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Abstract. In the last years creation of as-built Building Information Modelling

(BIM), and Historic Building Information Modelling (HBIM) in particular, has

become a widely researched topic. In particular, the so-called “Scan.-to-BIM”

procedure has received a lot of attention. This is mainly given by the fact that

nowadays, terrestrial laser scanning (TLS), either static and mobile, and 3D

photogrammetry are quite popular techniques to acquire building geometry raw

data. However, turning a set of scans into a BIM model is still a labor-intensive

and manual work. This paper presents two workflows for increasing the

automation in HBIM generation. The presented approaches differ in the level of

automation achieved and in the level of maturity. Indeed, while the first one

presents a higher level of automation it is designed only to work in the case

straight geometrical features are dominant in the scene (i.e., Manhattan world

assumption holds). In addition, it is currently implemented in Matlab. On the

other hand, the second one is closer to semi-automated modelling since some

manual operations are still needed. However, it is implemented as a Revit Plug-

in and for this reason it is more user-friendly.
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1 Introduction

In the last years creation of as-built Building Information Modelling (BIM), and

Historic Building Information Modelling (HBIM) in particular, has become a widely

researched topic. For historical buildings, as-found information concerning building

geometry is often sparse, not accurate/updated or even missing. For this reason, the

availability of a solid geometrical model is fundamental for other analysis like the

definition of a conservation plan, restoration works planning, etc. In particular, the so-

called “Scan.-to-BIM” procedure has received a lot of attention. This is mainly given

by the fact that nowadays, terrestrial laser scanning (TLS), either static and mobile, and

3D photogrammetry are quite popular techniques to acquire raw data of a building

geometry. This achievement was boosted by significant advances both in scanning

technology and automated processing of images. Many issues, which were underlined

in the past as critical in laser scanning, like effortful data acquisition and registration,

nowadays are no more a problem due to an increase in automation of such phases. The
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reduction of instrumental cost also boosted static laser scanning in new fields. Mobile

and handheld laser scanning systems (MLS) were also developed to speed up the

acquisition phase using Simultaneous Localization and Mapping (SLAM) technology.

Even if the accuracy of MLS is generally worst with respect to the one of TLS their

higher productivity is an important advantage that allowed such platform to gain

popularity. Finally, the availability of commercial software packages with a high level

of automation both in the image orientation and in dense matching steps determined a

new youth to photogrammetry. Even if TLS or MLS may provide reliable as-found

information with a few hours (or days) of surveying operations, they are providing just

raw data (point clouds) that are generally not suitable for any real application. For this

purpose, a time-consuming work in needed to derive a consistent 3D model of the

buildings starting from them. This procedure is still mainly manual and skilled oper-

ators are requested to turn raw point cloud into a ready-to-use BIM product. To reduce

the time needed for the production of “as-found” BIM, the topic of increasing the

automation of the building reconstruction pipeline starting from point clouds has been

paid a lot of attention in the literature in the last years [1, 2]. However, point clouds

acquired from real-world commonly feature several properties that may pose severe

challenges for any algorithm designed to extract information from the raw data. The

different approaches developed generally subdivide the “Scan-to-BIM” problem into

four specific steps: scan preprocessing, segmentation of the point cloud, classification

of detected objects and final reconstruction of the BIM model. The aim of scan pre-

processing is to re-organize data to increase computational efficiency, like organizing

point cloud into a k-dimensional tree (k-d tree). The preprocessed point cloud is then

segmented into a set of primitives (using specific criteria); next step is the classification

of detected segments by using frameworks exploiting local and contextual information.

Finally, labelled segments are used to combine parameters (both geometry and

semantic) for the reconstruction of the BIM model using specific reconstruction

algorithms. Another important bottleneck of the “Scan-to-BIM” procedure is connected

to the fact that BIM modelling tools were initially designed for the design and main-

tenance of new constructions and not for historical building. The adaptation BIM

software and tools to this latter category of buildings pose some important challenges,

e.g., the lack of free-form modelling instruments in commercial BIM software pack-

ages; the low level of usability of existing tools in the case of historical constructions,

etc. All those aspects boosted the research to find solutions and workaround with

commercial software. In particular, several procedures and protocols were defined in

order to combine modelling tools with parametric software [3, 4]. However, still lacks

the definition of a systematic workflow for semi-automated and guided “Scan-to-BIM”

modelling capitalizing the previously listed research. In this paper, we are presenting

two workflows for increasing the automation in HBIM generation. The first one

(Sect. 3) presents a higher level of automation but it is designed only to work in the

case straight geometrical features are dominant (i.e., Manhattan world assumption). On

the other hand, the second workflow (Sect. 4) is based on a semi-automated modelling.

Main contributions presented in this paper are:

• implementation of segmentation methodology for point clouds acquired in historical

buildings;
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• definition of a hierarchical semantic object classification technique based on first-

order logic sentences;

• development of a Revit Plug.in whose aim is to implement a semi-automated

procedure for HBIM production.

2 Related Work

As previously anticipated point clouds are nowadays widely diffused as the starting

point for as-built BIM reconstruction. This procedure is referred to as “Scan-to-BIM”

and it is currently mainly labour-intensive and manual. For this reason, several works in

literature are currently focusing on this subject [5, 6]. Presented approaches are gen-

erally based on a multi-step architecture. The main phases are: (i) segmentation of the

unstructured point cloud; (ii) semantic classification of detected elements, (iii) feature

detection and clustering, (iv) creation of the model combining geometry and semantic

information. In some cases the order of this phase can vary between different

approaches or some steps can be performed simultaneously. This paper is mainly

addressing the first two topics. Point cloud segmentation is generally defined as the

process aimed at grouping similar points. The similarity between points can be related

both to geometrical aspect and/or other related attributes like intensity or colour. The

segmentation procedure can be designed to introduce some level of organization to data

[7], or as a first step in object recognition and model fitting [8]. In the past decades,

various techniques have been designed to extract surfaces from point clouds. They can

be mainly grouped as [9]: (i) region growing, (ii) model-based methods, (iii) edge-

based detection, (iv) and machine learning. In region growing methods [10, 11] it is

assumed that neighbouring points presents (present similar characteristics (either

geometrical or radiometric). Generally, region growing methods are a combination of

two steps. Firstly, a “seed” is identified as a starting point for the following “growing”

phase. Model-based methods [12, 13] assumes that man-made objects can be

decomposed into geometric primitives. Starting from this, points conforming to a

defined primitive are grouped as belonging to the same cluster. Identification of geo-

metric primitives is generally performed by using robust estimators like RANSAC,

MLESAC, MSAC, PROSAC, etc. As described by [14], edge-based segmentation

algorithms [15] can be seen as the combination of two different steps. In the first one,

the border of each surface is identified while in the second one points inside the

detected boundaries are grouped into different regions. In machine learning applica-

tions, a trainer takes advantages of some examples to infer the underlying probability

distribution of the characteristics of interests (features). Staring from this the trained

operator can be used to take decisions for point cloud classification. Definition of

features play an important role in these problems and their definition is one of the main

bottlenecks Semantic classification is generally the second step of automated “Scan-to-

BIM” procedure. Each extracted cluster or segment derived by the first step is pro-

cessed to compute its class labels (e.g., wall, floor, ceiling, etc.). Classification is

generally performed by taking into consideration a set of features (e.g., geometrical,

radiometric, etc.) and contextual information (e.g., neighbouring relationship) [16].
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Classification can be performed either using heuristics or machine learning approaches.

Heuristic methods [17] are taking into consideration some knowledge about the

characteristics of the building objects to derive classification rules. Heuristics do not

require intensive learning or large data sets in order to compute the class of an

observation. However, heuristics may be biased and are often case specific. Machine

learning approaches methods relies on training phase to set up a discriminant criteria

among object classes. A second possibility for speeding up the modelling pipeline is

the development is the development of specific add-ins clustering set of commands

available in commercial software. In recent years, the diffusion of Add-ins has allowed

the implementation of specific commands for modelling software such as Autodesk

Revit and Mc Neel Rhinoceros with the aim to extend specific internal functionality. In

particular, the development of the software’s internal functions has made it possible to

improve the modelling and the generation of BIM-based energy/structural analyses and

the related production of schedules, databases and material computing. Most of the

time, the diffusion of these additional modules for modelling applications takes place

through the main web service platforms such as Autodesk App Store [18] and

Food4Rhino [19]. The main apps downloaded for Autodesk Revit are mainly oriented

to three categories such as (1) Reality capture/animation/rendering like, Lumion®

LiveSync® by Act-3D [20] and BIMobject by BIMobject® Corporation [21];

(2) Interoperability in which it is possible to download Import/Export contents to other

software like Excel by Virtual construction and technology BIM One Inc [22], IFC

2017 and on by Autodesk, Inc [23] and 3DWarehouse-For-Revit ™ by AMC Bridge;

(3) Structural Simulation & Analysis like Structural Analysis Toolkit 2018 and

Advance Steel 2018 Extension and on by Autodesk, Inc [24]. On the other hand, the

most downloaded add-ins in Food4Rhino are Kangaroo Physics [25], Lunchbox [26],

and Grasshopper ® [27]. The latter is a graphical algorithm editor tightly integrated

with Rhino’s 3D modelling tools and allow the creation of complex shapes using

generative algorithms. Unlike RhinoScript, Grasshopper requires no knowledge of

programming or scripting, but still allows designers to build form generators from the

simple to the awe-inspiring. In order to automating repetitive tasks in Autodesk Revit,

Dynamo add-in has been developed to create scripts that can explore complex design

problems and simplify BIM work modelling flows [28]. In particular, thanks to an

extremely flexible open source visual programming environment, Dynamo allows the

composition of customized algorithms (procedures or formulas to solve problems) to

process data and create geometries through a block graphical interface (nodes).

However, based on a series of generative tests, both solutions have been discarded

because they are not able to create BIM object with the direct management of laser

scanning scans. For this reason, the second part of this study (development of a semi-

automatic SCAN to BIM add-in) avoided the implementation of the generative process

of simple/complex models through the integration of Grasshopper® and Dynamo into

Autodesk Revit. The most suitable solution was the application of the grades of gen-

eration (GOG) described in a previous study applied to the generation of H-BIM [29].

The choice of the method was mainly based on three factors: (1) grades of generation

GOG 9 and 10 allow better levels of automation in the generation of SCAN to BIM,

(2) the grade of accuracy (GOA) reached is about 1/2 mm (deviation value between
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BIM object and point cloud), (3) Revit API libraries permit the integrations of the

GOGs into Autodesk Revit’s add-in and improve the modeling of complex objects.

3 Data-Driven Automated Classification

The data-driven approach is aimed at detecting building features (e.g., walls, roof,

ceilings, etc.) from TLS data. In a first stage, planar entities are detected in the row

point cloud by means of a hybrid segmentation strategy and the geometric modelling of

the building is accomplished. In particular, in this step detected elements are turned into

simple geometric entities like lines and polygons. In a second stage, detected elements

are classified into building objects.

3.1 Point Cloud Segmentation

As previously anticipated one of the most important steps in an automated “Scan-to-

BIM” pipeline is the segmentation problem. One of the main problems connected to

this task is the presence of noise and clutter in the data. For the segmentation step was

can define as “noise” not only the instrumental noise but also all objects that are not of

interest to the definition of the building geometry like furniture and moving people.

The approach presented in this paper is an adaptation to historical buildings of the

model-based method developed for façade segmentation that has been presented in a

previous paper [30], see workflow in Fig. 1. The choice of a model based method is

Fig. 1. Workflow of the segmentation process for historical building indoors.
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supported by a set of reasons: (i) model-based methods are less influenced by noise

with respect to region growing, (ii) parameter governing the output are directly con-

nected to geometrical characteristics of the building and (iii) in contrast to machine

learning no training is requested. Traditional approaches using model-based assump-

tion general face some bad-segmentation problem, either over-segmentation or under-

segmentation. This is motivated by at least two fundamental aspects: (i) model based

methods generally do not take into consideration topological information and (ii) model

based algorithms only measures the consensus with respect to a geometrical model and

do not take into consideration architectural priors. In order to partially cope with those

problems, a modified RANSAC-based algorithm was developed to adapt model-based

segmentation to face real-world problems. In particular, the developed segmentation

approach is a hybrid approach that combining the robustness of RANSAC and the

spatial (topological) information that is generally associated with region growing

methods. Indeed, the developed approach firstly identifies the maximum consensus by

using RANSAC and in a second stage classifies and groups the points by using a

bottom-up clustering strategy in order to prevent under-segmentation problems. Even if

an unstructured points clouds there is not a topological relationship between points we

can assume that in a real-world scene points belonging to the same object should be

sufficiently close to one another while points belonging to different objects should be

separated by a spatial gap. For this reason, a mean shift clustering approach is adopted

to cluster the different group of points. Results obtained in this way generally present a

slight over-segmentation. To reduce this problem once all features are detected a

grouping of the clusters is carried out to group together similar features. Object clus-

tering is performed by evaluating three parameters: (i) similarity of normal vectors;

(ii) perpendicular distance between planes; and (iii) intersection between clusters. In

particular, two steps are carried out: (i) the whole group of detected segments are

clustered by using the mean shift clustering algorithm using similarity of normal

vectors; (ii) the perpendicular distance between features classified as different object is

evaluated and if this distance is lower than the user-defined RANSAC threshold and the

convex hulls of the point clusters intersects, they are recognized as a single object and

merged together. In particular, the developed RANSAC strategy is used to identify

planar objects (e.g. walls, floors, sidewalls, etc.) the remaining points are classified

using a region growing method and grouped into objects using a strategy similar to the

one previously described to cluster objects and prevent under-segmentation. Only

objects whose dimension is larger than a user-defined threshold are kept as a real object

while the remaining clusters are rejected and classified as “noise”.

3.2 Hierarchical Semantic Object Classification

One of the main aspects of BIM model is their semantic characterization. For this

reason, the classification and the annotation with their identity labels (e.g., ‘wall’) of

features detected at the previous step is one of the main important points to boost the

automation in the “Scan-to-BIM” pipeline. To perform such a classification a hierarchic

object classification was designed starting from the consideration that each building

feature has a number of attributes, which are similar within the same feature type and

different with respect to other features. Similarly, also spatial relations between
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different features can be used in the classification. The main features addressed in this

paper are summarized in Table 1.

All these information about feature attributes can be formulated in terms of first-

order logic to define the initial rules of the knowledge base classification. For example,

a wall (f1) can be defined as a large vertical element above the floor (f2) and perpen-

dicular to it:

8f1IsType f ; Wallð Þ

) IsLarge fð Þ ^ IsVertical fð Þ ^ 9f2 IsAbove f1; f2ð Þ ^ IsPerpendicular f1; f2ð Þ ^ IsType f2; Floorð Þ

Similarly an window ‘window’ (f1) is an intrusion of the wall (f2) parallel to the

wall and contained into the wall itself:

8f1IsType f1; Windowð Þ

) 9f2:IsOut f1; f2ð Þ^ IsParallel f1; f2ð Þ Þ^ IsInsideO f1; f2ð Þ^ IsType f2; WallFacadeð Þ

In particular, for indoors the classification starts with evaluating both area and

position of any detected objects. First, floor and ceiling are detected because both of

them are horizontal (or pseudo horizontal) object. The first is characterized by lower

height while the latter at the highest level. Walls are vertical objects that are in between

ceiling and floor. Finally, windows and doors are detected. Indeed, while doors are

classified in correspondence of gaps into walls that are connected to the floor, windows

are characterized by gaps into walls that are not connected to the floor.

3.3 Examples

The presented segmentation and classification procedure was tested on a couple of data

sets named ‘Salone’ and ‘Volta ad ombrello’. The two datasets consist of approxi-

mately 36 million points for ‘Volta ad ombrello’ and approximately 42 million points

Table 1. Parameters used in data processing.

Features Spatial relationship

Class Parameter(s) Class Parameter(s)

Size - Length

- With

- Area

- Volume

Intersection - Intersection of the bounding box

Orientation - Normal direction of

the fitting plane

Angle - Parallelism and orthogonality

between normal direction of the

fitting plane

Position - Height with respect

to the lowest element

Inside - Intersection of the bounding box
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for ‘Salone’. Those data sets were acquired with a static terrestrial laser scanner namely

Faro Focus 3D.

The parameters used for the segmentation are summarized in Table 2 while results

are shown in Figs. 2 and 3 for the two data sets.

Fig. 2. ‘Salone’ data set. Original data (a) and results of the classification: floor (b), ceiling (c),

walls (d–g) and windows (h).

Fig. 3. ‘Volta ad ombrello’ data set. Original data (a) and results of the classification: floor (b),

ceiling (c), walls (d–g) and doors (h–l).

Table 2. Parameters used in data processing.

Parameter Value

RANSAC plane threshold (e) 1 cm

RANSAC normal threshold (a) 30°

Mean shift clustering threshold (b) 1 cm
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4 Revit Add-in for Semi-automated Modelling

The developed add-in structure is composed of four families able to interact with each

other. Each family consists of (i) internal functions present in Revit, (ii) functions

implemented by Revit APIs and finally (iii) the combined development of multiple

Revit tools. Internal Revit functions, tools and functions have been recalled and

hierarchized to simply the generation of as-found and as-built models. Autodesk Revit

is known for the difficulty of activating modelling tools and functions. The first reason

is the lack of a user-friendly interface for advanced functions. The main goal of the

developed Plug-in was to achieve a more simplified activation mode of advanced tools

such as automatic database generation, schedules and computing. The add-in (Fig. 4) is

divided into four families.

Scan Management. It was intended to facilitate the import of point clouds and to

support its setting of the BIM project in Autodesk Revit. As is known, Revit has

introduced a few years ago the possibility of displaying point clouds in 3D digital

space. Once the point clouds have been imported, it is not possible to apply GOG 9-10

directly. To bridge this gap, the key idea was to combine multiple functions that make

point clouds more manageable. In particular, the main one was designed to help the

user to the correct inserting point clouds in Revit without losing the correct geo-

referencing of laser scanning scans, facilitating BIM project setup operations.

Modelling (GOGs). This section integrates the GOGs, (from 1 to 10) in the software

structure through the direct activation of the main BIM objects such as wall, roof, floor

and ceiling. The choice to include these types of objects was dictated by their great use

in SCAN to BIM projects. The other categories of objects such as a door, window,

scale and supplies have not been inserted in order to manage only the 3D wall gen-

eration in the modelling section. The functions associated with them can be retrieved

from the main interface of the software and are easily linked to the objects developed in

the developed add-in. The main objective of this section was to support the user with a

user-friendly guide oriented to the creation of SCAN to BIM models. In particular, for

this section, it was found that the APIs for the development of modelling tools were not

made available by Autodesk, thus preventing the implementation of the modelling

limitations available in the Revit default interface. To bridge this gap, the writing of

SCAN to BIM protocols has permitted the integration of a process based on interop-

erability and use of software able to generate NURBS models such as MC Neel

Rhinoceros and Autodesk Autocad in the Revit’s logic.

Database Generation. The main features included in this section are the automatic

generation of databases and computing able to extract the numeric value such as

volume, area, material and descriptive information. The main feature of a BIM is that it

can extract automatic computing and information from the previously generated model.

The development of the add-in has followed the SCAN to BIM process outlined in

recent years thanks to the direct application of historical case studies and on existing

industrial and residential buildings.
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Interoperability Levels. GOGs are based on the BIM-based import/export require-

ments such as the correct export of the model, to create two-dimensional drawings from

the model to proper export schedules and databases in MS Access, Excell and IFC. The

final objective of this section was to improve the interaction with the BIM project,

external information and other types of BIM-based analysis. Mainly the new BIM

utility paradigm has been supported thanks to the definition of interoperability schemes

for the appropriate transfer of the SCAN to BIM model for finite element analysis and

virtual reality via SAT, ACIS, DWG formats and energy analysis via IFC and GBxlm

formats.

5 Conclusions

Today, HBIM is a new paradigm in the world of built cultural heritage for the man-

agement of buildings since they are the source of geometric and semantic information.

However, the generation of this models is still a labour-intensive and manual work.

This research tried to contribute to increase the automation in the “Scan-to-BIM”

process. In particular, two procedures were presented. The first methodology combines

bottom-up modelling and top-down propagation of knowledge for segmentation and

Fig. 4. The four section of the developed Revit Add-in for semi-automated modelling (a). The

first section ‘Scan management’ (b) the second section ‘Modelling GOGs’ (c) implemented

functions for automatic ‘Database generation’ and (d) Interoperability levels
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semantic classification of the acquired point cloud. Although the developed procedure

showed a good flexibility against data quality and data density, some priors have to be

associated with the top-down propagation of knowledge. In particular, it is assumed

that the Manhattan world assumption holds. In the highly irregular environment the

presented procedure will probably fail. Currently, the presented methodology is

focusing on segmentation of the unstructured point cloud and semantic classification of

detected elements. However, feature detection and clustering as well as the creation of

the final model combining geometry and semantic information, which represent two

crucial step in “Scan-to-BIM” process, were not tackled. This will be the subject of

further works. The second methodology presented is focusing on a different approach.

Indeed, it tries to speed up the BIM modelling pipeline by developing specific Add-in

to commercial software packages. In this Add- in a clustering of most useful commands

is performed in order to accomplish the main tasks associated to a BIM process (scan

management, modelling; database generation and interoperate with other software).

The developed Add-in developed a semi-automated and guided workflows for HBIM

production in commercial software packages. Even if some workaround were found to

reduce bottlenecks connected with commercial software some major barriers remains

when facing constraints imposed by API availability.
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