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Abstract: A self-managed, home-based system for the automated assessment of a selected set of 

Parkinson’s disease motor symptoms is presented. The system makes use of an optical RGB-Depth 

device both to implement its gesture-based human computer interface and for the characterization 

and the evaluation of posture and motor tasks, which are specified according to the Unified 

Parkinson’s Disease Rating Scale (UPDRS). Posture, lower limb movements and postural instability 

are characterized by kinematic parameters of the patient movement. During an experimental 

campaign, the performances of patients affected by Parkinson’s disease were simultaneously 

scored by neurologists and analyzed by the system. The sets of parameters which best correlated 

with the UPDRS scores of subjects’ performances were then used to train supervised classifiers for 

the automated assessment of new instances of the tasks. Results on the system usability and the 

assessment accuracy, as compared to clinical evaluations, indicate that the system is feasible for an 

objective and automated assessment of Parkinson’s disease at home, and it could be the basis for 

the development of neuromonitoring and neurorehabilitation applications in a telemedicine 

framework. 

Keywords: Parkinson’s disease; UPDRS tasks; movement disorders; posture; postural stability; 

center of mass; RGB-depth; automated assessment; machine learning; at-home monitoring; 

neurorehabilitation 

 

1. Introduction 

Among chronic neurodegenerative diseases, Parkinson’s disease (PD) is recognized as the 

second most common disorder after Alzheimer's disease. It causes an important negative impact on 

the quality of life characterized by a progressive impairment in motor functions [1].  

Neurologists employ clinical assessment scales, such as the Part III of the Unified Parkinson's 

Disease Rating Scale (UPDRS) [2], as a common basis to assess the motor impairment severity and its 

progression over time. During the patient assessment, particular features of the movements (e.g., 
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amplitude, speed, rhythm, hesitations) or of the posture (e.g., trunk flexion, one-side leaning and 

posture recover capabilities) are subjectively evaluated by neurologists on a discrete scale of five 

classes of increasing severity, with reliability limitations due to intra and inter-rater variability [3]. 

Aiming to improve the clinical management and the quality of life of individuals with PD, more 

objective and automated approaches to disease assessment, also suitable for at home use, have been 

proposed. 

The majority of these approaches employ wearable technologies [4,5], specifically in lower 

limbs UPDRS tasks assessment [6]; fewer of them are based on optical tracking, smartphones and 

other technologies [7,8]. Wearable and optical based technologies exhibit complementary aspects: 

the first ones are more ubiquitous but they are also more invasive and require more management 

efforts; the second ones are suited for spot assessment in a localized environment, but they are 

non-invasive. In general, for the assessment, both approaches make use of the correlation existing 

between the severity of the impairment, as assessed by UPDRS, and the static and/or kinematic 

parameters characterizing the pose and the movements [9,10].  

Recently many low-cost, optical, body and hand tracking systems [11–14] have been employed 

successfully in the health care context. Among these, the Microsoft Kinect® v1 device has been used 

to monitor people with PD [15], in rehabilitation [16,17], in body sway and balance [18,19], in gait 

assessment [20] and gait anomalies detection [21], in identifying different subjects by kinematic 

signature [22], in hand tracking [23] and to prevent falls [24]. The Microsoft Kinect v2 is more robust 

and accurate as compared to Microsoft Kinect v1 [25], and it has been recognized a viable tool for 

tracking human movement in clinical applications [26], standing balance and postural stability [27], 

gait [28], body sway [29] and clinical motor functions [30]. In the specific context of 

neuro-degenerative diseases, it has been used for time up and go test [31], in assessing different 

types of PD patients [32], to classify gait disorders [33] and in neurological rehabilitation [34]. 

The work presented here is part of a more extensive project aimed to bring UPDRS compliant 

automated assessments at patients’ home. In a former paper [35], we presented our work on the 

upper limb UPDRS tasks. Instead, in this case, the assessment is based on a Microsoft Kinect v2 

device and it is focused on the analysis of posture and lower limb tasks, as specified by UPDRS [2]. 

This approach guarantees both to compare results with the standard clinical assessment scales, 

accepted and used by neurologists, and to define explicitly posture and movements to be performed. 

Furthermore, we select those UPDRS motor items which are suitable to be self-managed by patients 

at home, considering that some motor tasks are not feasible in any home environments. For example, 

according to task specifications [2], Gait task (UPDRS task 3.10) requires a safe straight walking path 

of 4–10 m, which is not usually available at home, as well as the Postural Stability task (UPDRS task 

3.12) that cannot be self-administered being based on a retropulsion test.  

Specifically, we examine the following UPDRS tasks (Section 3, items 3.8, 3.9 and 3.13): Leg 

Agility (LA), Arising from chair (AC) and Posture (Po). Concerning Postural Stability UPDRS task 

(PSretrop, item 3.12), the standard retropulsion test used for the assessment is not a good predictor of 

fall risk. Furthermore, the related step count parameter is a too rough estimator of the postural 

instability [36]. Nevertheless, postural stability assessment is important to prevent falls and injury 

risk in PD, especially in advanced stages [37]. Postural stability deficits in PD subjects can be 

highlighted by concurrent cognitive tasks or by secondary motor tasks during steady standing 

stance tasks [38]. Several studies have found that, during the quite stance, the continuous movement 

of the center of mass (CoM), named “postural sway“ or “body sway”, contributes to balance control 

[39–41]. Alterations of body sway can reveal balance dysfunctions in PD, long before their clinical 

assessment [42] and they can be used to differentiate between motor subtypes of PD [43]. Recently, 

low cost RGB-Depth devices as Microsoft Kinect v2, have been used to assess objectively balance 

dysfunctions [44–46]. Given the importance of postural stability in PD progression and risk of fall 

prediction, we analyze the postural stability by CoM movements (PSCOM) during the posture task. 

Furthermore, we investigate also the potential correlation between this method and a standard 

clinical measure of postural stability PSPIGD based on the Postural Instability and Gait Difficulty 

(PIGD) subscale score of UPDRS, defined as the sum of the scores assigned to the AC, Gait, PSretrop 
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and Po tasks of UPDRS [47]. To our knowledge, this is the first time, in the context of PD, that a set of 

UPDRS tasks (namely, LA, AC, Po) and the Postural Stability (PSCOM) during quite stance are 

automatically assessed by the use of low-cost optical body tracking devices.  

2. System Hardware and Software  

The system hardware (Figure 1a) is built around a Microsoft Kinect v2 device (Microsoft 

Corporation, Redmond, WA, USA), which provides through its Software Development Kit (SDK ) 

[12], RGB color and DEPTH streams at 30 frame/sec, with resolution of 1920 × 1080 px and 512 × 424 

px, respectively. The range of depth is from 0.5 m to 4.5 m. The device is connected, via an USB 3 

port, to a NUC i7 Intel® mini-PC running Windows® 10 (64x) (Intel Corporation, Santa Clara, CA, 

USA) and equipped with a monitor to provide both a system management GUI and the visual 

feedback of the hand and body movements to the user (Figure 1b). 

 

 
(a)                                            (b) 

Figure 1. System for the lower limbs and postural tasks analysis: (a) RGB-Depth camera (Microsoft 

Kinect v2), NUC i7 Intel mini-PC and monitor (b) example of GUI with visual feedback. 

The system software is made by custom scripts, written in C++, which run on NUC and access 

the SDK APIs, providing every 1/30 sec RGB images and 25 three-dimensional (3D) coordinates of 

the skeleton model used by the SDK (Figure 2).  

 

(a) 

 

(b) 

Figure 2. Positions of joints of the skeleton model from Microsoft Kinect SDK: (a) three-dimensional 

representation of joints and segments for body vertical axis (green), upper limbs (red), lower limbs 

(blue); (b) two-dimensional re-projection of the same joints and segments on the RGB image. 

The data analysis and the supervised classifier training and testing phases are based on custom 

Matlab® scripts (Mathworks Inc, Natick, MA, USA). The software implements different 
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functionalities of the system: real-time interaction by a Human Computer Interface (HCI) based on 

hand joint tracking/processing and visual feedback; task movement analysis and characterization, 

by processing the 3D positions of specific task-dependent sets of skeleton joints; automated 

assessment of posture and lower limb tasks, through the implementation of trained supervised 

classifiers. Data of each acquisition session (consisting of video of each task performance, user 

inputs, trajectories of body movements and automated assessment scores) are encrypted and 

recorded to provide remote supervising facilities to authorized clinicians. 

3. The Human Computer Interface  

The HCI provides a natural interface suitable for subjects with limited computer skills and with 

motor impairments. It is implemented through a Graphical User Interface (GUI) and an interactive 

menu based on choice icons (Figure 3). During the interaction with the system, the user is guided by 

video and textual support. The 3D position of HandR joint, output by SDK, is tracked and 

re-projected onto the GUI screen, and the user selection is confirmed by considering the hand 

closure information provided by the SDK (Figures 1b, 2a and 3). At any time during an assessment 

session, the user can stop it and quit, for example when tired, to avoid the onset of stress and/or 

anxiety.  

 

(a) 

 

(b) 

Figure 3. Gesture-based HCI: (a) GUI for the selection of lower limbs and postural tasks; (b) GUI for 

the selection of left/right leg before starting LA task. 

4. Automated Assessment of UPDRS Tasks 

4.1. Participant Recruitment  

Two cohorts of subjects, consisting of fourteen PD patients and twelve Healthy Controls (HC) 

respectively were recruited. The PD patients were assessed for the LA, AC, Gait, PSretrop and Po tasks 

(UPDRS tasks 3.8, 3.9, 3.10, 3.12 and 3.13, respectively) by two neurologists (N1, N2) expert in 

movement disorders. The postural stability score (PSPIGD) was assessed by the PIGD subscale score 

obtained from the AC, Gait, PSretrop and Po UPDRS tasks [47]. Motor impairment is sensitive to the 

time passed after the last drug intake; therefore, the OFF state (practically defined as that after 12 

hours without medication) was chosen as the reference for disease severity scoring. PD patients 

were excluded if they had previous neurosurgical procedures, tremor severity > 1 or cognitive 

impairment (Mini–Mental State Examination Score < 27/30). PD patients met the following criteria: 

Hoehn and Yahr average score 2.1 (min 1, max 3); age range 53–80 years (mean 69, std. dev. 7.5). 

disease duration range 3–10 years (mean 5.8, std. dev. 2.5), gender 8 men and 6 women. The HC 

subjects performed the same tasks, in the same environmental conditions and with the same system 

setup of PD patients. The HC cohort was selected trying to approximately match the PD cohort in 

age and gender, excluding subjects affected by neurological, motor and cognitive disorders.  

Informed consent was obtained in accordance with the Declaration of Helsinki (2008). The 

study’s protocol was approved by the Ethics Committee of the Istituto Auxologico Italiano (Protocol 

n. 2011_09_27_05). 
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4.2. Experimental Setup 

An experimental setup has been built both to assess the accuracy of the system and to acquire 

relevant clinical and kinematic data useful for the automated assessment of the UPDRS tasks. The 

kinematic parameters evaluated by the system were compared with those evaluated by an 

optoelectronic system, considered as gold reference (BTS SMART DX400©, eight TVC, 100–300 fps, 

BTS Bioengineering, Milan, Italy) [48]. For this experiment, reflective markers were attached to the 

body of the PD and HC subjects to evaluate kinematics of lower limbs, thorax, spine and head 

(Figure 4). The biomechanical measurements of the lower body were modelled according to the 

Helen Hayes Marker set [49,50] and those of the upper body were modelled according to the Plug In 

Gait model (Vicon® Motion Systems, Oxford, UK) [51], focusing the attention only on thorax, 

shoulders and spine. Three additional markers were put on the forehead (MHEAD), on the right 

(MRWRS) and the left wrist (MLWRS) respectively, this to allow for the assessment of the head posture, 

CoM estimation and data synchronization between our system and the optoelectronic system. The 

body markers relevant for the accuracy assessment and their reference positions are presented in 

Table 1.  

 

 

Figure 4. Details of the marker set placement positions. 

Table 1. Markers of the optoelectronic system for the accuracy estimation. 

Markers Definitions Positions Reference 

C7 7th Cervical Vertebrae  Spinous process of the 7th cervical vertebrae 

LPSI/RPSI Left/Right PSIS  Placed over Left/Right posterior superior iliac spine  

LSHO/RSHO Left/Right Shoulder Placed on Left/Right acromioclavicular joint 

LASI/RASI Left/Right ASIS Placed over Left/Right anterior superior iliac spine 

LKNE/RKNE Left/Right Knee Placed on lateral epicondyle of the Left/Right knee 

LANK/RANK Left/Right Ankle 
Placed on lateral malleolus along an imaginary line that 

passes through the trans-malleolar axis 

MHEAD Head  Placed on head (additional marker) 

MLWRS/MRWRS Left/Right Wrist  Placed on Left/Right wrist (additional markers) 

4.3. Data Acquisition Procedure 

During the experimental campaign, the HC and PD subjects were equipped with the set of 

reflective markers shown in Figure 4, and were instructed to perform the UPDRS tasks. Their 
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performances were supervised and assessed by two neurologists and simultaneously acquired by 

the two systems. The neurologist’ scores, the kinematic parameters and the videos of each task 

performance were recorded for the subsequent analysis. 

The PD and HC subjects performed all the tests facing our system, that is, with the depth axis of 

the Kinect device perpendicular to the subject frontal plane. The proper position of the subject was 

verified both by the neurologists and by the system software, which checks the availability of the 

whole Kinect skeleton and its correct positioning. The device was placed 1.2 m height and at a 

distance of about 2 m from the subjects. No other object apart the chair, and limited to the AC and 

LA tasks, was allowed in the working volume. At the beginning of each test, the subject elevated the 

right arm three times, this to allow the synchronization between the two systems. The 

synchronization was performed by time-shifting the signals of the arm elevation angles measured by 

the systems such that their cross-correlation was maximized. The PD and HC subjects were told to 

perform the LA, AC and Po tasks as indicated by the UPDRS guidelines. Furthermore, the PD 

subjects performed also the Gait and the PSretrop tasks, in order to evaluate the PIGD sub-score. For 

the LA task both legs were assessed independently. Two acquisition sessions were planned 

separated by an interval of thirty minutes to allow subjects to rest.  

In the first session a total of five tasks were assessed by the neurologists for the fourteen PD 

subjects, and a total of three tasks were supervised for the twelve HC subjects. In the second session  

the same tasks of the first one were repeated in random order. The body sway of the CoM 

movements was measured during the Po task: in the first phase (indicated as Phase1) each subject 

was told to stand up straight for ten seconds. Then, during the second phase (indicated as Phase2) 

each subject was told to try to improve and maintain a more straight posture for other ten seconds: 

this can be considered a sort of secondary motor task, that potentially can highlight differences 

between PD and HC subjects [38].  

4.4. Movement Characterization by Kinematic Parameters 

The analysis and the related characterization of the considered UPDRS tasks make use of 

kinematic parameters which are mainly estimated from angles between pairs of body segments, 

involving femur, knee, tibia, spine and head. The body segments are defined by their distal and 

proximal points, which in our system are assumed to correspond to the joints of the skeleton model 

of Figure 2. The centroid of each segment is calculated as the midpoint between the proximal and 

distal extremities. The postural stability is assessed by the body CoM, which is estimated by the 

weighted average of the body segment centroids. In particular, the kinematic characterization of the 

LA, AC and Po tasks is based on the evaluation of the angles ANGKNEE and ANGTRUNK. Only for the 

Po task two further angles are considered: the forward ANGFORHEAD and lateral ANGLATHEAD bending 

angles of the head respect to spine direction. Specifically, with reference to Figure 5 for the proximal 

and distal 3D points relevant for the analysis, and to Figure 2a for the 3D skeleton joints involved, 

we considered: 

 For the LA task (Figure 5a): the knee angle ANGKNEE between the A-B and B-C segments, 

with A = HipR, B = KneeR and C = AnkleR for the right limb, and A = HipL, B = KneeL and 

C = AnkleL, for the left limb;  

 For the AC task (Figure 5b): the knee angle ANGKNEE defined above; the trunk angle 

ANGTRUNK between the D-E segment and the vertical direction �� (i.e., the red arrow), with 

D = SpineS and E = SpineB; 

 For the Po task (Figure 5c): the knee angle ANGKNEE and the trunk angle ANGTRUNK defined 

above. The bending of the head respect to spine is evaluated by the angles ANGFORHEAD and 

ANGLATHEAD, projections of the angle between the SpineS-SpineB (D-E) segment and the 

SpineS-Head segment on the sagittal and frontal body planes, respectively. The lateral 

body plane is approximately identified by the plane containing the segments 

ShouldR-ShouldL and SpineB-SpineS, while the sagittal body plane is perpendicular and 

contains the SpineB-SpineS segment. Note that while ANGTRUNK has components in the 
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sagittal and lateral body planes, ANGFORHEAD and ANGLATHEAD have components only in the 

sagittal and in the lateral planes, respectively. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Segments involved in the estimation of the angular measures during lower limbs and 

postural tasks: (a) LA task (b) AC task (c) Po task. Note that the depth axis of the Kinect device is 

perpendicular to the subject frontal plane in all the tests, see Section 4.3). 

The CoM is estimated during the Phase1 and the Phase2 of the Po task, both to evaluate the 

postural instability and to evidence the effects of the secondary tasks. A subject specific quasi-static 

center of mass Cb is evaluated by applying the kinematic method described in [52,53]. As indicated 

in Equation 1, Cb is obtained by the weighted average of the body segment centroids (Ci), evaluated 

from the skeleton model, where the weights wi are provided by standard body segment densities 

obtained from anthropometric data [54]: 

�� =  
1

�
 � �� ∗  w�

�

���

 (1)

The centroids Ci of the following segments made by pairs of skeleton joints are considered (Figure 

2a): Head-SpineS, ShouldR-WristR, ShouldL-WristL, SpineS-SpineB, HipR-AnkleR, and 

HipL-AnkleL. Please note that Cb is a 3D point; but here only the transverse (or horizontal) plane 

components are evaluated for the analysis of the body sway. Concerning the evaluation of the 

kinematic parameters, the skeleton joints provided every 1/30 sec by the Kinect SDK allow the 

estimation of the relevant parameters at the same rate. In particular, the angles ANGKNEE, ANGTRUNK, 

ANGFORHEAD and ANGLATHEAD were evaluated from the inner products of the pairs of unity vectors 

representing to the body segments involved. The vertical direction ��, used to evaluated ANGTRUNK, 

was estimated by the normal to the floor plane. The 3D orientation of the plane was obtained by 

segmentation of the Kinect depth map using a RANSAC approach [55], with the upside direction of 

the Kinect skeleton and the feet location as priors. The angle signals were resampled both to remove 

the typical jitter of the Kinect sampling frequency, and to fit the sampling frequency of the 

optoelectronic system (100 Hz). The signals are filtered to reduce noise by a second order low-pass 

Butterworth filter with a cut-off frequency of 10Hz. Most of the significant kinematic parameters 

presented in the Results and used as input to the classifiers were obtained by standard signal 

processing algorithms applied to the sampled signals of the ANGKNEE , ANGTRUNK , ANGFORHEAD and 

ANGLATHEAD angles. The velocity parameters were evaluated as the derivatives of the spline 

approximations to the angle signals obtained through Matlab functions (unmkpp, mkpp and ppval). 

Specifically: 
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• For the LA task, the ANGKNEE signal is segmented in a sequence of flexion/extension 

movements (cycles) by finding all the minimum-maximum-minimum sequences in the 

amplitude of the angle signal. The peak to peak amplitude, the speed and the duration of 

every flexion/extension movement of the leg is evaluated. Specifically, MKAm is the mean 

of the peak to peak amplitude maxima and MKAv is its standard deviation; TDm is the 

mean of the cycle durations and TDv is its standard deviation; SPm is the mean of the 

speed maxima. Finally PM is the number of “poor movements”, defined as the cycles 

whose amplitude and duration are both less than 25% of the MKAm and the TDm values. 

This last parameter tries to catch hesitations and very small amplitude cycles in a sequence 

of almost relevant cycles.  

• For the AC task, the ANGTRUNK signal is segmented in a sequence of forward/ backward 

bending movements (cycles) by finding all the minimum-maximum-minimum sequences 

in the amplitude of the angle signal. Usually, only one peak is present, but hesitation 

during the movement or some instability event can generate other peaks in the signal. 

These peaks are clinically relevant and, consequently, have been considered in the 

assessment through the parameter NPeaks. MBA is the maximum angular peak and TD is 

the duration of the main bending cycle containing MBA, while SPm is the mean speed 

during the AC movement. 

• For the Po task, during the quasi-static Phase1 are evaluated the bending angle FTB of the 

spine respect to the vertical (mean of ANGTRUNK), the forward bending angle FHB 

(ANGFORHEAD) and the lateral bending angle LHB (ANGLATHEAD) of the head. During the 

Phase2, the variations of these angles (FTBΔ , FHBΔ, LHBΔ) respect to Phase1 are evaluated.  

• For the PSCOM task, the sway is defined as the CoM component in the transversal plane 

(perpendicular to both the lateral and the sagittal body planes). In this plane, the 

Antero-Posterior (AP) and Medio-Lateral (ML) axis are defined as the intersection of 

sagittal and lateral planes with the transversal plane, respectively. The AP components of 

the range, total path length and velocity of the sway (APr, APt and APv, respectively), and 

the ML components of the range, total path length and velocity of the sway (MLr, MLt and 

MLv, respectively) are evaluated. Furthermore, the sway area SwayArea (convex hull of 

the sway path) is also evaluated.  

The Pearson’s correlation between the measures of the kinematic parameters provided by our 

system and those measured by the optoelectronic system was used to assess the body tracking 

accuracy. Because all the kinematic parameters for LA, AC, Po and PSCOM were obtained from the 

ANGKNEE, ANGTRUNK , ANGFORHEAD and ANGLATHEAD angles and from the CoM components in the 

transversal plane, only these last “essential” parameters were considered for the accuracy 

assessment.  

Table 2. Correspondences between body segments for Kinect and optoelectronic systems. 

Parameter Kinect Segments Optoelectronic Segments 

ANGKNEE Left/Right 
HipL/HipR-KneeL/R LASI/RASI-LKNE/RKNE 

AnkleL/R-KneeL/R  LANK/RANK-LKNE/RKNE 

ANGTRUNK SpineS-SpineB  C7-MeanPSIa 

ANGFORHEAD Head-SpineS  MHEAD-C7 

ANGLATHEAD Head-SpineS  MHEAD-C7 

CoM 

Head-SpineS  

ShouldR-WristR 

ShouldL-WristL 

SpineS-SpineB  

HipR-AnkleR  

HipL-AnkleL 

MHEAD-C7 

RSHO-MRWRS 

LSHO-MLWRS 

C7-MeanPSIa 

RASI-RANK 

LASI-LANK 
aMeanPSI = (LPSI+RPSI)/2 
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The correspondences between optoelectronic markers (Figure 4 and Table 1) and Kinect joints 

(Figure 2a) we adopted for the comparison are shown in Table 2. The optoelectronic angular 

parameters corresponding to the essential ones were obtained by the marker correspondences of 

Table 2 and by the same procedure we used for the Kinect joints in Section 4.4. The CoM measured 

by the optoelectronic system was evaluated according to [51].  

4.5. Discriminant Parameter Selection 

The choice of the best parameters used to train the classifiers was performed by selecting the 

sets of kinematic parameters which best correlate with the UPDRS scores of subjects’ performances.  

The initial sets of parameters considered to characterize every single task consisted of more than ten 

parameters per set: they were chosen to be closely related to those features that are implicitly 

considered by neurologists to assess the motor performance. These initial sets could potentially 

include irrelevant and redundant parameters, which could hide the effects of the clinically relevant 

ones, reducing the predictive power of the classifiers used for the automated assessments. To avoid 

this, a feature selection (FS) procedure [56] is performed by the Elastic Net (EN) algorithm [57]. EN is 

a hybrid of Ridge regression and LASSO regularization. EN encourages a grouping effect on 

correlated parameters, and tends to be more conservative respect to LASSO or Ridge regression in 

removing correlated parameters, a process which can select incorrect data model. This capability is 

important when dealing with those features which are similar and tend to be moderately correlated. 

The EN implementation is based on Matlab scripts (lasso Matlab function). To avoid biasing the 

results by the different scaling, the PD parameters pi PD have been normalized (Equation 2) by the 

corresponding average values of the HC parameters pi HC. Then the normalized parameters range 

from the value 1 (pi HC ) to a maximum (pi PD Norm MAX > 1), or to a minimum (0 < pi PD Norm MIN < 1), 

depending if the value of the specific parameter increases or decreases when the severity of the 

impairment increases. The parameter Number of Poor movements (PM), whose minimum value is 0, 

was not normalized: 

pi PD Norm = pi PD/pi HC, (2)

4.6. Statistical Analysis  

Descriptive statistical analysis of the collected data by Mann-Whitney U and χ2 tests did not 

show significant differences among PD and HC (age, gender, cognitive status), then the data were 

safely pooled into two groups (PD and HC) for the following analyses.  

We note that, as common in feature selection algorithms, the previous selection of parameters 

based on the EN algorithm assumes the UPDRS scores are ratio data type, while they actually are 

ordinal data. Then, to confirm the relevance of these parameters in the context of the ordinal nature 

of the scores and to deal with their non-normal distributions, Spearman non-parametric rank 

correlation at a significant level p < 0.05 was applied. Only those parameters showing a Spearman’s 

correlation coefficient ρ greater than 0.3 (as absolute value) with respect to the UPDRS scores 

assigned to the LA, AC and Po task performances were considered for the final sets. For the PSCOM 

task, the CoM parameters were correlated with the PIGD subscale scores (PSPIGD).  

Furthermore, as a support to the effectiveness of the selected parameters in the automated 

assessment, the statistical significance of each parameter in discriminating PD and HC was 

considered and verified by the Mann-Whitney U test with p < 0.05. All statistical analyses were 

performed using Matlab. For the correct application of the test, only the data of the second 

acquisition session were considered.  

4.7. Supervised Classifier Training  

Three different types of supervised classifiers have been considered for the automatic 

assessment of the LA, AC, Po and PSCOM tasks: k-Nearest Neighbours (kNN), Multinomial Logistic 

Regression (MLR) and Support Vector Machine (SVM) with polynomial kernel [58]. Two types of 

classification problems were considered: first, a binary classification problem, where the subjects are 
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classified into the HC and the PD classes; second, a multiclass classification problem, where the 

subjects are classified into the three PD classes of increasing severity. The design of this second 

experiment was suggested by the distributions of the severity scores of the PD patients recruited for 

the study, which were essentially distributed among slight, mild and moderate UPDRS severity 

scores [2], corresponding to the UPDRS1, UPDRS2 and UPDRS3 classes, respectively. Furthermore, 

the severity scores distributions were adequately balanced among the classes for all the tasks (Table 

3). The classifiers were trained for each task (LA, AC, Po, and PSCOM) by using as input the sets of 

“selected kinematic parameter vector – UPDRS score” pairs obtained from the reference dataset of 

performances. In particular, the PSCOM classifiers was trained using the PIGD subscale scores (PSPIGD) 

as UPDRS score. 

The input data have been normalized both to make more stable the training procedure and to 

simplify the behavior of the parameters in the parameter space. Specifically, the parameters pi PD Norm 

whose values increases with the worsening of the performance from 1 to their maximum (pi PD Norm 

MAX > 1), are scaled in the range 0 to 1, while those whose values decrease with the worsening of the 

performance from 1 to the their minimum (0 < pi PD Norm MIN < 1) are first reversed and then scaled in 

the range 0 to 1. The score values are scaled in the range 0 to 1 as well.  

The kNN classifiers were employed as baseline and implemented and tested by Matlab scripts 

(fitcknn function). The classifiers were tested with parameter k = 1,3,5,7 using the Euclidean distance 

metric. The tie breaking algorithm adopted was to decrease k by 1 until the tie is broken.  

The MLR classifiers were implemented and tested by Matlab scripts (fitmnr function for ordinal 

data with probit link function). 

The SVM classifiers were implemented and tested by Matlab scripts with the support of the 

LibSVM library package [59]. The kernel function of SVM classifier is polynomial with parameters: γ 

(gamma), r (bias) and d (polynomial degree) and C (cost). Every SVM multiclass classifier uses the 

one-versus-one coding design with majority voting scheme and is made by three binary SVM 

models, all with the same parameters [60]. A grid-search and cross-validation method were used to 

find the optimal values of the SVM parameter C, γ, r, and d for the three binary classifiers. 

4.8. System Reliability and Accuracy Evaluation  

A commonly accepted measure of reliability in the context of clinical assessments is the Intra 

Class Correlation coefficient (ICC). Accordingly, the reliability of the system assessments respect to 

the neurologist ones was evaluated by the Intra Class Correlation coefficient ICCN12-SY (two-way 

random effects model with an absolute agreement) [3]. The inter-rater agreement ICCN12 between the 

two neurologists was evaluated and compared as a baseline with the inter-rater agreement ICCN12-SY 

among neurologists and system, considering the system as a third “virtual” neurologist.  

In the evaluation of ICCN12, the scores of the neurologists for the LA, AC, Po tasks and for the 

subscale PSPIGD were considered, while for ICCN12-SY both the neurologist scores and the 

corresponding system scores were used. Concerning the reliability of the remote video-based 

assessments, motor examination of video recorded UPDRS tasks has already been demonstrated to 

be a sufficiently accurate alternative to in field ones [61]. In machine learning context, it is more 

common to assess the reliability of classifiers by their accuracy. Then, we evaluated also this 

measure of system performance considering the mean accuracies of each classifier, both in 

discriminating between PD from HC subjects (binary classification problem) and in classifying PD 

subjects into different severity classes (multi-classes classification problem) [62]. 

5. Results 

5.1. Clinical Assessment Results 

After collecting the clinical assessments at the end of the experiment, none of the performances 

of the PD cohort were scored with normal (score 0) or severe impairment (score 4) for all the UPDRS 

tasks considered. The distributions of the severity scores assigned to the PD patients among slight, 

mild and moderate responses were relatively balanced for all the tasks (Table 3).  
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Table 3. Distribution of the severity scores among the UPDRS tasks. 

 UPDRS Severity Scores 

UPDRS Task UPDRS1 (slight)  UPDRS2 (mild) UPDRS3 (moderate) 

LAa 16  22  18 

AC 12 11 5 

Gait 12 8 8 

PSretrop 8 6 14 

Po 14 8 6 

a In the LA task, both legs were assessed 

5.2. Accuracy of the Kinematic Parameter Evaluation 

The measurement accuracy of Microsoft Kinect v2 in clinical estimation of motor functions 

[27,28,30] and body CoM [18,19,25,27,29] has been previously assessed: this was confirmed also by 

our experiment. The comparison of the parameter measurement respect to the gold reference system 

cannot be performed directly because the Kinect skeleton model and the optoelectronic marker set 

have different body landmark positions. Furthermore, for every parameter, we want to estimate an 

average accuracy based on all the trials per task acquired.  

Then, for every essential parameter i, characterizing one or more tasks, the parameter samples 

of each associated task trials were joined together into a single parameter sample sequence (PSSi). 

The PSSi sequences measured by the two systems were then compared by evaluating the Pearson 

correlation coefficient ri. In Table 4, the ri coefficients indicate a significant correlation that ranges 

from good to strong for all the examined parameters. In Figures 6 and 7 are shown two examples of 

the ANGKNEE and the ANGTRUNK variations for a LA and an AC task trial. In Figure 6, it is interesting 

to point out that the last movement is characterized by a significant reduction in amplitude and 

duration. In Figure 7, the presence of a secondary peak indicates that the PD subject had an 

instability event at the corresponding time. These anomalies are hardly identified by neurologists. 

Table 4. Mean and standard deviation of the Pearson’s correlation coefficients for essential 

parameters estimated by the two systems. 

Parameter 
Pearson’s Correlation coefficient r a 

Mean ± std. dev. p-valuea 

ANGKNEE 0.94 ± 0.07 9.09 × 10−3 

ANGTRUNK 0.87 ± 0.10  6.72 × 10−3 

ANGFORHEAD 0.73 ± 0.20 3.98e × 10−2 

ANGLATHEAD 0.71 ± 0.23 3.57 × 10−2 

CoMAP 0.84 ± 0.11 3.18 × 10−3 

CoMML 0.90 ± 0.09 8.94 × 10−3 
a Significance level p < 0.05 

 

Figure 6. Example of the ANGKNEE variations during the LA task performance of a PD subject: the last 

movement at 8.9 s is characterized by significant reduction in both amplitude and duration. 
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Figure 7. Example of the ANGTRUNK variations during the AC task performance: the secondary peak 

at 8.5 sec indicates the presence of an instability event in the final standing stance. 

5.3. Discriminant Kinematic Parameter Selection and Validation 

The Spearman correlation values between selected parameters and UPDRS scores, and the 

Mann-Whitney U test values concerning their significance in discriminating PD and HC subjects are 

shown in Tables 5–8 for the LA, AC, Po and PSCOM tasks, respectively. We remark that, for PSCOM task, 

the Spearman correlation was evaluated respect to the PSPIGD subscale scores. For the correct 

application of the U test, only the data of the second acquisition session were considered. The results 

in the tables show that all the selected parameters correlate with UDRS score (|ρ > 0.3|, p < 0.05). 

Furthermore, they are all significant for Mann-Whitney test (p < 0.05), even though at different 

significance levels. The mean values of the selected parameters respect to the UPDRS severity classes 

are shown in the radar graphs of Figure 8 for all the tasks.  

The parameters have been represented such that an increasing values indicate a worsening of 

the performance, highlighted by a corresponding expansion of the related graph. For this reason, the 

parameters of Tables 5–8 are represented in Figure 8 directly (with the original parameter name) or 

inversely (with an overscore on the original parameter name), depending if the parameter value 

increases or decreases when the severity of the impairment increases. 

Furthermore, with reference to subsection 4.5, the parameters are scaled in such a way that the 

parameter values corresponding to the best performance (pi PD Norm = pi HC ) are represented on the 

innermost circle (i.e., value = 0) and those corresponding to the worst one (pi PD Norm MAX, or 1/ pi PD Norm 

MIN, depending on the parameter) are represented on the outermost circle (i.e., value = 1).  

Table 5. Parameters of the LA task: discriminant power and correlation with UPDRS scores. 

  
Mann-Whitney 

U Test 
Spearman Coefficient 

Name Meaning (Unit) 
Median 

HC 

Median 

PD 
Z p-valuea ρ p-valuea 

MKAm 
Mean of Maximum Knee 

Angle (degree) 
32.41 25.02 1.93 5.37 × 10−2 −0.72 9.99 × 10−6 

MKAv 
Var. of Maximum Knee 

Angle (-) 
0.07 0.13 1.81 7.03 × 10−2 0.49 6.72 × 10−3 

TDm 
Mean of movement Total 

Duration (s) 
0.26 0.42 2.88 3.95 × 10−3 0.43 1.98 × 10−2 

TDv 
Var. of movement Total 

Duration (-) 
0.10 0.12 1.68 9.19 × 10−2 0.43 2.07 × 10−2 

SPm 
Mean Speed of 

movement (degree/s) 
114.8 64.20 3.00 2.66 × 10−3 −0.84 8.18 × 10−9 

PM 
Num. of poor 

movements (#) 
0.00 1.00 1.99 4.69 × 10−2 0.74 3.94 × 10−6 

a Significance level p < 0.05 
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Finally, it should be noted that almost all the parameters are able to discriminate the different 

UPDRS classes for the LA, AC, Po and PSCOM tasks, pointing out the increasing severity of motor 

impairment by the corresponding increasing of their values. The graphs are encapsulated and do not 

overlap, which means that a monotonic increase of the parameter value corresponds to an increase 

(and so a worsening) of the UPDRS score. 

Table 6. Parameters of the AC task: discriminant power and correlation with UPDRS scores. 

  
Mann-Whitney 

U Test 
Spearman Coefficient 

Name Meaning (Unit) 
Median 

HC 

Median 

PD 

Z 
p-valuea ρ p-valuea 

MBA 
Maximum Bending 

Angle (degree) 
17.50 31.26 3.18 1.44 × 10−3 0.75 4.00 × 10−7 

TD 
Total Duration of S2S 

movement (s) 
0.90 2.42 2.86 4.17 × 10−3 0.80 1.08 × 10−8 

SPm 
Mean Speed of S2S 

movement (degree/s) 
21.85 12.92 2.76 5.84 × 10−3 -0.69 6.26 × 10−6 

NPeaks 
Number of Bending 

Peaks (#) 
1.00 1.00 1.13 2.59 × 10−1 0.63 5.65 × 10−5 

a Significance level p < 0.05 

Table 7. Parameters of the Po task: discriminant power and correlation with UPDRS scores. 

  
Mann-Whitney 

U Test 
Spearman Coefficient 

Name Meaning (Unit) 
Median 

HC 

Median 

PD 
Z p-valuea ρ p-valuea 

FTB 
Forward Trunk 

Bending (degree) 
0.38 −5.69 2.71 9.88 × 10−4 −0.70 1.36 × 10−4 

FTBΔ 
Var. of Forward Trunk 

Bending (degree)  
0.35 0.27 0.18 8.55 × 10−1 0.43 5.54 × 10−2 

FHB 
Forward Head Bending 

(degree) 
−1.83 −6.86 1.92 5.23 × 10−2 −0.78 5.90 × 10−6 

FHBΔ 
Var. of Forward Head 

Bending (degree) 
0.46 0.53 0.22 8.17 × 10−1 0.27 3.62 × 10−1 

LHB 
Absolute Lateral Head 

Bending (degree) 
2.05 3.02 0.53 6.07 × 10−1 0.59 2.39 × 10−3 

LHBΔ 
Var. of Lateral Head 

Bending (degree) 
0.19 0.43 1.53 1.25 × 10−1 0.43 6.54 × 10−2 

a Significance level p < 0.05 

Table 8. Parameters of the PSCOM task: discriminant power and correlation with UPDRS scores. 

  
Mann-Whitney 

U Test 
Spearman Coefficientb 

Name Meaning (Unit) 
Median 

HC 

Median 

PD 
Z p-valuea ρ p-valuea 

APr 

CoM AP 

sway Range 

(cm) 

0.59 1.13 1.80 7.20 × 10−2 0.59 3.24 × 10−3 

APt 

CoM AP 

sway Total 

(cm) 

1.49 3.28 2.23 2.50 × 10−2 0.65 2.54 × 10−2 

MLt CoM ML 0.98 3.48 2.24 2.53 × 10−2 0.48 1.88 × 10−2 
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sway Total 

(cm) 

APv 

CoM AP 

sway Velocity 

(cm/s) 

0.72 1.32 1.86 6.34 × 10−2 0.56 4.92 × 10−2 

MLv 

CoM ML 

sway Velocity 

(cm/s) 

0.48 1.49 2.24 2.53 × 10−2 0.42 4.25 × 10−2 

SwayArea 
CoM Sway 

Area (cm2) 
0.30 0.85 1.58 1.13 × 10−1 0.59 2.92 × 10−3 

a Significance level p < 0.05; b The Spearman correlation was evaluated respect to the PSPIGD subscale scores. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

 

 

 (e) 

Figure 8. Radar graphs of the mean values of the normalized kinematic parameters of HC and 

UPDRS severity classes for the lower limbs and postural tasks: (a) Leg Agility (LA); (b) Arising from 

Chair (AC); (c) Posture (Po); (d) Postural Instability (PSCOM); (e) Legend for the radar plots. See 

Section 5.3 for further details of the graph representation. 

The Pearson correlation analysis of the CoM movements, as measured by our system and by the 

optoelectronic system, shows that they are correlated both in the Antero-Posterior (AP) and in 

Medio-Lateral (ML) components (Table 4). These values confirm the feasibility of Kinect in the 

accurate estimation of center of mass movements. In Figure 9a, an example of CoM trajectories as 

measured at the same time by the two systems is shown; the trajectory of center of mass resembles 

the gold reference one, even if a scale factor is present. Figure 9b shows an example of the two 

phases of PSCOM task: in particular, the CoM trajectory measured by the optoelectronic system while 

a PD subject is performing the Phase1 (solid cyan line) and the Phase2 (solid red line) respectively. In 

Figure 9c, the same movement as measured by our system is shown.  
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In both figures, the secondary motor task (during which the PD subject is trying to improve and 

then maintain a straighter posture) clearly increases the body sway along the AP direction, 

supporting the hypothesis of a performance degradation for PD subjects respect to HC in this 

context. The shapes of trajectories are quite similar: this confirms the feasibility of our system in 

acquiring the body CoM in agreement with the gold standard. Again, there is a mild scaling and an 

offset between the centroids of the trajectories measured by the two systems: this is probably due to 

the different landmark positions of the body skeleton models considered and to the different 

algorithms used to estimate the CoM position. Nevertheless, we remark that the CoM parameters we 

chose are independent from these biases. Furthermore, they convey useful information which well 

correlates with clinical evaluations, discriminating between PD from HC subjects, as indicated in 

Table 9. This is evident for almost all the PD subjects, on AP and/or ML directions; on the contrary, 

this is negligible for HC subjects, as confirmed by the values in the second and third column of Table 

9. Furthermore, the differences of the CoM parameters (Phase2 respect to Phase1) between PD and 

HC subjects are significant at level p < 0.05, both for the U test and for the T test (column 5 and 6, 

Table 9).  

(a) (b) (c) 

Figure 9. (a) Example of CoM trajectory of a PD subject represented in the Antero-Posterior (AP) and 

Medio-Lateral (ML) components during the Po task, as measured by our system (green line) and by 

optoelectronic system (black line); (b) Details of the trajectories during the first (cyan line) and 

second phase (red line) of PSCOM task with the respective centroids (black dots) as measured by 

optoelectronic system; and (c) as measured at the same time by our system 

Table 9. Average differences of CoM parameters between Phase1 and Phase2 of the Po task for HC 

and PD subjects. 

 PD Subjects HC Subjects 
Mann-Whitney U 

Test 
T Test 

Name Phase2-Phase1 Phase2-Phase1 Z p-value a p-value a 

APt 1.61 0.54 2.04 4.17 × 10−2  2.22 × 10−3 

MLt 1.87 0.27 2.04 4.17 × 10−2 6.33 × 10−3 

APv 1.14 0.52 2.11 3.44 × 10−2 9.86 × 10−4 

MLv 1.04 0.45 1.97 4.89 × 10−2 1.11 × 10−3 

SwayArea 1.88 0.25 2.13 3.28 × 10−2 7.19 × 10−3 

a Significance level p < 0.05 

5.4. Reliability of the Assessments of the System and the Neurologists  

The values for the inter-rater agreement between the neurologists N1 and N2 (ICCN12) and 

among the neurologists and the system (ICCN12-SY) are shown in Table 10 (ρ values and 95% 

confidence intervals). According to [3], the ICC values less than 0.5, between 0.5 and 0.75, between 

0.75 and 0.9, and greater than 0.90 are indicative of poor, moderate, good, and excellent reliability, 
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respectively. In the evaluation of the ICCN12-SY for PSPIGD, we use the system evaluated PSCOM, 

stressing both the interpretation of PSCOM as a posture stability score and its good correlation with 

PSPIGD.  

The ICCN12 values, as reported in Table 10, indicate a generally good agreement between the 

two neurologists, with differences per task compatible with literature results. The results for 

ICCN12-SY show the system does not degrade significantly the inter-rater agreement between the 

neurologists, except for PSPIGD. This could be due to the limited number of subjects examined, or to 

the use of CoM parameters not completely superimposable to PIGD subscale assessments. In fact, 

CoM parameters are evaluated only in PSCOM task, e.g., during postural adjustments from the quiet 

stance and not in other more challenging dynamic domains of postural stability characterization 

[37]. 

Table 10. Intra Class Correlations for the system and the neurologists assessment reliability. 

Reliability/ Task LA AC Po PSPIGD 

ICCN12a 0.80 0.82 0.77 0.73 

ICCN12-SYa 0.77 0.80 0.74 0.65 

a Significance level: p < 0.05 

5.5. Accuracies of the Supervised Classifiers  

The classification accuracies of the LA, AC, Po and PSCOM tasks are shown in Table 11. They are 

obtained applying the leave-one-out and 10-fold cross validation method for the MLR, SVM and 

kNN classifiers. Accuracies refer to two different classification goals per task: discriminating PD 

from HC (two-classes classifier, binary problem) and classifying PD subjects into three UPDRS 

severity classes (three-classes classifier, multiclass problem). 

The kNN with k = 3 and SVM with polynomial degree d = 2 gave the best performance using the 

leave-one-out cross validation, then these values were chosen for the system classifiers. In general, 

the accuracies of SVM classifiers are better than the kNN and MLR ones. Furthermore, the results of 

binary classification problem, in classifying HC and PD subjects, are quite better than the multiclass 

classification ones. This behavior was not unexpected because, in general, the classifiers perform 

worse on the same training data when the number of classification labels (i.e., classes) increases. In 

reporting the multiclass classification accuracy is more appropriate to indicate the per-class accuracy 

(fourth column for leave-one-out and sixth column for 10-fold of the Table 11), where the 

classification accuracies are averaged over the classes [62]. The absolute classification error (ec) was 

defined as the difference between the UPDRS class C, assigned by the neurologists, and the 

estimated class C’ assigned by the system to each motor performance i (ec = |Ci – C’i|). The ec value 

for the kNN and MLR classifiers is sometimes larger than 1 UPDRS class, even when their average 

accuracies are better than that of the SVM classifiers. On the contrary, the ec value for the best SVM 

classifiers was never greater than 1 UPDRS class for all the tasks; this means that the automatic 

assessments are always close to the neurologist’ ones. This is also an important feature for the 

system reliability respect to an average greater agreement but with large spot disagreements. 

Table 11. Classification accuracies for the supervised classifiers. 

  LEAVE-ONE-OUT K-FOLD (10)a 

Task Classifier 
HC - PD 

(2-classes) 

UPDRS 

(3-classes) 

HC - PD 

(2-classes) 

UPDRS 

(3-classes) 

LA 

SVM 95.6 68.9 96.5 73.6 

KNN (k = 3) 94.5 51.7 96.5 58.0 

MLR 89.6 68.9 89.6 70.5 

AC 
SVM 88.2 66.3 88.2 69.9 

KNN (k = 3) 86.0 60.0 88.2 67.5 
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MLR 94.1 70.5 96.8 73.3 

Po 

SVM 91.6 68.0 93.5 68.2 

KNN (k = 3) 95.8 70.8 95.0 68.9 

MLR 83.3 62.5 81.7 58.8 

PSCOM 

SVM 95.2 58.3 93.2 59.6 

KNN (k = 3) 92.8 41.6 95.7 45.8 

MLR 95.8 50.0 91.9 52.1 

a100 iterations 

In addition, the results in Table 11 show that the two-classes accuracy is higher for LA and 

PSCOM, while is slightly lower for the other two tasks. This is in agreement with the Figure 8, in which 

the AC and Po graphs show more overlapping between UPDRS classes as compared to the LA and 

PSCOM ones. The partial incoherence of some parameters in separating the different classes has 

probably an impact on the classifier performance. The behavior of the two-classes classification 

accuracy is not repeated in case of the three-classes classification, for which the worst performance is 

obtained for PSCOM task. This could be due again to CoM parameters not directly comparable to 

PIGD subscale assessments. Looking at the error distribution, we obtain a big contribution from 

UPDRS 3 class (i.e., most impaired PD subjects). The limited number of observations assessed as 

UPDRS 3 suggests that some significant parameters, which should have been considered, are 

probably missed, and could be included among the selected features only by increasing the number 

of UPDRS 3 observations in the training set. 

6. Discussion 

The availability of low-cost home-based solutions for the reliable and automated assessment of 

motor symptoms in Parkinson’s disease is highly desirable since it could provide several 

advantages, among which: reduction of costs and patient discomfort; better and prompt supervising 

and adjustment of the therapy; healthcare analytics for patient care improvements. Surely, among 

the features that these solutions should exhibit, particularly important are: a non-invasive approach 

to the assessment; a user-friendly interaction suitable to motor impaired users; an objective, 

continuous and automated evaluation of patient status, strongly correlated with the standard 

clinical assessments; an improvement of the reliability respect to the typical intra and inter-rater 

variability of the clinical evaluations.  

In this paper, a self-managed system for the automated assessment of Parkinson’s disease 

which tries to implement many of the aforementioned features is presented. The developed system 

is focused on posture instability and motor impairments of lower limbs and it is one of the elements 

of a larger project aimed to bring an overall automated assessment of UPDRS tasks at home [35]. 

As a first step, we addressed both the non-invasiveness and user-friendly interaction by a 

low-cost system based on an RGB-D optical device, then providing a gesture based human computer 

interface for the self-management of the assessment procedures. The usability of the interface was 

tested and verified by PD users during a campaign of data acquisition sessions. Then, the accuracy 

of the kinematic measures, as obtained by the system, was validated successfully by comparison 

with a gold standard equipment (i.e., an optoelectronic system). This was a necessary preliminary 

requirement, since an objective evaluation of the patient status is based on the strong correlation 

existing between motor impairments and kinematic parameters extracted from patient’s 

movements. 

To reliably refer the system assessments to the clinical ones, the analysis of possible movements 

was constrained to those specified by the UPDRS tasks. An experimental protocol was designed in 

which PD patients and healthy controls were assessed at the same time both by neurologists and by 

the system during the execution of the specific standard tasks defined by UPDRS. A feature selection 

procedure yielded to sets of optimal parameters, both correlated to UPDRS clinical scores and 

statistically significant in discriminating PD subjects from healthy controls. As shown in Figure 8, 

not all these parameters have the same discriminant power to separate subjects among the different 
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PD severity classes; this is true especially for the AC and Po tasks. This is probably due to the limited 

number of PD subjects examined: consequently, further experiments could improve the current 

results.  

Following related works based on wearable systems [40,41], the postural stability of PD subjects 

was characterized by CoM movements. We analyzed the CoM trajectories during the two phases of 

the Po task (named PSCOM), assuming the Phase2 as a mild secondary motor task [38]. As in [40,41], 

large differences in CoM trajectories of PD respect to HC were found. Differently to [41], a good 

correlation between PSCOM parameters and the standard postural stability test (PIGD) was observed. 

This result can be explained because of the different physical quantity and derived parameters 

considered by the two approaches: CoM displacements in our case, derivative of CoM accelerations 

in [41]. On the other hand, the CoM parameters in [40] have a closer physical relationship with ours: 

respect to us, the authors did not find a significant correlation between the PIGD scores and the 

parameters they selected, but this could probably be due to the exclusion of the retropulsion task 

from their analysis. In conclusion, we found that the PSCOM parameters are related to PIGD score and 

are also statistically significant: in fact, they clearly discriminate PD subjects from healthy controls, 

supporting the initial hypothesis of a worsening of PD stability during the execution of secondary 

tasks. 

The automated assessment of UPDRS tasks is performed by means of kNN, MLR and SVM 

supervised classifiers, trained on the sets of selected parameters and the corresponding UPDRS 

scores from reference datasets of performances of PD and HC cohorts. In general, the accuracy of the 

SVM classifiers is better than those of the MLR and kNN classifiers. Besides, the binary-classification 

(i.e., HC versus PD) gives quite better results than the multiclass-classification, as expected. 

Moreover, in the last case, the classification error for the optimized SVM was never greater than 1 

UPDRS class for all the tasks, and on the average well below of this value. This indicates that chosen 

classifiers are robust and, in any case, they do not make assessments too far from neurologists. 

Furthermore, these results agree with Table 10 about the measure of the inter-rater agreement 

ICCN12-SY, which indicate that the system performs almost as a third neurologist, except for PSPIGD 

task. For this task, the lower value of ICCN12-SY as compared to ICCN12 can be due to CoM parameters 

that are not directly comparable to PIGD subscale assessments or to the limited number of PD 

subjects included in the training set.  

Due to the novelty of our approach, based on low-cost optical RGB-D device, we cannot 

compare directly the results of the classification accuracy with other similar works. Furthermore, a 

limited attention has been devoted to the automated assessment of specific UPDRS tasks by motion 

capture technologies. Then, we decided to refer to approaches based on wearable devices employing 

supervised classifiers [63]. Even if not directly comparable with our tasks, Timed Up and Go (TUG) 

test in [64] discriminate PD from HC by machine learning approach, with accuracy of 77.5%, which 

is lower than the value we have obtained (Table 11). In [6] the accuracy values for the multiclass 

classification of the LA and AC tasks are about of 43%, which are lower than ours (Table 11), even if 

care must be taken because the number of classes considered is different. 

Summarizing, to our knowledge this is the first time that posture instability and lower limb 

motor tasks were assessed with reference to the clinical UPDRS context by a system based on optical 

RGB-D device. The results on the classifier accuracies and on ICC show that the automated 

assessments of the system are comparable with the clinical ones, then demonstrating their 

effectiveness. Furthermore, it is also the first time that a system based on low-cost optical device 

characterizes CoM movements for the assessment of Parkinson’s Disease. Finally, another original 

feature is the interpretation of the posture improvement during quite stance as secondary motor 

task, and the findings about its effectiveness in assessing postural instability in PD subjects.  

Certainly, some aspects of this work require a further investigation. For instance, the number of 

analyzed subjects should be increased to obtain a more robust characterization of each single task 

and a better accuracy in the automated assessments. Furthermore, the PD subjects should be 

distinguished in phenotypes to verify if different sets of parameters could characterize different 

subtypes of parkinsonians; other balance tests should be considered to assess balance instability. 
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These will be the next steps of our activity; the current findings encourage us to continue along this 

line of research to achieve a comprehensive system for the automatic and reliable assessment of PD 

status, suitable for the home monitoring of disease progression.  

Limitations 

Recently Microsoft announced that the Kinect device was discontinued [65], even if there is a 

cooperation with Intel to provide a transition from Kinect to Intel RealSense [66] or Orbbec cameras 

[67]. Even though our current implementation relies on the Kinect for body tracking, the Orbbec 

SDK or the sensor independent NUI Tracker middleware [68] are equivalent replacements for the 

purpose of this work. Furthermore, according to the specifications, Intel RealSense D415 combined 

with the NUI Tracker environment can output skeleton information at a double rate (60 fps) respect 

to Kinect device, providing more accuracy for fast movements. 

7. Conclusions 

In this paper, a self-managed system for the automated assessment of Parkinson’s disease at 

home is presented. The automated assessment is focused on lower limbs, posture and postural 

stability tasks as specified by standard clinical assessment scales. A high usability of the system is 

guaranteed to motor impaired users by a gesture based human computer interface. The patient 

movements are characterized by sets of selected kinematic parameters which best correlate with 

clinical UPDRS scores, collected in an experimental campaign conducted on PD subjects. The data 

acquired have been used to train supervised classifiers employed for the automated assessment of 

new task instances. For the first time, in the context of Parkinson’s disease, low-cost optical tracking 

devices are used to characterize center of mass movements as an index of postural instability. 

Preliminary results on the assessment accuracy, as compared to standard clinical evaluations, 

suggest that the proposed system is suitable for an objective assessment of posture and lower limb 

UPDRS tasks, also in a domestic environment, and then it could be the basis for the development of 

neuromonitoring and neurorehabilitation applications in a telemedicine framework. 
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