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Abstract

We propose a method for modeling spatially dependent functional data, based on regression with differential regu-
larization. The regularizing term enables to include problem-specific information about the spatio-temporal variation
of the phenomenon under study, formalized in terms of a time-dependent partial differential equation. The method is
implemented using a discretization based on finite elements in space and finite differences in time. This non-tensor
product basis allows to handle efficiently data distributed over complex domains and where the shape of the domain
influences the phenomenon’s behavior. Moreover, the method can comply with specific conditions at the boundary of
the domain of interest. Simulation studies compare the proposed model to available techniques for spatio-temporal
data. The method is also illustrated via an application to the study of blood-flow velocity field in a carotid artery
affected by atherosclerosis, starting from echo-color doppler and magnetic resonance imaging data.
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1. Introduction

We consider the problem of modeling functional data with complex dependencies, such as spatially dependent
curve data or time dependent surface data. We are interested in particular in situations where problem specific infor-
mation about the phenomenon under study is available, and this information can be formalized in terms of a time-
dependent partial differential equation (PDE) that jointly models the spatio-temporal variation of the phenomenon.

Our contribution is at the crossroad between spatial data analysis [13, 14, 16] and functional data analysis; see, e.g.,
[18, 23, 25, 39]. This area has recently attracted a lot of interest. Many approaches and methods typical of functional
data analysis have been generalized to handle spatial and spatio-temporal data; reciprocally, some techniques from
spatial data analysis have been extended to handle spatially-dependent functional data. See, e.g., the reviews in [30]
and [33]. Many authors have considered generalizations of kriging to functional data: ordinary kriging for functional
data is for instance considered in [15, 20, 34], universal kriging in [9, 31, 32], kriging with external drift in [24],
and cokriging in [21]. Other authors have proposed smoothing methods [1, 3, 7, 29] using roughness penalties that
account separately for the regularity of the field in space and in time, in tensor product approaches.

Here we extend spatial regression with differential regularization [5, 40, 41] to spatially dependent functional data.
Analogously to [5], the regularizing term involves a PDE that models the phenomenon under study. In contrast to [5]
though, which only handles data in space, we deal here with spatio-temporal data, and consider a time-dependent PDE
that jointly models the spatio-temporal dependence in the data, on the base of problem-specific information about the
phenomenon under study. The use of a unique regularizing term that jointly regularizes the field in space and time
also distinguishes the proposed model from the methods based on two regularizing terms described in [1, 3, 7, 29].
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Specifically, in our proposal, the regularization involves the misfit of a time-dependent PDE ∂ f /∂t+L f = u, where
∂ f /∂t is the time derivative of the spatio-temporal function f , and L is a differential operator in space. The problem
specific information is also formalized in terms of conditions that the estimated field must satisfy at the boundaries of
the domain of interest, with a very flexible modeling of the behavior at the boundaries of the spatio-temporal field. We
consider various sampling designs, including geo-statistical and areal/interval data. We prove that the corresponding
estimation problems are well posed, i.e., that the estimators exist and are uniquely defined; this analysis has never
been carried out for the techniques described in [1, 3, 7, 29]. Moreover we show that the estimation problems can be
discretized in space by means of the finite element method, similarly to [7, 40, 41], and in time by means of the finite
difference method. The finite element basis used in space allows to handle efficiently data distributed over irregularly
shaped domains. This is crucial when the shape of the domain influences the phenomenon under study, as in the
applied problem that has stimulated this research.

1.1. Motivating applied problem
This research was motivated by the study of blood flow velocity field in a section of a carotid artery, starting from

Echo-Color Doppler (ECD) data. This problem arose within the research project MACAREN@MOX: MAthematics
for CARotid ENdarterectomy @ MOX. The project involves medical doctors in cardiac surgery (from Ca’ Granda
Ospedale Maggiore Policlinico, in Milano, Italy), statisticians (from MOX Laboratory for Modeling and Scientific
Computing, Department of Mathematics, Politecnico di Milano, Italy), and numerical analysts (from MOX and from
the Mathematics Institute of Computational Science and Engineering, École polytechnique fédérale de Lausanne,
Switzerland), with the intent of investigating the pathogenesis of atherosclerosis in human carotids. In particular,
the project aims at exploring the role of blood fluid dynamics and vessel morphology on the possible onset and
development of atherosclerotic plaques.

The study is based on ECD measurements of the blood flow velocity at a cross-section of the common carotid
artery, 2 cm prior to the carotid bifurcation, for patients affected by high-grade stenosis (> 70%) at the carotid bi-
furcation. ECD employs ultrasound waves to measure the velocity of blood particles, in a given acquisition beam.
Thanks to its low cost, short acquisition time, and non-invasivity (ECD does not require contrast media), ECD is the
first and most commonly used test to diagnose carotid artery diseases, such as ischemic stroke, caused by the presence
of atherosclerotic plaques, and to investigate various other cardiovascular pathologies. In the MACAREN@MOX

Figure 1: ECD scan in the central acquisition beam at the carotid cross-section located 2 cm prior to the carotid bifurcation.
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Figure 2: Left: ECD signal in the central beam of the carotid section (beam 3), with superimposed mean velocity. Right: Cross-section of the
carotid artery, 2 cm prior to the carotid bifurcation, as reconstructed from MRI data, with indication of the location of the seven beams where the
ECD signal is acquired; different colors and numbers are used to indicate the different beams; the same colors and numbers are used in Figures 3
and 12.

project, the ECD data are coupled with the reconstructions of the considered carotid cross-sections, obtained via
segmentation of magnetic resonance imaging (MRI) data.

Figure 1 displays one of the ECD images. The right panel of Figure 2 shows the section of the carotid, recon-
structed from MRI data, and displays the seven beams over which the ECD signal is acquired. The scan in Figure 1
corresponds to the central beam (beam 3). The left panel of Figure 2 zooms-in the acquired signal over the time lapse
of about two heart-beats. The ECD scan provides the time-evolving histogram of the velocities (in the longitudinal
direction of the vessel) of the blood particles sampled within the acquisition beam. Specifically, the y-axis of this plot
represents the velocity of the sampled blood particles, with the gray-scaled intensity of pixels corresponding to the

Figure 3: Mean velocity measured in the seven beams on the artery cross-section. Different colors and numbers are used to denote the signals over
the seven beams, following the color and number scheme displayed in the upper right corner of the figure.
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number of sampled blood particles having velocity within a certain velocity class. The solid black line superimposed
to this signal, in the left panel of Figure 2, corresponds to the mean velocity. Figure 3 reports the mean velocities over
the seven acquisition beams, for one heart-beat; different colors and numbers are used to indicate the recorded mean
velocities over the different beams, following the color and number scheme shown in the upper right corner of the
same figure.

The central goal of the project consists in accurately estimating the time-dependent blood-flow velocity field
over the carotid cross-section, starting from these seven spatially dependent functional data, for each of the patients
involved in the study. The described data setting though presents some peculiarities, hindering the applicability of
both classical and recently proposed techniques for spatio-temporal data, as well as of the available methods for
spatially dependent functional data. First of all, the shape of the domain, the carotid cross section, influences the
spatio-temporal blood flow velocity field, and hence must be explicitly considered during the estimation process.
Unfortunately, almost all the available techniques naturally work over rectangular or tensorized domain. Moreover, in
this applied problem there are specific conditions that the estimates must satisfy at the boundary of the spatial domain:
the estimated blood flow velocity must in fact be zero at the arterial wall, the boundary of the spatial domain, due to
the friction between the wall and the blood particles (the so-called no-slip conditions). Finally, due to the cross shaped
pattern of the observations, highlighted in the right panel of Figure 2, isotropic and spatially stationary methods return
non-physiological estimates, as already illustrated in [5]; the latter work focused on estimating the blood-flow field at
a specific time instant, the systolic peak.

In contrast, we can here profit of a detailed problem-specific information, that can be formalized in terms of a
time-dependent PDE, modeling the spatio-temporal behavior of the phenomenon under study. Using the proposed
approach, this problem-specific information, thus formalized, can be profitably included in the estimation process, to
define an anisotropic and spatially non-stationary estimator that yields physiological estimates. Section 8 illustrates
how this and the other issues mentioned above can efficiently be tackled by the proposed approach.

1.2. Structure of the work

The paper is organized as follows. Section 2 introduces the modeling of the spatio-temporal variation of the
phenomenon under study via a time dependent PDE. Section 3 describes the proposed spatio-temporal regression
with time-dependent PDE regularization, under the simplifying assumption that the functional data are available
continuously over time; this simplified sampling design is the one considered by kriging for functional data. The
well-posedness of the estimation problem is proven. Section 4 describes the discretization of the estimation problem
by means of the finite element method in space and the finite difference method in time. Section 6 extends the model
to various realistic sampling design, including geostatistical and areal/interval data; also in these cases, the well-
posedness of the estimation problem is shown. Section 7 reports some simulation studies that compare the proposed
method to spatio-temporal kriging and to smoothing methods based on two regularizing terms. Section 8 shows the
application to blood velocity field estimation. Finally, Section 9 outlines future research directions. All technical
details and proofs are deferred to the Appendix.

2. Modeling problem-specific information on a spatio-temporal field via a time dependent PDE

Let Ω ⊂ R2 be a bounded spatial domain with boundary ∂Ω ∈ C2, and let [tstart, tend] ⊂ R be a temporal domain.
To lighten the notation, without loss of generality, we set tstart = 0 and tend = T . We want to estimate a spatio-temporal
field f0(p, t) : Ω × [0,T ] → R in the presence of problem-specific information on f0. Specifically, we assume to
have a prior knowledge on the phenomenon under study that can be described in terms of a time-dependent (so-called
parabolic) PDE, viz.

∂ f0/∂t + L f0 = u (1)

where ∂ f0/∂t is the time derivative of f0 and L is a linear second order differential operator defined as

L f = − div(K∇ f ) + b · ∇ f + c f (2)

with K ∈ R2×2 the symmetric and positive definite diffusion tensor, b ∈ R2 the transport vector, and c ≥ 0 the reaction
term. The diffusion, transport and reaction terms may vary over space, i.e., K = K(p), b = b(p) and c = c(p). The
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modeling of the space-time variation of the field by the PDE specified in (1) and (2) is very flexible. For example, with
the diffusion term K(p) we can model non-stationary and anisotropic diffusion effects; with the transport term b(p) we
can model non-stationary unidirectional effects; with the reaction term c(p) we can model non-stationary shrinking
effects.

In addition, the problem specific information is specified in terms of boundary conditions that f0 satisfies on the
boundary ∂Ω of the spatial domain Ω, and an initial condition s(p) at time t = 0. Various boundary conditions may
be considered, such as homogeneous or non-homogeneous Dirichlet, Neumann, Robin (or mixed) conditions, thus
enabling a very flexible modeling of the behavior of the spatio-temporal field at the boundaries of the domain of
interest. In particular, Dirichlet boundary conditions concern the value of the field f0 on ∂Ω; Neumann boundary
conditions involve the evaluation of the normal derivative of f0 on ∂Ω, thus controlling the flow across the boundary;
Robin boundary conditions specify a linear combination of the values of the field and the values of its normal derivative
on ∂Ω; finally, mixed conditions allow to divide the boundary of Ω, and impose different types of boundary conditions
in different portions of ∂Ω. The possible boundary conditions can be summarized as Bc f0 = h on ∂Ω × (0,T ], with

Bc f0 =


f0 on ΓD × (0,T ],
K∇ f0 · ν on ΓN × (0,T ],
K∇ f0 · ν + χ f0 on ΓR × (0,T ],

h =


hD on ΓD × (0,T ],
hN on ΓN × (0,T ],
hR on ΓR × (0,T ],

where ν is the outward unit normal vector to ∂Ω, χ ∈ R is a positive constant, and ∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR

not overlapping. The boundary conditions are said homogeneous if h = 0.
The parabolic PDE is thus specified by

∂ f0/∂t + L f0 = u in Ω × (0,T ),
f0(p, 0) = s(p) in Ω,

Bc f0 = h on ∂Ω × (0,T ].

(3)

3. Model for continuous data with spatial dependence

For simplicity of exposition, we start by considering the setting where we have observations zi(t) at the spatial
locations pi = (xi, yi) ∈ Ω, for i ∈ {1, . . . , n}, and these data are available continuously over time, for t ∈ [0,T ].
This is the setting considered by kriging for functional data; see, e.g., [15, 33]. Realistic sampling designs, where
the data are not available continuously over time, will be considered in Section 6. We assume that the data zi(t) are
noisy observations of the deterministic spatio-temporal field f0 : Ω× [0,T ]→ R. Specifically, we suppose that for all
i ∈ {1, . . . , n},

zi(t) = f0(pi, t) + εi(t)

where E{εi(t)} = 0, var{εi(t)} = σ2, cov{εi(t), ε j(t∗)} = 0 for i , j, and cov{εi(t), εi(t∗)} = 0 for |t − t∗| > δ for some
δ > 0.

We want to take advantage of the problem-specific knowledge on the phenomenon under study, specified in terms
of a time-dependent PDE, as described in Section 2. To this end, we propose to estimate f0 by minimizing the
following penalized sum-of-square-error functional

JT ( f ) =

n∑
i=1

∫ T

0
{ f (pi, t) − zi(t)}2 + λ

∫ T

0

∫
Ω

(∂ f /∂t + L f − u)2, (4)

where λ > 0 is a smoothing parameter. The functional JT trades off a data fitting criterion, consisting in the sum of
L2[0,T ] errors, and a model fidelity criterion, formalized as a regularizing term and involving the misfit from the PDE
that models the phenomenon under study. For very small values of the smoothing parameter, the estimated function is
rough, while for large values the estimated function becomes smoother, approaching the solution of the regularizing
PDE.

For simplicity, the data fitting criterion considered in the functional JT in (4) does not account for the short range
temporal correlation of the error. One could also consider a data fitting criterion that instead accounts for it. However,
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as it will be clear from Section 4, if the temporal step used in the discretization of the estimator is larger than δ,
this short range correlation has no effect on the estimator and the two formulations would indeed coincide, once the
problem is discretized.

3.1. Functional space where the estimation functional is well-defined

Denote by Hk(Ω) the Sobolev space of functions ` : Ω → R that are in L2(Ω) and whose derivatives up to the
order k are in L2(Ω), equipped with the norm

‖`‖Hk(Ω) =

∑
|α|≤k

‖Dα`‖2L2

1/2

,

where α = (α1, α2) and Dα` = ∂|α|`/∂xα1∂yα2 denotes the derivative of order |α| = α1 + α2, with D0` = `. Denote by
L2(0,T ; Hk(Ω)) the space of functions defined over [0,T ], taking values in Hk(Ω), and such that∫ T

0
‖ f (t)‖2Hk(Ω) dt < ∞.

Define the space

V = { f ∈ L2(0,T ; H2(Ω)) : ∂ f /∂t ∈ L2(0,T ; L2(Ω)) + boundary and initial conditions}.

This space contains the functions such that

‖ f ‖2V =

∫ T

0
‖ f (t)‖2H2(Ω) dt +

∫ T

0
‖∂ f (t)/∂t‖2L2(Ω) dt < ∞.

Both the error term and the regularization term in JT ( f ) are well defined in V , since this space contains functions
continuous in space and square integrable in time, such that

∫ T

0

sup
p∈Ω̄

f (p, t)


2

dt < ∞;

this follows from the embedding H2(Ω) ⊂ C(Ω̄), if Ω ⊂ Rd with d ∈ {1, 2, 3}. Hence, the functional JT ( f ) is well
defined for f ∈ V.

3.2. Estimation problem

The estimation problem is formulated as follows.

Problem 1. Find f̂ ∈ V such that
f̂ = argmin

f∈V
JT ( f ).

Denote by δpi the Dirac mass located in pi. The existence and uniqueness of the estimator is stated in the following
proposition.

Proposition 1. Under suitable regularity assumptions (see Appendix A), the solution of Problem 1, with JT given in
(4), exists and is unique. It is obtained by solving a coupled system of two time-dependent PDEs, viz.

∂ f̂ /∂t + L f̂ = u + ĝ in Ω × (0,T ],
f̂ (p, 0) = s(p) in Ω,

Bc f̂ = h on ∂Ω × (0,T ],
(5)
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−∂ĝ/∂t + L∗ĝ = −

n∑
i=1

( f̂ − zi)δpi/λ in Ω × [0,T ),

ĝ(p,T ) = 0 in Ω,
Bc
∗ĝ = 0 on ∂Ω × [0,T ),

(6)

where ĝ ∈ L2(0,T ; L2(Ω)) is the misfit of the penalized PDE, i.e., ĝ = ∂ f̂ /∂t + L f̂ − u, L∗ is the adjoint operator of L,
i.e.,

L∗ĝ = − div(K∇ĝ) − b · ∇ĝ + {c − div(b)}ĝ,

and Bc
∗ is the boundary condition operator of the adjoint problem, i.e.,

Bc
∗g =


g on ΓD,
K∇g · ν + b · νg on ΓN ,
K∇g · ν + (b · ν + χ)g on ΓR.

The proof of Proposition 1 is detailed in Appendix A, where the regularity assumptions are specified. Eq. (5) is a
so-called forward parabolic PDE, while Eq. (6) is a so-called backward parabolic PDE characterized by the opposite
sign for the time derivative, and an ending condition instead of the starting one. The second equation is homogeneous
both in the boundary conditions and in the ending condition.

To save space, in the following we consider only homogeneous Dirichlet boundary conditions that are those
relevant for the applied problem motivating this research. All other boundary conditions may be handled similarly to
what described in [4] for SR-PDE estimators over space only.

3.3. Weak formulation of the estimation problem

Let a(·, ·) be the bilinear form associated to the operator L, defined as

a( f̂ , ψ) =

∫
Ω

(
K∇ f̂ · ∇ψ + b · ∇ f̂ψ + c f̂ψ

)
. (7)

The coupled system of PDEs (5)–(6), with homogeneous Dirichlet boundary conditions, has the following equivalent
formulation 

∫
Ω

∂ f̂
∂t
ψ + a( f̂ , ψ) −

∫
Ω

ĝψ =

∫
Ω

uψ if t ∈ (0,T ),

f̂ (p, 0) = s(p)

−λ

∫
Ω

∂ĝ
∂t
ϕ + λa(ϕ, ĝ) +

n∑
i=1

f̂ (pi, ·)ϕ(pi) =

n∑
i=1

ziϕ(pi) if t ∈ (0,T ),

ĝ(p,T ) = 0,

(8)

for all ψ, ϕ in V , where V is specified with homogeneous Dirichlet boundary conditions. This so-called weak formu-
lation is particularly convenient for the discretization of the estimation problem, as detailed below.

4. Discrete estimator

Problem 1 cannot be solved analytically. For this reason we approximate the PDE system (5)–(6) with the Finite
Difference method in time and the finite element method in space. These two methods are classical techniques used
in numerical analysis to approximate the solution of parabolic PDEs; see, e.g., [36]. In particular, the approximation
we consider is based on the equivalent weak formulation of the estimation problem given in (8).

4.1. Discretization in space via finite elements

For simplicity, we assume here that the spatial domain Ω is polygonal. If the original spatial domain is not
polygonal, we simply need to approximate it by a polygonal domain Ω that closely approximate the original spatial
domain. Let Th be a triangulation of Ω, where h represents the characteristic mesh size, i.e., the maximum length of
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the triangle edges in the triangulation. The left panel of Figure 4 shows the triangulation used for the application to
the blood flow velocity field estimation, introduced in Section 1 and detailed in Section 8. We consider the space Vr

h
of globally continuous and piecewise polynomial functions over the triangulation, which are polynomials of order r
for r ≥ 1, once restricted to any triangle in the triangulation, i.e.,

Vr
h = {v ∈ C0(Ω̄) : ∀K∈Th v|K ∈ Pr(K)}.

Let Nh = dim(Vr
h). To define a set of Nh basis ψ1, . . . , ψNh that span such space, it is convenient to consider the

so-called nodes of the triangulation, denoted by ξ1, . . . , ξNh . For linear finite elements, the nodes coincide with the
vertices of the triangles in Th. For higher-order finite elements, the nodes are a super-set of the triangle vertices;
for instance, for quadratic finite elements the nodes coincide with the triangle vertices and the middle points of the
triangle edges. For each j ∈ {1, . . . ,Nh}, the basis ψ j is then associated to one node ξ j, and it is a locally supported
piecewise polynomial function of order r that takes value 1 at the associated node and value 0 on all other nodes, i.e.,
ψ j(ξk) = δ jk, where δ jk = 1 if j = k and δ jk = 0 if j , k. The right panel of Figure 4 shows an example of linear finite
element basis.

When considering homogeneous Dirichlet boundary conditions, the value of the function at the boundary of Ω is
fixed to 0. In this case, we can use the finite element space Vr

h,0 of dimension Nh,0, defined as

Vr
h,0 = {v ∈ C0(Ω̄) : v|∂Ω = 0 and ∀K∈Th v|K ∈ Pr(K)},

which only necessitates the internal nodes of the triangulation and the associated basis functions, while all bases
associated to boundary nodes can be discarded.

We set ψ = (ψ1, . . . , ψNh,0 )>, ψx = (∂ψ1/∂x, . . . , ∂ψNh,0/∂x)> and ψy = (∂ψ1/∂y, . . . , ∂ψNh,0/∂y)>, and we define the
n × Nh,0 matrix Ψ of evaluations of the Nh,0 finite elements basis at the n data locations, i.e.,

Ψ =


ψ>(p1)

...
ψ>(pn)

 .

Figure 4: Left: Triangulation of the carotid cross-section displayed in the left panel of Figure 2. Right: A linear finite element basis function on a
triangulation.
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4.2. Discretization in time via finite differences

In order to discretize the problem in time we use the finite difference method. For the sake of simplicity, we
consider NT uniformly spaced temporal instants in [0,T ], named τ0, . . . , τNT , such that τ0 = 0, τk = k · ∆t and
τNT = T . We hence discretize the time derivatives as

f̂h( · , τk) − f̂h( · , τk−1)
∆t

≈
∂ f̂h
∂t

( · , τk).

The discretization in time of the system is then obtained by means of an Implicit Euler scheme [37], as detailed in
Section 4.3.

4.3. Details of the discretization

Our discretization of the estimation problem is based on the weak formulation (8) of the system of PDEs (5)–
(6). The discretization of (8) in space is obtained replacing the infinite-dimensional space V (with the specified
homogeneous Dirichlet boundary conditions) by the finite-dimensional space Vr

h,0:

∫
Ω

∂ f̂h
∂t

ψh + a( f̂h, ψh) −
∫

Ω

ĝhψh =

∫
Ω

uψh if t ∈ (0,T ),

f̂h(p, 0) = sh(p),

−λ

∫
Ω

∂ĝh

∂t
ϕh + λa(ϕh, ĝh) +

n∑
i=1

f̂h(pi, ·)ϕh(pi) =

n∑
i=1

ziϕh(pi) if t ∈ (0,T ),

ĝh(p,T ) = 0,

(9)

for all ψh, ϕh ∈ Vr
h,0, where f̂h(·, t), ĝh(·, t) ∈ Vr

h,0, for all t ∈ [0,T ], and sh is the interpolation of the initial condition
s(p) in Vr

h,0. Notice that (9) is only a space discretization. The application of the Implicit Euler scheme then leads to
the following discretization in space and time of the variational system (8):

∫
Ω

f̂ k
h − f̂ k−1

h

dt
ψh + a( f̂ k

h , ψh) −
∫

Ω

ĝk−1
h ψh =

∫
Ω

ukψh for k ∈ {1, . . . ,NT },

f̂ 0
h = sh,

−λ

∫
Ω

ĝk
h − ĝk−1

h

dt
ϕh + λa(ϕh, ĝk−1

h ) +

n∑
i=1

f̂ k
h (pi)ϕh(pi) =

n∑
i=1

zk
i ϕh(pi) for k ∈ {1, . . . ,NT },

ĝNT
h = 0.

(10)

To write this system in matrix formulation, define the following matrices in RNh,0×Nh,0 :

R(c) =

∫
Ω

cψψ>, R = R(1) =

∫
Ω

ψψ>, Rx(b) =

∫
Ω

b1ψψ
>
x , Ry(b) =

∫
Ω

b2ψψ
>
y ,

Rxx(K) =

∫
Ω

K11ψxψ
>
x , Ryy(K) =

∫
Ω

K22ψyψ
>
y , Rxy(K) =

∫
Ω

K12(ψxψ
>
y + ψyψ

>
x ),

where Ki j and b j are the elements of the diffusion tensor matrix K and of the transport vector b. We can thus write
the discretization in the finite element space of the bilinear form a(·, ·) defined in (7) as

A(K,b, c) = Rxx(K) + Rxy(K) + Ryy(K) + Rx(b) + Ry(b) + R(c).

Denote by f̂ k
h and ĝk

h the finite element approximations of f̂h(·, τk) and ĝh(·, τk) respectively, and set uk(·) = u(·, τk) and
zk

i = zi(τk) with k ∈ {0, . . . ,NT }. Let f̂k, ĝk, s be the vectors such that f̂ k
h = ψ> f̂k, ĝk

h = ψ>ĝk and sh = ψ>s. Moreover,
for k ∈ {1, . . . ,NT }, define the vectors containing the values of zi at time τk, zk = (zk

1, . . . , z
k
n)>, and set uk

j =
∫

Ω
ukψ j.
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We can write the system (10) in matrix form as

(
A +

1
dt

R
)

f̂k −
1
dt

Rf̂k−1 − Rĝk−1 = uk for k ∈ {1, . . . ,NT },

f̂0 = s

−
λ

dt
Rĝk + λ

(
A> +

1
dt

R
)

ĝk−1 +Ψ>Ψf̂k = Ψ>zk for k ∈ {1, . . . ,NT },

ĝNT = 0.

The discrete surface estimators f̂ k
h are thus obtained solving the system above. Let f̂> = ((f̂1)>, . . . , (f̂NT )>), ĝ> =

((ĝ0)>, . . . , (ĝNT−1)>), z> = ((z1)>, . . . , (zNT )>) and ũ> = ((u1 + Rs/∆t)>, (u2)>, . . . , (uNT )>). Introduce the matrix
D ∈ RNT×NT associated with the derivation in time, viz.

D =
1
∆t


1 0
−1 1

. . .
. . .

−1 1


and define the tensor product matrices

Ψ̃ = INT ⊗Ψ, Ã = INT ⊗ A + D ⊗ R, R̃ = INT ⊗ R,

where Id denotes the identity matrix of dimension d. With this notation, we finally obtain the following proposition,
that specifies the form of the discrete estimator as solution of a linear system.

Proposition 2. The discrete solution f̂ of Problem 1 is computed solving the system[
Ψ̃>Ψ̃ λÃ>

Ã −R̃

] [
f̂
ĝ

]
=

[
Ψ̃>z

ũ

]
.

5. Distributional properties of the estimator

The surface estimator f̂ k
h at time τk is a linear function of the observed data values. The fitted values at the time

instant τk are computed as ẑk = Ψf̂k. The vector ẑ, containing the fitted values at all the time instants τ0, . . . , τNT , can
be thus represented as

ẑ = S̃z + r̃,

where the smoothing matrix S̃ ∈ RnNT×nNT and the vector r̃ ∈ RnNT are obtained as

S̃ = Ψ̃(Ψ̃>Ψ̃ + λP̃)−1Ψ̃>, r̃ = Ψ̃(Ψ̃>Ψ̃ + λP̃)−1λP̃Ã−1u,

with P̃ denoting the penalty matrix
P̃ = P(K,b, c) = Ã>(R̃)−1Ã.

The smoothing matrix S̃ has the typical form obtained in a penalized regression problem.
Thanks to the linearity of the estimator ẑ in the observations, we can easily derive its mean and variance-covariance

structure, and obtain classical inferential tools as point-wise confidence bands and prediction intervals at a fixed point
location and time instant. Let f0 =

(
f0(p1, τ

1), . . . , f0(pn, τ
1), . . . , f0(p1, τ

NT ), . . . , f0(pn, τ
NT )

)> be the column vector
of evaluations of the true function f0 at the n data locations and NT time instants used for the temporal discretization.
Recall that E(z) = f0. We can thus compute the expected value of the estimator ẑ as

E(ẑ) = S̃f0 + r̃.
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Suppose in addition that the time discretization is such that ∆t > δ, so that, for any couple of discretization instants
τk, τ`, the noise process satisfies cov{εi(τk)ε j(τ`)} = 0 if i , j or k , ` and var{εi(τk)} = σ2. We can thus compute the
variance-covariance structure of ẑ as

cov(ẑ) = σ2S̃S̃>.

In order to compute the estimate at a generic space-time location (p, t), we can define the function φ such that, for
t ∈ [τk−1, τk], φ(t) = (t − τk)ek−1/∆t + (τk−1 − t)ek∆t, where ek is the kth vector of the canonical basis of RNT . Let
ψ̃ = φ> ⊗ ψ>. The estimator of the field f0 at the generic spatio-temporal location (p, t) ∈ Ω × [0,T ] is then given by

f̂h(p, t) = ψ̃(p, t)(Ψ̃>Ψ̃ + λP̃)−1(Ψ̃>z + λP̃Ã−1u).

Its mean and variance are given by

E{ f̂h(p, t)} = ψ̃(p, t)(Ψ̃>Ψ̃ + λP̃)−1(Ψ̃>f0 + λP̃Ã−1u),

var{ f̂h(p, t)} = σ2ψ̃(p, t)(Ψ̃>Ψ̃ + λP̃)−1Ψ̃>Ψ̃(Ψ̃>Ψ̃ + λP̃)−1ψ̃(p, t)>.

The covariance of the field estimator at any two spatio-temporal locations (p1, t1) and (p2, t2) ∈ Ω × [0,T ] is given by

cov{ f̂h(p1, t1), f̂h(p2, t2)} = σ2ψ̃(p1, t1)(Ψ̃>Ψ̃ + λP̃)−1Ψ̃>Ψ̃(Ψ̃>Ψ̃ + λP̃)−1ψ̃(p2, t2)>.

Both the mean and the covariance structure of the estimator are thus induced by the regularizing term. Since we are
dealing with a linear estimator, we can use tr(S̃) as a measure of the equivalent degrees of freedom of the estimator;
see, e.g., [8] and [22]. We can hence estimate σ2 as

σ̂2 =
1

nNT − tr(S̃)
(ẑ − z)> (ẑ − z) .

The smoothing parameter λ may be selected via generalized cross-validation, minimizing the index

GCV =
1

nNT {1 − tr(S̃)/nNT }
2

(ẑ − z)> (ẑ − z) . (11)

Studying the convergence of the proposed estimator when the number of observations goes to infinity (infill asymp-
totics) is not easy, mainly due to the complexity of the PDE regularization and the non-trivial domain. The results
obtained for univariate and multivariate splines [11, 12], where the regularization has a simpler form and does not
depend on the domain of interest, cannot unfortunately be extended to the estimators here considered. Nevertheless,
Arnone [2] studies the convergence of the estimators defined over space only, introduced in [4, 5] and here extended
to spatio-temporal domains: in the simpler setting involving only space, both the infinite-dimensional estimator and
the finite-dimensional one, obtained after discretization, are shown to be consistent and to achieve the optimal rates of
convergence for non-parametric estimators [42].

6. Different sampling designs

We now consider more realistic sampling designs, where we do not assume that the data are observed continuously
over time.

Sampling design 1. Point-wise observations in space and interval observations in time

Let p1, . . . ,pn ∈ Ω be n spatial locations, and let T1, . . . ,Tm ⊂ [0,T ] be m disjoint temporal intervals. Assume that
for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

zi j =
1
|T j|

∫
T j

f0(pi, t)dt + εi j,

where the errors εi j are independent, with zero mean, and variance proportional to 1/|T j|. In this case, we estimate f0
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by minimizing with respect to f ∈ V the following functional:

JT ( f ) =

n∑
i=1

m∑
j=1

1
|T j|

∫
T j

{ f (pi, t) − zi j}dt
2

+ λ

∫ T

0

∫
Ω

(∂ f /∂t + L f − u)2.

Sampling design 2. Areal observations in space and point-wise observations in time

Let D1, . . . ,Dn ⊂ Ω be n disjoint spatial subdomains, and let t1, . . . , tm be m time instants, with 0 = t1 < · · · < tm ≤
T . Assume that for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

zi j =
1
|Di|

∫
Di

f0(p, t j)dp + εi j,

where the errors εi j are independent, with zero mean, and variance proportional to 1/|Di|. We estimate f0 by minimiz-
ing the functional

JT ( f ) =

n∑
i=1

m∑
j=1

1
|Di|

[∫
Di

{ f (p, t j) − zi j}dp
]2

+ λ

∫ T

0

∫
Ω

(∂ f /∂t + L f − u)2. (12)

Sampling design 3. Areal observations in space and interval observations in time

Let D1, . . . ,Dn ⊂ Ω be n disjoint spatial subdomains, and let let T1, . . . ,Tm ⊂ [0,T ] be m disjoint temporal
intervals. Assume that for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

zi j =
1

|Di|
∣∣∣T j

∣∣∣
∫

T j

∫
Di

f0(p, t)dpdt + εi j,

where the errors εi j are independent, with zero mean, and variance proportional to 1/(|Di||T j|). We estimate f by
minimizing the functional

JT ( f ) =

n∑
i=1

m∑
j=1

1
|Di|

∣∣∣T j

∣∣∣
∫

T j

∫
Di

{ f (p, t) − zi j}dpdt
2

+ λ

∫ T

0

∫
Ω

(∂ f /∂t + L f − u)2.

6.1. General formulation including different sampling designs

The three sampling designs detailed above can be unified under a general formulation. Indeed, for specific choices
of functions αi(p) and β j(t), the models and the associated estimation problems corresponding to the sampling de-
signs 1–3 can be obtained as special cases of the model

zi j =
1∫

Ω

∫ T
0 αi(p)β j(t)dpdt

∫
Ω

∫ T

0
f0(p, t)αi(p)β j(t)dpdt + εi j (13)

for i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}, where the errors εi j are independent, with zero mean, and variance proportional
to 1/

∫ T
0

∫
Ω
αiβ j, with the associated estimation functional

JT ( f ) =

n∑
i=1

m∑
j=1

1∫
Ω

∫ T
0 αi(p)β j(t)dpdt

[∫
Ω

∫ T

0
{ f (p, t) − zi j}αi(p)β j(t)dpdt

]2

+ λ

∫ T

0

∫
Ω

(∂ f /∂t + L f − u)2. (14)

In particular, denote by IDi the characteristic function of Di and by δpi (p) the Dirac mass located in pi, and define
analogously IT j (t) and δt j (t). Using this notation, the model and estimation functional corresponding to sampling
design 1 are obtained from (13) and (14) setting αi(p) = δpi (p) and β j(t) = IT j (t); those corresponding to sampling
design 2 are obtained setting αi(p) = IDi (p) and β j(t) = δt j (t); finally, those corresponding to sampling design 3 are
obtained setting αi(p) = IDi (p) and β j(t) = IT j (t).
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6.2. Estimation problem

For the sampling designs described in the previous paragraph, the functional JT ( f ) is well defined. Indeed, point-
wise evaluations in space are allowed because the functional space V, defined in Section 3, contains functions contin-
uous in space, thanks to the embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3. In addition, V contains also functions
that are in C0(0,T ; H1(Ω)). Therefore we can consider point-wise evaluations in time when we have areal data in
space (which are continuous linear functionals in H1(Ω)). Both the penalty term and the least square term are thus
well defined for functions in V . Other choices for α and β are of course possible. The proof of existence and unique-
ness of the estimator given in this work does not cover the case of data observed point-wise in both space and time
simultaneously.

The estimation problem under the general setting considered in Section 6.1 is formulated as Problem 1. The
existence and uniqueness of the corresponding estimator is stated in the following proposition.

Proposition 3. Under suitable regularity assumptions (see Appendix A) the solution of Problem 1, with JT given in
(14) and α, β as in Section 6.1, exists and is unique and is obtained by solving:

∂ f̂ /∂t + L f̂ = u + ĝ in Ω × (0,T ],

f̂ (p, 0) = s(p) in Ω,

Bc f̂ = h on ∂Ω × (0,T ],
−∂ĝ/∂t + L∗ĝ = −

1
λ

n∑
i=1

m∑
i=1

αiβ j∫
Ω

∫ T
0 αiβ j

∫
Ω

∫ T

0
( f̂ − zi j)αiβ j in Ω × [0,T ),

ĝ(p,T ) = 0 in Ω,

Bc
∗ĝ = 0 on ∂Ω × [0,T ).

The proof of Proposition 3 is detailed in Appendix A. Note that we obtain a coupled system similar to (5)–(6), with
only a difference in the right-hand side of the second equation, due to the different sampling designs here considered.

The coupled system in Proposition 3 can be discretized similarly to the discretization of (5)–(6), detailed in
Section 4. Moreover, the properties of the corresponding estimators can be derived analogously, along the same lines
in Section 5. Finally, also for these different sampling designs, the smoothing parameter λ may be chosen via the
minimization of the GCV defined in Eq. (11).

7. Simulation studies

In this section we present some simulation studies that compare the proposed space-time regression with time-
dependent PDE regularization (ST-tPDE) to four competing methods. The first competing method that we consider
is spatio-temporal kriging with a separable variogram, with parameters estimated from the empirical variogram. This
method is implemented using the functions krigeST and fit.StVariogram of the R package gstat [35]. The other
methods we consider are based on differential regularization with two roughness terms that account separately for the
regularity of the field in space and in time. All these methods use a tensor product approach.

The first method, denoted by the acronym TPS, adopts a thin plate spline basis in space and a cubic B-spline
basis in time; the spatial penalty is the thin plate spline energy and the temporal penalty is the L2 norm of the second
derivative in time. The second method, denoted by the acronym SOAP and proposed by [3, 29], uses soap film
smoothing in space [46] and cubic B-splines in time; the penalization is composed by the L2 norm of the Laplacian
in space and the L2 norm of the second derivative in time. Both TPS and SOAP are implemented using the function
gam of the R package mgcv [45]. The last model we consider, denoted by the acronym ST-PDE and proposed in [7],
employs finite elements in space and cubic B-Splines in time; this method penalizes the L2 norm of the Laplacian in
space and the L2 norm of the second derivative in time. Both the proposed ST-tPDE method and the ST-PDE method
by [7] are implemented in R and C++, based on the R package fdaPDE [27].
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7.1. First simulation study: Areal observations in space and point-wise observations in time of a smooth function

For the first simulation study, we aim at comparing the performances of the proposed ST-tPDE to those of the
competing ST-PDE presented in [7] in a simulation setting that mimics the applied problem stimulating this research.
In particular, we consider areal observations in space and point-wise in time, corresponding to the sampling design 2.
We cannot here compare to kriging, TPS or SOAP, because these methods are not currently implemented for areal
data. Specifically, we consider a quasi-circular domain Ω in Figure 4, corresponding to the section of the carotid artery
of one of the patients in MACAREN@MOX project; we moreover set the temporal domain to [0, 1]. We consider a
function f0 solution of the following heat equation, viz.

∂ f0/∂t − ∆ f0 = 0 in Ω × (0,T ),
f0(p, 0) = s(p) in Ω,

Bc f0 = 0 on ∂Ω × (0,T ],

where the initial condition s(p) is the solution of ∆s = 1 in Ω,

Bcs = 0 on ∂Ω.

We sample from this f0, over the seven beams displayed in Figure 3 and at 11 equally-spaced time instants in [0, 1],
adding a Gaussian noise with mean zero and standard deviation σ = 0.4, corresponding to approximately 5% of the
signal range.

The ST-PDE method in [7] is implemented using the penalty

λT

∫ T

0

∫
Ω

(∂2 f /∂t2)2 + λS

∫ T

0

∫
Ω

(∆ f )2.

The proposed ST-tPDE is implemented with the penalty

λ

∫ T

0

∫
Ω

(γ∂ f /∂t − ∆ f )2.

Moreover, the initial condition on the field is estimated from the data, using the SR-PDE described in [5], with the
penalization of the Laplacian ∆ f . Both ST-PDE and ST-tPDE are thus considering the correct isotropic smoothing.
Dirichlet homogeneous boundary conditions are enforced for both methods. For the spatial discretization, both meth-
ods employ linear finite elements over the triangulation shown in the left panel of Figure 4. For the time discretization,
ST-PDE uses cubic B-splines with nodes at 11 time instants equally spaced in [0, 1], while ST-tPDE uses finite differ-
ences at the same time instants. The smoothing parameters λS , λT and for ST-PDE and λ, γ for ST-tPDE are chosen
via GCV.

Figure 5 shows in the first column the true field at different time instants, in the second column the data sampled at
the same time instants, and in the third and fourth columns the corresponding estimates provided by ST-PDE and by
the proposed ST-tPDE. It is difficult to visually appreciate the differences between the estimates provided by the two
methods, which are only apparent at the last time instant. For this reason, to quantify these differences, we consider
50 repetitions of this simulation, corresponding to 50 different noise generations. Figure 6 shows the boxplots of the
RMSE of the space-time field estimates given by the two methods over the 50 replicates. The RMSE is computed
over a regular grid with 341 points in space and 41 points in time. The boxplots highlights that the best estimates are
provided by the proposed ST-tPDE.

7.2. Second simulation study: Point-wise observations in space and time of a smooth function

In this second simulation we want to compare the proposed ST-tPDE to ST-PDE, TPS, SOAP and kriging. Since
TPS, SOAP and kriging are not currently implemented to handle areal data, we here consider point-wise evaluations
of f0 in both space and time. Proposition 3 does not cover this sampling design, and the existence and uniqueness
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Figure 5: First simulation study. First column: True function, evaluated at different time instants. Second column: Sampled data at the same time
instants. Third column: Corresponding estimates provided by ST-PDE. Fourth column: corresponding estimates provided by ST-tPDE.
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Figure 6: First simulation study. Boxplots of the RMSE over 50 simulation replicates of the estimates of the spatio-temporal field obtained by
ST-PDE and ST-tPDE.

of the solution of the infinite-dimension estimation Problem 1 has not been proven for this case; nevertheless, the
corresponding discrete ST-tPDE estimator is well defined.

The true field f0, the spatial domain Ω, and the temporal domain are the same considered in the first simulation
study. We sample from f0 at 100 space locations and at 11 equi-spaced time instants over [0, 1], adding a Gaussian
noise with mean zero and standard deviation of σ = 0.4 corresponding to approximately 5% of the signal range.

We implement kriging with marginally spherical variograms, both in space and in time. Other standard choices
of variograms models have also been considered, with comparable results; hence to save space, these are not reported
here. We add 50 spatial locations on the boundary of the domain, for which we set the data equal to zero, in order to
improve the performance of kriging. TPS and SOAP are implemented under the standard settings in the mgcv package.
ST-PDE and ST-tPDE are implemented as detailed in Section 7.1, with the only difference that the triangulation used
for the discretization in space has 100 interior nodes, corresponding to the data locations. For SOAP, ST-PDE and ST-
tPDE, homogeneous Dirichlet boundary conditions are used. All the smoothing parameters of TPS, SOAP, ST-PDE
and ST-tPDE are chosen via GCV.

Figure 7 shows in the first column the true field evaluated at different time instants, in the second column the data
sampled at the same instants, and from the third to the last columns the corresponding estimates provided respectively
by kriging, TPS, SOAP, ST-PDE and the proposed ST-tPDE. From these plots we can see that kriging is not able to
reconstruct the right isolines, while the other methods are performing better. Figure 8 shows the boxplots of the RMSE
of the space-time field estimates over 50 replicates of the noise generation, with the RMSE computed as detailed in
Section 7.1. From the boxplots we can see that kriging is giving the worst estimate in term of RMSE, while the best
estimate is provided by ST-tPDE.

7.3. Third simulation study: Point-wise observations in space and time of a random field

As in the previous simulation study, we consider point-wise observations in space and time. The domain Ω is
circular with radius r = 1; the temporal domain is [0, 1]. We generate from a spatio-temporal random field, with
separable Matérn covariance structure, with smoothness parameter ν = 2, constraining the field to be zero at the
boundary of spatial domain or, more precisely, at 100 equally spaced points on ∂Ω. The field is sampled at the 120
space locations and 11 equidistant time instants in the interval [0, 1], adding a small Gaussian noise with mean zero
and standard deviation equal to 0.035.
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Figure 7: Second simulation study. First column: true function evaluated at different time instants. Second column: sampled data. Third column to
last column: estimates provided by kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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Figure 8: Second simulation study. Boxplots of the RMSE over 50 simulation replicates of the estimates of the spatio-temporal field obtained by
kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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Figure 9: Third simulation study. First column: True function evaluated at different time instants. Second column: Sampled data. Third column to
last column: Estimates provided by kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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Figure 10: Third simulation study. Boxplots of the RMSE over 100 simulation replicates of the estimates of the spatio-temporal field obtained by
kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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We implement kriging with the right covariance structure, separable Matérn in space and time, and using the right
smoothness parameter ν = 2. We implement the other methods as detailed for the second simulation study.

Figure 9 shows the true random field at some temporal instants, the corresponding data and the estimates provided
by kriging, TPS, SOAP, ST-PDE and ST-tPDE. In order to compare the performances of the methods, we compute
RMSE over 100 repetitions of this simulation, corresponding to different generation of both the random field and the
noise. The RMSE is computed over a regular grid with 248 points in space and 41 points in time. Figure 10 shows the
boxplots of the RMSE of the space-time field estimates given by the five methods. A visual inspection of the boxplots
highlights that kriging provides the worst estimates, also characterized by the largest variance. This was not expected,
since this method employs the same covariance structure used to generate the signal, and even the correct smoothness
parameter. SOAP, ST-PDE and ST-tPDE have comparable performances with ST-PDE reaching in this case slightly
smaller RMSE. This small advantage of ST-PDE over the proposed ST-tPDE is expected as the true field f0, in this
simulation study, has a separable covariance structure in space and time.

8. Application to blood flow velocity field estimation

We now want to apply the proposed ST-tPDE to the estimation of the dynamic blood velocity field on a cross-
section of the common carotid artery. More precisely, our aim is to estimate the mean velocity field during an average
heart beat.

As shown in Figure 2, the ECD scan runs over more than one heart beat. We thus compute a mean signal from the
record over multiple heart beats, cutting the signal at starting time of the systolic phase, which is an easily detectable
landmark. The signals over the seven beams are obtained from separate ECD measurements, as the measurement
device can only scan one beam at a time. The measurements in different beams are thus aligned, using again as
landmark the starting time of the systolic phase. Figure 3 displays the data for one subject in the study: the seven
signals represent the mean velocity of the blood cells measured in the seven beams on the cross-section of the carotid.
Different colors and numbers are used to denote the signals over the seven beams, following the color and number
scheme displayed in the upper right corner of the figure. The ECD signals over the seven beams have different shapes.
Specifically, the ECD signals corresponding to the central beam, beam 3, and to the beam in the upper part of the
section, beam 2, have two peaks in the systolic phase, with the highest velocities being reached during the second
peak. The ECD signals over the beams in the lower and lateral part of the artery section, beams 4 to 7, have only one
main peak, that is earlier in time with respect to the main peak over the beams 1 to 3. We can also observe that higher
velocities are reached over the beams in the central and lower part of the artery section, beams 2 to 5, with respect to
the upper and lateral beams, beams 1, 6 and 7.

As detailed in [5], which considered these data for a fixed time instant, the systolic peak, we have a detailed prob-
lem specific information about blood fluid dynamics; see, e.g., [19]. This information can be conveniently translated
into a partial differential equation, along with the physiological boundary conditions. In particular, we can here con-
sider the parabolic PDE γ∂ f /∂t + L f = 0, where the spatial operator L is the same used in [5] for the estimation of the
blood flow velocity at the systolic peak time. Specifically, L is given by the following diffusion, transport and reaction
terms:

K(x, y) =

[
y2 + κ1x2 (κ1 − 1)xy
(κ1 − 1)xy x2 + κ1y2

]
+ κ2(R2 − x2 − y2)I2, b(x, y) = (βx, βy)> , c = 0,

where R is the artery radius, R = 2.8, while the hyperparameters in the diffusion and transport terms are set to κ1 = 0.1,
κ2 = 0.2, and β = 0.5, on the basis of problem-specific information. Finally, the relative strength of the space and time
derivatives is controlled via the parameter γ, which is set to 0.1. See [5] for the details of the derivation.

The starting velocity profile h0, corresponding to the velocity field at the end of the diastolic phase, is estimated
via the SR-PDE in [5], with the same specification of the spatial operator L. Likewise in [5], we moreover impose
homogeneous Dirichlet boundary conditions on the wall of the carotid cross-section, i.e., f |∂Ω = 0, corresponding to
the physiological no-slip conditions. The sampling design of these data corresponds to the sampling design 2, detailed
in Section 6, i.e., areal data in space and point-wise data in time. The space-time velocity field is thus estimated
minimizing the functional JT ( f ) in (12), with the PDE described above. The estimation problem is discretized in
space using linear finite elements defined on the triangulation shown in the left panel of Figure 4. The discretization
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in time is obtained by means of the finite difference method, with a time discretization grid of NT = 41 uniformly
spaced points during the time of the heartbeat (0.92 seconds for the considered patient).

The estimated dynamic surface is represented in Figure 11 at fixed instants in time. We can observe that during the
heartbeat, the shape of the velocity field is subject to strong variations. During the first instants of the systolic phase,
the velocity field has a strong asymmetry with higher values in the lower part of the artery cross-section; the plot in
the bottom right corner of Figure 11 gives the orientation of the carotid cross-section for this figure. In the subsequent
instants, the shape of the velocity field changes, assuming higher values in the upper right part of the cross-section.
These asymmetries and eccentricities of the blood flow are of strong interest to the medical doctors, to investigate
how the heamodynamics may influence the pathogenesis of atherosclerosis. During the diastolic phase, however, the
estimated velocity field is symmetric and flat.

We can compare the obtained estimates with the original data in Figure 3. Figure 12 displays the estimated velocity
in the central point of the beams. Notice that the estimated dynamic surface captures very well the main features of the
ECD signals. Moreover the estimate of the mean velocity on each beam borrows strength from the proximity of other
beams, taking into account the spatial structure of the phenomenon. Penalizing a parabolic PDE that summarizes the
problem-specific knowledge on the phenomenon thus allows to obtain a physiological estimate of the velocity field.

time = 0 time = 0.054 time = 0.100 time = 0.146

time = 0.192 time = 0.238 time = 0.284 time = 0.330

time = 0.376 time = 0.460 time = 0.575

Figure 11: Blood flow velocity field estimated by ST-tPDE, at different time instants. The figure in the bottom right corner indicates the orientation
of the carotid cross-section.
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9. Directions of future research

Various extensions of the proposed model can be considered and will be the object of future research.
First, spatio-temporal varying covariates could be included in the model, using a semiparametric approach analo-

gous to the one considered in [41].
Second, using a generalized linear framework similar to [44], we could model variables of interest having any

distribution in the exponential family, such as Poisson counts, binomial or Gamma distributed outcomes, scattered
over spatio-temporal domains. This model extension would significantly broaden the scope of the proposed model.

A very interesting possible development would consist in combining the proposed method with a technique for
data-driven estimation of the hyperparameters in the regularized PDE. In the described application to blood-flow
velocity field estimation, these hyperparameters have been fixed on the basis of prior knowledge on the phenomenon
under study, following the derivation in [5]. However, the problem specific knowledge may be not as detailed as
to suggest specific values for such parameters. A promising approach in this respect is offered by the parameter
cascading technique proposed in [10, 38, 47]. This technique is explored in the framework of spatial regression with
differential regularization in [6], in the simpler case of only spatial data and with a simpler PDE with only a stationary
diffusion operator L f = div(K∇ f ).

Another fascinating generalization would consist in handling spatio-temporal data distributed over general non-
planar domains. This could be done using non-planar finite elements, as in [26], or isogeometric analysis based on
non-rational B-spline basis, as in [43]. The generalization to non-planar domains would enable advanced applications
in the life sciences, as well as in the geosciences and engineering. For instance, in the neurosciences, this would
permit the analysis of spatio-temporal neuroimaging data associated to neuronal activity over the cerebral cortex, the
highly convoluted thin sheet of neuronal tissue that hosts most of the neuronal activity. In cardiovascular research,
this would for instance allow the study of spatio-temporal varying haemodynamical stresses exerted by blood-flow
over the arterial wall. This study would be fundamental for advancing our knowledge on aneurysms’ pathogenesis. A
first study in this direction, considering a fixed time instant, the systolic peak, has been carried out in [17]. The use of
non-rational B-spline basis, instead of finite elements, would instead be particularly suited to engineering applications,
being these bases extensively used in computer aided design.

Figure 12: Estimated blood-flow velocity at the beams’ centers.
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Appendix A. Proof of the solution of the estimation problem

To prove the existence and the uniqueness of the solution of Problem 1, we consider the quantity g ∈ GT =

L2(0,T ; L2(Ω)), defined as g = ∂ f /∂t + L f − u, where L is the second order elliptic operator (2) and u is the known
forcing term. We moreover define the space VT,0 = {v ∈ V : Bcv = 0 and v(p, 0) = 0}, which represents the space of
functions in V with homogeneous boundary conditions and homogeneous initial value, and we introduce the operator
BT : L2(0,T ; L2(Ω))→ VT,0, such that BT ũ is the unique solution of the PDE (3) with forcing term ũ and homogeneous
boundary conditions, i.e., ∂t(BT ũ) + L(BT ũ) = ũ in Ω × (0,T ], BT ũ(p, 0) = 0 in Ω and Bc(BT ũ) = 0 on ∂Ω × (0,T ].
We make the following assumptions.

Assumption 1. ΓD , ∅, so that a Poincaré inequality holds, i.e.,

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) .

Assumption 2. The parameters of the PDE are such that for all ũ ∈ L2(0,T ; L2(Ω)), there exists a unique solution
f0 of the PDE (3), which moreover satisfies f0 ∈ L2(0,T ; H2(Ω)) ∩ C0(0,T ; H1

ΓD
(Ω)), ∂ f0/∂t ∈ L2(0,T ; L2(Ω)) and

‖ f0‖V ≤ β ‖ũ‖L2(0,T ;L2(Ω)).

Under Assumptions 1 and 2, thanks to the well-posedness and the regularity of the PDE (3), the operator BT is an
isomorphism between L2(0,T ; L2(Ω)) and VT,0. Moreover, the following inequality holds:∫ T

0
‖BT ũ(t)‖2H2(Ω) ≤ C

∫ T

0
‖ũ(t)‖2L2(Ω) . (A.1)

The solution of the PDE (3) can thus be written as f = fb + BT ũ, where fb is the solution of the PDE with
homogeneous forcing term, non-homogeneous initial value and non-homogeneous boundary conditions.

Existence and uniqueness of the estimator f̂ can hence be obtained thanks to a classical result of calculus of
variations. We recall here the result stated, e.g., in [28].

Theorem 1. Let G be an Hilbert space, A : G × G → R a continuous, coercive and symmetric bilinear form in G,
L : G → R a linear operator over G, and c a constant. If the functional J(g) has the form

J(g) = A(g, g) +Lg + c, (A.2)

then there exists a unique ĝ ∈ G such that J(ĝ) = infG J(g). Moreover ĝ satisfies the following Euler–Lagrange
equation

∀ϕ∈G (J′(ĝ), ϕ) = 2A(ĝ, ϕ) +Lϕ = 0. (A.3)

Exploiting this theorem, we can prove Proposition 1 and 3.

Proof of Proposition 1. Recalling the definitions of g, GT , BT given at the beginning of this appendix, and the defini-
tion of fb given below equation (A.1), we can write any f ∈ V as an affine transformation of g, by f = fb + BT (u + g),
and we can re-express the functional (4) as the following functional JT,g over GT :

JT,g(g) = JT { fb + BT (u + g)} =

n∑
i=1

∫ T

0
{BT (u + g)(pi, t) + fb(pi, t) − zi(t)}2 + λ

∫ T

0
‖g(t)‖2L2(Ω) .
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Moreover, we can rewrite JT,g in the quadratic form (A.2) of Theorem 1, setting

A(g, ϕ) =

n∑
i=1

∫ T

0
BT g(pi, t)BTϕ(pi, t) + λ

∫ T

0

∫
Ω

gϕ,

Lϕ = 2
n∑

i=1

∫ T

0
BTϕ(pi, t) {BT u(pi, t) + fb(pi, t) − zi(t)} ,

c =

n∑
i=1

∫ T

0
{BT u(pi, t) + fb(pi, t) − zi(t)}2 .

Given that BT , the point-wise evaluation of a function and the integration on an interval are linear operators,
we have that A(g, ϕ) is a bilinear form on GT . Moreover, it is continuous in GT . Indeed, thanks to the embedding
H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3, and thanks to (A.1), we have that∫ T

0
|BT g(pi, t)|2 ≤

∫ T

0
‖BT g(t)‖2C(Ω̄) ≤ C

∫ T

0
‖BT g(t)‖2H2(Ω) ≤ C̄

∫ T

0
‖g(t)‖2L2(Ω) .

We thus obtain that

A(g, ϕ) ≤ (C̄n + λ)
{∫ T

0
‖g(t)‖2L2(Ω)

}1/2 {∫ T

0
‖ϕ(t)‖2L2(Ω)

}1/2

.

Finally, the operatorA(g, ϕ) is coercive in GT because

A(g, g) =

n∑
i=1

∫ T

0
|BT g(pi, t)|2 + λ

∫ T

0
‖g(t)‖2L2(Ω) ≥ λ

∫ T

0
‖g(t)‖2L2(Ω) .

As a result of the fact that the bilinear form A(·, ·) is continuous and coercive in the Hilbert space GT , that the
operator L : GT → R is linear, and that c is a constant, Theorem 1 states the existence and the uniqueness of
ĝ = argming∈GT

JT,g(g). From the bijectivity of BT : L2(0,T ; L2(Ω)) → VT,0, we then deduce the existence and
uniqueness of f̂ = fb + BT (ĝ + u) = argmin f∈V JT ( f ).

Thanks to Theorem 1 and the definition of the operator BT , we can obtain the surface estimator f̂ as the solution
of the PDE 

∂ f̂ /∂t + L f̂ = u + ĝ
f̂ (p, 0) = s(p)
Bc f̂ = h

in Ω × (0,T ],
in Ω,
on ∂Ω × (0,T ],

(A.4)

where ĝ is obtained as the solution of Eq. (A.3), that can be written as

1
2

(J′(ĝ), ϕ) =

n∑
i=1

∫ T

0
(BT g + BT u + fb − zi) BTϕ δpi + λ

∫ T

0

∫
Ω

gϕ = 0.

This equation corresponds to the PDE
−∂ĝ/∂t + L∗ĝ = −

n∑
i=1

( f̂ − zi)δpi/λ

ĝ(p,T ) = 0
Bc
∗ĝ = 0

in Ω × [0,T ),
in Ω,
on ∂Ω × [0,T ),

(A.5)

where δpi is the Dirac mass located in pi, L∗ is the adjoint operator of L, defined in (2) and Bc
∗ is the operator that

defines the boundary conditions of the adjoint problem. The surface estimator can thus be written as the solution of a
coupled system of the second order PDEs (A.4) and (A.5).

Proof of Proposition 3. The same strategy used to prove Proposition 1 can be followed to prove Proposition 3. The
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only difference is the presence of αi and β j. Clearly, the point-wise evaluation of a function and the integration on an
interval are linear operators; thus the expressions of αi and β j given in Section 6.1 preserve the bilinearity ofA.

The other important point is the continuity of A. For the sampling design 1, i.e., point-wise observations in
space and interval observations in time, the continuity ofA is ensured by the fact that BT is an isomorphism between
L2(0,T ; L2(Ω)) and VT,0 and by the embedding H2(Ω) ⊂ C(Ω̄). For the sampling design 2, i.e., areal observations in
space and point-wise observations in time, the continuity of A holds thanks to the fact that BT g ∈ C0(0,T ; H1(Ω)).
Finally, for the sampling design 3, i.e., areal observations in space and interval observations in time, the continuity of
A trivially holds.
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