the first method relies on the use of an inte-
gration scheme to obtain estimates of the missing signals.
Various methods for achieving numerical integration can be
found in [11] and [12]. Due to its simplicity, the chosen in-
tegration scheme for this study is the Trapezium rule. Since
it suffers from the introduction of spurious low-frequency
components (as stated in [4]), the time histories resulting
from the integration need to be high-pass filtered. Not to in-
troduce any phase lags, which will destroy the simultane-
ity of the signals, a bidirectional filtering technique mustbe
adopted. The effect of the bidirectional filtering (zero-phase)
is clearly visible in Fig. 1.

A comprehensive introduction to digital filtering can be
found in [13] and [14].

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

 

 

original signal
zero−phase filtering
linear phase filtering

Fig. 1: Effect of zero-phase and linear phase filters on signals

3 Finite Element model of gaps: a simple numerical
example

To predict the behaviour of non-linear systems, it is neces-
sary to include the corresponding non-linear elements into
the numerical models which describe the system. Once the
non-linear parameters have been identified by means of the
Restoring Force Surface method, they can be used to update
the Finite Element (FE) model.

The following simulation has been carried out by means
of the MSC Nastran software. Although this software is prone
to be affected by convergence problems in the presence of
structural non-linearities, it has been chosen because it rep-
resents the standard for both industrial an academic applica-
tions for what concern the structural analysis.

Two different approaches have been applied in order to
model the gap non-linearity: the first relies on the introduc-
tion of an non-linear element which is capable of simulat-
ing a point-to-point contact for contact and friction simula-
tions, whereas the second implies the definition of a non-
linear force-deflection relationship which is treated as a di-
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rect force applied locally on the structure and thus consid-
ered as an additional load in the equation of motion.

Several non-linear solution sequences are available in
MSC Nastran, both in the time and frequency domain [15].
The ones taken into account for this research are the non-
linear transient solution (SOL129) and the non-linear har-
monic response solution (SOL128), which are both direct
solution sequences. The first was chosen because, according
to [15] it represents the preferred choice when non-linearities
are involved, whereas the second solution sequence has been
investigated because it provides results directly in the fre-
quency domain thus allowing to directly compare them with
the test results with a reduction in the time needed for post-
processing. The main characteristics of these two solution
sequences are shown in Table 1. In this table, theCGAP/PGAP

entry refers to the first modelling approach (non-linear ele-
ment) described earlier, whereas theNOLINi entry represents
the second approach (non-linear load).

Table 1: Nastran non-linear solutions

Nastran Type CGAP/PGAP NOLINi

SOL128 Frequency No Yes
SOL129 Transient Yes Yes

To show the set-up of these two solution sequences a
plate has been modelled. The plate, shown in Fig. 2, has
dimensions0.127x0.0508x0.0012m and it is constrained at
three nodes in order to resemble the constraint configuration
of the IXV flap, which will be analysed at the end. The load
is applied along thez-direction at the tip.

Fig. 2: Plate FE model

A modal analysis was run to locate the first two reso-
nances, which were seen to occur at79.26Hz and304.9Hz.
Being the first two modes well separated, it is possible to
excite the first one only so that the plate can be assumed to
behave as a SDOF system.

3.1 Free-play modelled as element

A symmetric gap has been modelled in thez-direction at
node 353, thus replacing the existing constraint in that di-
rection.

The element has been modelled by means of theCGAP

andPGAP Bulk Data entries which are intended, among the
others, for the non-linear transient solution sequence SOL129.
ThePGAP entry defines the properties of the element and it
is called by theCGAP entry [16].

The simulation parameters required by the aforemen-
tioned cards were chosen as follows:

– to determine the value of the axial stiffness of the closed
gap, a linear spring alongz was introduced at node 353.
The spring constant was set to109 N/m to simulate the
constraint and a linear transient simulation was run. The
results were compared to the ones obtained in the case
of the actual constraint to make sure they were equal

– the same model was run with the non-linear transient
solution to check the correctness of thePARAM,W4 value
used to define the damping1

– the axial stiffness for the open gap was set to10−6 N/m
– the initial gap opening was chosen looking at the dis-

placement at node 353 obtained running a simulation un-
der sine excitation after having removed the constraint in
thez direction (Fig. 3). The chosen value was4 ·10−4 m
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Fig. 3: Time response at node 353 without thez constraint

The time step for the simulations was chosen taking into
consideration the frequency content of the input load and the
frequency of the mode of interest (the first one only). How-
ever, the SOL129 is characterized by an automatic adjust-
ment of the incremental time, which means that the user-
defined∆t is actually used as an initial value for the time
step size [15].

Two simulations were run in order to show the effects of
the gap non-linearity on the plate response. The first simu-

1 It is extremely important to correctly define theW4 (or W3) pa-
rameter as will be better explained in Appendix B
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lation run was a linear transient solution (SOL109) with the
node 353 constrained in thez direction. Then the constraint
was replaced by the gap modelled as explained earlier and
the non-linear transient solution was run. For both analysis
the input was a unit amplitude, sine sweep excitation band
limited in the range50−100Hz and applied at the tip (node
32) in thez direction. The sweep rate was set to4 oct/min,
which yields a total duration of the simulation of15 s. The
output responses, shown in Fig. 4, were read at node 176,
which is close to the Centre of Gravity (CoG).

The effect of the non-linearity can be easily spotted by
the inspection of the time histories, in fact the response in
Fig. 4b clearly shows thejump phenomenontypical of non-
linear systems.
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Fig. 4: Acceleration at plate CoG

3.2 Free-play modelled as non-linear force

As said, the Nonlinear Harmonic Response solution offers
the possibility to obtain results directly comparable withthe
test ones, however the approach described earlier is not ap-
plicable in this case since the cards used earlier are no more
available in this solution sequence. Therefore, to simulate
the effects of the gap non-linearity it is necessary to intro-
duce theNOLINi cards, which allow the definition of a non-
linear force-deflection (or force-velocity) curve.

As stated in [15], the aforementioned solution sequence
allows the analysis of the dynamic response of non-linear
structures which exhibit a periodic response when subjected

to a harmonic excitation. This means that, to be able to de-
scribe the response as a combination of harmonic responses
through the Harmonic Balance Method (which is the method
implemented in this solution), the degree of non-linearity
has to be light, in such a way that only a small number of
sinusoids is necessary to approximate the solution.

The main issue related to this solution is convergence.
Non-convergence can be due to dynamically unstable con-
ditions, to the reaching of a bifurcation point or to an insuf-
ficient number of harmonics taken into account. In case of
non-convergence, the response quantities are set to zero and
the calculation continues to the next excitation frequencyre-
taining the initial conditions of the solution from the last
converged frequency.

Since the non-linearities have to mild to achieve conver-
gence, the curve which represent the free-play non-linearity
was approximated using a polynomial model of the form
p(x) = p1x

3, wherep1 was estimated to be equal to1.77 · 109

(Fig. 5). In this way it was possible to avoid the abrupt change
in stiffness due to the gap closing. It has to be noted, how-
ever, that the lack of a tangent matrix due to the fact that
the NOLINi Bulk Data entries define forces, not elements,
could still lead to solution instabilities which will causenon-
convergence.
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Fig. 5: Polynomial approximation of a symmetric gap

To define the non-linear load as a power of the displace-
ment (or the velocity) theNOLIN3 andNOLIN4 entries [16]
have been used. TheNOLIN3 defines the forcing function for
positive displacements, theNOLIN4 for negative displace-
ments.

To simulate the gap, the non-linear force was applied at
node 353 in thez direction and the analysis was run for dif-
ferent load levels. The number of harmonics included in the
solution is 3, because it was noted that there was no gain in
increasing the number of harmonics above 3 since the solu-
tion did not improve any more. The comparison of the Fre-
quency Response Functions (FRF) shown in Fig 6 (the so
called, homogeneity test [17]) highlights the presence of the
non-linearity and its effects on the natural frequency of the
plate. The curve obtained for the second load level (the solid
blue one) has been presented on purpose to show the effects
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of non-convergence on the results, since this is a peculiar-
ity of this solution sequence. In fact it can be seen that the
response is set to zero for the frequency values in which con-
vergence is not reached. When convergence is not reached,
the calculation continues retaining the initial conditions of
the solution from the last converged frequency.
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Fig. 6: Homogeneity test

4 Numerical validation of the Restoring Force Surface
method

The time histories obtained in Section 3.1 can be used to
validate the identification method.

Before applying the method, the simulation outputs have
been resampled at a constant sampling frequency of10 kHz

in order to have a better coverage of the phase-plane.
The surface and the stiffness curve resulting from the ap-

plication of the Restoring Force Surface method are shown
in Fig. 7. The spurious oscillations (Fig. 4b) introduced by
numerical integration have the effect of producing a noisy
surface. Since the stiffness curve showed a piece-wise linear
trend, a non-polynomial model expressed by Eq. (3) was fit-
ted to the numerical data and the estimated parameters were
collected in Table 2 and Table 3. The exact stiffness param-
eters were obtained applying the identification method to
the time histories obtained for two limiting cases: one with

node 353 fully constrained and one with node 353 free in
thez-direction. The stiffness values thus obtained represent
the closed and the open gap conditions in such a way that
k
−
, k+ = kz,constrained andk = kz,free.

fs(y) =











k+y + (k − k+)yc y > yc,

ky |y| ≤ yc

k
−
y + (k − k

−
)yc y < −yc

(3)
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Fig. 7: Restoring force surface results

Table 2: Identified stiffness parameters for the symmetric gap

k
−

k k+

exact param. 5318.6 3592.4 5318.6
identified param. 5196.5 3939.7 5188.3

Table 3: Identified gap size parameters for the symmetric gap

yc yc

exact param. -0.0004 0.0004
identified param. -0.000414 0.000414
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5 An industrial application: the IXV flap structure

Thanks to the numerical example, the method has been proved
to be reliable as far as the identification of non-linear sys-
tems is concerned, therefore it can be applied to an industrial
case in which a non-linearity showed up during the testing
phase. It has to be underlined that the tests conducted on this
structure were not meant for this purpose.

The application of this identification method to a real-
life structure was successfully attempted in [9], where data
coming from numerical simulations were used, and then ap-
plied on experimental data of a real satellite in [8]. Therefore
the next section can be seen as an additional confirmation
of the validity of the Restoring Force Surface method as a
means of identifying nonlinear structures starting from the
experimental data.

The structural element taken into account in this section
is the flap of the Intermediate eXperimental Vehicle [18],
which was successfully launched on 11 February 2015. The
experimental data showed in the next sections and the FE
model used for the numerical simulations were provided by
Thales Alenia Space Italia (TAS-I), the project prime con-
tractor. A detailed description of the flaps, together with the
Flap Control System can be found in [19].

5.1 Experimental results.

The flap was tested on a shaker table (Fig. 8) under a sine-
sweep excitation band-limited in the frequency range5 −

100Hz, the sweep rate was set to4 oct/min and the accel-
eration was enforced in the out of plane direction.

Fig. 8: Flap testing set-up (Courtesy of TAS-I)

Different levels of excitation were tested and the accel-
eration responses were measured and stored with sampling
frequency of6.5 kHz. Since during structural tests the re-
sponses are usually stored as frequency domain data, the re-
sulting time histories of some of them were not available.

The input excitations of the two tests taken into consid-
eration are the first and the second shown in Fig. 9.

Looking at the frequency responses obtained from the
tests (Fig. 10), it is clear that three modes participate to the
response and this will negatively affect the identificationre-
sults, as will be explained later.
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Fig. 9: Input excitations IXV test (Courtesy of TAS-I)
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Fig. 10: Frequency responses at CoG from test (Courtesy of TAS-I)

The presence of the non-linearity is clearly visible when
comparing the transmissibilities for the different excitation
levels (Fig. 11), in fact, the resonance frequency shifts to-
wards higher frequencies (from32.63 Hz to 36.53 Hz),
therefore the non-linearity is expected to be of the hardening
type.
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Fig. 11: Homogeneity test - IXV flap (Courtesy of TAS-I)

Being the tip the part that vibrates the most, and there-
fore the one that gives the highest evidence of the presence
of the non-linearity, the first attempt implied the use of the
acceleration measurement coming from the tip accelerome-
ter. Unfortunately, looking at the response (Fig. 12) is clear
that there is cross coupling between the modes and the con-
tribution of the third mode (which corresponds, looking at
the modeshapes, to the torsional mode) is far from being
negligible. Moreover, the contribution of that mode could
not be filtered out, otherwise all the harmonics generated by
the non-linearity would have been lost. Since the Restoring
Force Surface method is meant to deal with SDOF systems,
this measurement had to be discarded.
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Fig. 12: Acceleration measured at the tip (Courtesy of TAS-I)

The second choice was the accelerometer placed at the
centre of mass, which gave the time histories shown in Fig. 13.
The contribution of the higher modes is still present (and
can not be removed for the reason explained earlier), but the
cross coupling is less than before. It has to be noted how-
ever, that the presence of other modes will negatively affect
the identification results, because the structure does not be-
have exactly as a SDOF system.
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Fig. 13: Acceleration measured at the CoG (Courtesy of TAS-I)

5.2 Parameters identification.

Since the excitation was given as enforced base acceleration,
the formulation to be used for the restoring force computa-
tion had to be changed accordingly. The equation of motion
became

mÿ + f(wL, ẇL) = 0 (4)

wherem is the effective mass,̈y is the absolute acceleration,
wL = y − eb andẇL are the displacement and the velocity
relative to the substrate, respectively, whereaseb is the base
displacement. The mode taken into account for the parame-
ters identification is the first one.

To correctly scale the restoring force, the effective mass
was needed and it was found to be equal to the42.95% of
the total mass.

The Restoring Force Surface method was first applied to
the data obtained from the first test (Fig. 13a). As can be seen
from Fig. 14, the behaviour was not linear but, due to the
contribution coming from the other modes, it was not pos-
sible to state without doubt that the distortions were caused
by the non-linearity only. In addition, it was not possible to
identify a clear non-linear trend comparable with one of the
theoretical curves that represent the most common types of
non-linearities.

By contrast, when applying the identification method to
the data coming from the second test (Fig. 13b), the stiffness
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Fig. 14: Stiffness curve obtained from the data of the first test

curve clearly showed the piecewise linear trend (Fig. 15)
typical of the free-play non-linearities.
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Fig. 15: Stiffness curve obtained from the data of the second test

Due to the fact that it was not possible to rely on theo-
retical formulations to compute an estimate of the stiffness
values, the identification process was focused on the deter-
mination of the gap size only. However, if the aim of the
identification process is the update of the FE model, the free-
play value is the only parameter needed to model the gap by
means of theCGAP card. The identified free-play values are
collected in Table 4.

Table 4: Identified free-play values

d1 [m] d2 [m]
-0.0013 0.0010

5.3 FE model updating.

Once the parameters which describe the non-linearity have
been identified, the FE model can be updated in order to
check its capability of predicting the behaviour of the flap
for different load levels.

First of all, a linear transient analysis (SOL109) was run
applying the first load level used in the test. The input ex-
citation was applied to the structure as enforced accelera-
tion by means of the Large Mass Method (the only available
for the non-linear transient solution sequence SOL129). The
out-of-plane response of the node corresponding to the ac-
celerometer position during the test is plotted in Fig. 16.
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Fig. 16: Acceleration responses at CoG - linear transient

The gap location was identified to be at one of the hinge
bearings, where it was meant to accomodate the distortions
caused by thermal and pressure effects (further details of the
flap design can be found in [19]). The gap was modelled at
the hinge indicated in Fig. 17, in one direction only since
only one set of measurements were used for the identifica-
tion.

Fig. 17: Flap FE model (Courtesy of TAS-I)

The non-linear transient analysis has been run for both
excitation levels and yields the results shown in Fig. 18.
These responses seem to match the trend of the ones ob-
tained from the test (Fig. 13), but for the spikes in the first
few seconds of simulation, which were probably due to in-
stabilities in the numerical solution caused by the structural
damping definition by means of thePARAM,G andPARAM,W3

parameters. In fact, since non-linear transient analysis are
direct solutions, the structural damping has to be defined at
a certain frequency only (usually the system dominant fre-
quency and indicated by theW3 value), which means that all
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the frequencies before the values indicated byW3 will see a
lower structural damping and thus the response will see a
higher amplification (see Appendix B for more details).
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Fig. 18: Acceleration responses at CoG in the presence of the gap

Nevertheless, the resonance is reached at the same time
instant of the test and thejump phenomenonbecomes more
evident as the excitation level increases. However, the am-
plitude of the peak is not reproduced correctly, probably be-
cause the non-linearity present in the real system is more
complex than the one that has been modelled. Looking at the
frequency responses obtained by applying the Fourier trans-
form to the time histories obtained from the Nastran simula-
tions (Fig. 19), the effect of the non-linearity becomes even
more visible and the hardening behaviour is reproduced cor-
rectly (the resonance frequency shifts towards higher fre-
quencies). However, the responses show a lower amplitude
if compared to the ones measured during the test (Fig. 10).
An improvement in the non-linear behaviour could be ob-
tained modelling the gap in more than one direction to try to
better simulate the hinge behaviour.

6 Conclusions and future work

The study aimed at applying the Restoring Force Surface
method to a real-life structure, the IXV flap, in such a way
to characterize the non-linearity which showed up during the
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Fig. 19: Frequency responses calculated from transient responses

testing phase. Once the non-linear parameters were identi-
fied, they were used to update the FE model of the flap in
order to make it capable of reproducing the flap behaviour
for different load levels.

Before reaching this final step, the method implemen-
tation has been verified by means of a numerical example
showing that the technique is an efficient tool as far as the
identification of SDOF systems is concerned and that it is
capable of providing powerful insight into the dynamics of
these systems. However, since it requires the knowledge of
acceleration, velocity and displacement signals, great effort
has to be spent in data processing.

Since the study focused on stiffness non-linearities mainly,
future work is needed to take into account the effect of the
friction induced by the contact, which will lead to a more
complex behaviour.

For what concerns the FE modelling of the non-linearities,
the study focused on two different ways of modelling the
free-play non-linearity. The first one relied on the defini-
tion of an element capable of simulating a point-to-point
contact, whereas the second one implied the definition of
non-linear load functions to generate direct forces from dis-
placement functions. Both strategies have been successfully
applied both in time and frequency domains on the simple
case of the plate whereas in the case of the IXV flap the non-
linearity has been modelled by means of the gap element in
a non-linear transient analysis only.

A possible direction for future studies could be the mod-
elling of the non-linearity in the frequency domain so that
the numerical results could be directly compared to the test
results, usually presented in the form of frequency responses
and/or transmissibility functions.

For what concerns the FE model of the flap, future work
should take into account the possibility of modelling the gap
in more than one direction in order to reproduce a more re-
alistic behaviour, also thanks to the possible inclusion ofdry
friction effects.
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A Velocity estimation via Kalman filter

As already mentioned in Section 1, one way to obtain the velocity es-
timate when both acceleration and displacement are measured is the
use of a discrete Kalman filter. This approach was already presented in
[3], but with a different formulation with respect to the onepresented
in this paper. An application of the methodology here presented can be
found in [1].

An exhaustive introduction to the Kalman filter can be found in
the original paper published by Kalman [20] and in Welch and Bishop
paper [21], whereas here only the information needed to set-up the
filter will be discussed.

The Kalman filter tries to estimate the state of a discrete-time pro-
cess governed by Eq. (5)2

xk = Axk−1 + qk−1 (5a)

zk = Hxk + rk (5b)

wherex is the state vector,A is the state transition matrix,z is the
vector of measurements andH is the observation matrix. The random
variablesqk andrk represent the process and measurement noise re-
spectively and they are assumed to be independent of each other, white
and with normal probability distributions given by

p(q) ∼ N(0,Q) (6)

p(r) ∼ N(0,R) (7)

whereQ is the process noise covariance matrix, which serves the pur-
pose of taking into account all the factors that influence thesystem and
that are not know and/or modelled, andR is the measurement noise
covariance matrix.

The state vectorx and the matrixA can be written by considering
the equations that describe the system, which are:

pk = pk−1 +∆tvk−1 +
∆t2

2
ak−1 (8a)

vk = vk−1 +∆tak−1 (8b)

ak = ak−1; (8c)

wherep, v anda represent position, velocity and acceleration respec-
tively. Therefore,x = [p v a]T andA takes the form:

A =







1 ∆t
∆t2

2
0 1 ∆t
0 0 1






(9)

Since the measured quantities are acceleration and displacement,
the observation matrixH takes the form:

H =

[

1 0 0
0 0 1

]

(10)

For what concerns the noise covariance matrices,R can be ob-
tained by taking some off-line sample measurements and computing
the variance of the measurement noise, whereas matrixQ needs a spe-
cial attention. In fact, typically there is not the possibility to directly
observe the process that needs to be estimated, therefore the determi-
nation ofQ usually follows from an off-line tuning process, keeping in

2 In the original equations presented by Kalman in [20] there was
also a termBu, which is added to Eq. (5a) and represents the input to
the system. This term is here omitted because there is no input term in
Eq. (8)

mind that it must satisfy the properties of a covariance matrix, which
means it must be symmetric and positive-semidefinite.

Since the effect ofQ is to increase the uncertainty of the predic-
tion, it is possible to define some guidelines for the choice of Q:

– huge values (compared toP, the error covariance) means that the
model does not predict the process accurately enough, but ifQ is
too large, the filter will be too much influenced by the noise inthe
measurements

– low values ofQ indicate confidence that any unknown noise term
and/or modelling error is small, but the filter may become over-
confident in its estimate of the state which could diverge from the
actual solution

Now that all the elements have been defined, the discrete Kalman
filter can be implemented as explained in [21].

To test its performance, the filter was applied to some measure-
ments obtained from a test on a cantilever beam excited with astepped-
sine sequence band-limited in the55− 70Hz range. Both the acceler-
ation and displacement responses (Fig. 20) were measured and the data
were acquired with sampling frequency set to200 Hz.
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Fig. 20: Measured responses

In this case the process noise covariance matrix was the following

Q =





2e6 5e7 0
5e7 8e9 5e3
0 5e3 2e6



 (11)

To start the iteration, initial estimates are needed. For the case in
hand, an initial state vector̂x0 = [0 0 0]T has been chosen. Since the
initial state is a guess, the starting covariance matrixP0 has been set
to a large value. In fact, matrixP is an indicator of the variability of
the state: ifPk is large, it means that the state is estimated to change a
lot.

The velocity obtained applying the Kalman filter has been com-
pared to the one obtained by integration and filtering (by means of a
fourth-order Butterworth filter with cut-off frequency setat 5 Hz) of
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the accelerometer data. The comparison is shown in Fig. 21, amag-
nification of the signals is shown in Fig. 22. As can be seen, they are
virtually identical, which means both methods are valid in terms of
performance. The drawback which limits the use of the Kalmanfilter
is related to the need of measuring both acceleration and displacement,
which is not something that is usually done during tests. In addition,
when integrating and filtering the acceleration data, the only parameter
that has to be defined is the filter cut-off frequency, which has a more
intuitive meaning than the process noise covariance in the Kalman fil-
ter.
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Fig. 21: Comparison between integrated and estimated velocity
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Fig. 22: Magnification of the curves in Fig. 21

B Damping definition in direct solutions

Damping, in dynamic analysis, is a mathematical approximation to ac-
count for energy dissipation and therefore for reduction inthe struc-
tural response, which, in the physical system, is due to the presence of

internal friction. The type of damping taken into account inall the sim-
ulations performed during this study is the structural damping. Struc-
tural damping can be defined in different ways depending on the type
of solution sequence used. Being the SOL129 a direct transient solu-
tion, the damping had to be defined by means of thePARAM,G and the
PARAM,W3 parameters, whereG indicates the damping value (at res-
onanceG = 2ξ whereξ =

c

ccr
is the damping ratio) andW3 indicates

the frequency at which the damping is defined. This means thatthe
damping is correct only for the frequency selected by thePARAM,W3,
which is usually chosen equal to the system dominant frequency. Since
the structural damping force is constant with respect to theforcing fre-
quency, every frequency lower thanW3 sees a lower damping and ev-
ery frequency greater thanW3 gets more damping.

The effects of the different choices of thePARAM,W3 can be
seen comparing Fig. 24 to Fig. 23, where theW3 parameter has been
set to50.26 rad/s (⋍ 8 Hz) in the first figure and to194.78 rad/s
(⋍ 31 Hz) in the second (the frequencies selected to compute the pa-
rameter are the resonance frequencies of the structure withand with-
out the gap). The choice ofW3 greatly affects the simulation results,
as can be seen comparing Fig. 23 and Fig. 24. In fact, in Fig. 23the
lower frequencies are enhanced, thus showing a response amplitude
much greater than the one in Fig. 24, on the contrary, in Fig. 24 the
higher frequencies are more damped, thus the response has a lower
amplitude. The spikes visible in Fig. 18 come from the contribution
of the low frequency mode also visible in Fig. 23, since in both anal-
yses the dominant frequency has been chosen equal to194.78 rad/s
(⋍ 31 Hz).
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Fig. 23: Time response obtained forW3 = 194.78 rad/s
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