This is the post peer-review accepted manuscript of:

Stefano Cherubin, Giovanni Agosta
LIBVERSIONINGCOMPILER: an easy-to-use library for dynamic
generation and invocation of multiple code versions
SoftwareX, Volume 7, JanuaryJune 2018, Pages 95-100.
ISSN 2352-7110.

The published version is available online at:
https://doi.org/10.1016/j.softx.2018.03.006

(©2018 Elsevier. Personal use of this material is permitted. Permission
from the editor must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work
in other works.

LIBVERSIONINGCOMPILER: an easy-to-use library for
dynamic generation and invocation of multiple code
Versions

S. Cherubin, G. Agosta

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano
Via G. Ponzio 84/5, I-20133 Milano, Italy

Abstract

We present LIBVERSIONINGCOMPILER, a C++ library designed to support
the dynamic generation of multiple versions of the same compute kernel in
a HPC scenario. It can be used to provide continuous optimization, code
specialization based on the input data or on workload changes, or otherwise
to dynamically adjust the application, without the burden of a full dynamic
compiler. The library supports multiple underlying compilers but specifically
targets the LLVM framework.

We also provide examples of use, showing the overhead of the library, and
providing guidelines for its efficient use.

Keywords: Dynamic Compilation, Versioning Compiler, Continuous
Optimization

1. Motivation and significance

Designing and implementing High Performance Computing (HPC) ap-
plications is a difficult and complex task that requires mastery of several
specialized languages and performance-tuning tools; however, this prerequi-
site is incompatible with the current trend that opens HPC infrastructures
to a wider range of users [1, 2]. The current model that sees the HPC center
staff directly supporting the development of applications will become un-
sustainable in the long term. Thus, the availability of effective APIs and
programming languages is crucial to provide migration paths towards novel

Email address: stefano.cherubin@polimi.it (S. Cherubin)

Preprint submitted to SoftwareX

heterogeneous HPC platforms as well as to guarantee the developers’ ability
to work effectively on these platforms.

Profile-guided code transformations at compile-time usually provide a
good optimization level in a general-purpose scenario. On the contrary, in
HPC scenarios where large data sets are employed, a proper profiling may be
unfeasible. In these cases, which are becoming more and more common [3],
dynamic approaches can prove more effective. The practice of improving
the application code at runtime through dynamic recompilation is known as
continuous program optimization [4, 5, 6]. Although it has been studied for
more than a decade, very few people adopt it in practice since it is difficult
to perform manually, and, when performed automatically, it can compromise
software maintainability. At the same time, autotuning is used both to tune
software parameters and to search the space of compiler optimizations for
optimal solutions [7]. Autotuning frameworks can select one of a set of
different versions of the same computational kernel to best fit the HPC system
runtime conditions, such as system resource partitioning, as long as such
versions are generated at compile time. Few of these frameworks are actually
able to perform continuous optimization, and those that support it do so only
through specific versions of a dynamic compiler [8, 9] or through cloud-based
platforms [10].

LIBVERSIONINGCOMPILER (abbreviated LIBVC) can be used to perform
continuous program optimization using simple C++ APIs. LIBVC allows
different versions of the executable code of a computational kernel to be
transparently generated on the fly. Continuous program optimization with
LIBVC can be performed by dynamically enabling or disabling code transfor-
mations, and changing compile-time parameters according to the decisions
of other software tools such as a generic application autotuner.

The rest of the paper is organized as follows. In section 2 we describe
the software architecture, the internal APIs and their functionalities. In sec-
tion 3 we introduce an example of intended use and discuss benefits and
overhead deriving from the implementation of continuous program optimiza-
tion through LIBVC in a generic scenario. In section 4 we highlight the
impact of LIBVC in both industry and research field. Finally, we draw some
conclusions in section 5.

2. Software description

The goal of LIBVC is to allow a C/C++ compute kernel to be dynami-
cally compiled multiple times while the program is running, so that different
specialized versions of the code can be generated and invoked. This capa-
bility is especially useful when the optimal parametrization of the compiler

depends on the program workload. In these cases, the ability to switch at
runtime between different versions of the same code can provide significant
benefits, as shown in [11, 12].

Indeed, in general-purpose code it is preferable to profile the application
to statically generate the most efficient versions ahead of time. However, in
HPC code the execution times are usually so long that a profiling run may
not be an attractive choice. On the contrary, LIBVC enables the exploration
and tuning of the parameter space of the compiler at runtime, while the
program is performing useful work.

LIBVC considers as valid compute kernels any C-like procedure or func-
tion that can be compiled to object code. There is just one constraint that
should be enforced on the compute kernel: it must respect C linkage rules.
This means that no name mangling should be applied to the compute kernel
itself. Within our model, the Compiler is the tool used to compile the com-
pute kernel, and the Version is the configuration passed to the compilation
task. We assume to work with deterministic Compilers. In this scenario,
a Version produces at most one executable code. No executable code is
generated when the specified configuration is invalid.

2.1. Software Architecture

The LIBVC source code is available under the LGPLv3 licence. It is
compliant with the C++11 standard and it comes with configuration files
to ease the setup by using the CMake build system. The minimum required
CMake version is 3.0.2. The build system automatically checks the presence
of the optional dependencies LLVM and libClang, whose version must be
greater than 4.0.0. Whenever these dependencies are not satisfied, some
features are automatically disabled during the library installation. Please
see table 2 on page 16 for a detailed and exhaustive list of dependencies.

Description of the software model. Figure 1 shows a simplified UML class
diagram of this software. It is possible to identify three main classes in the
source code. The simplest class, which is called Option, represents each of
the flag and parameters that are passed to LibVC in order to compile a ver-
sion of a computing kernel. The Compiler abstract class defines the interface
that allows the host application to interact with Compiler implementations.
LIBVC provides up to three possible implementations for the Compiler ab-
stract class: SystemCompiler, which relies on system calls to external compil-
ers that are already installed in the host system; SystemCompilerOptimizer,
which is an extension of a SystemCompiler that also supports external opti-
mization tools (such as the LLVM optimizer opt); and ClangLibCompiler,

Option Compiler

- tag: std::string - id: std::string

- value : std::string # logFile : std::string

- prefix : std::string # libWorkingDirectory : std::string
+getTag() : std::string +getld() : std::string

+getValue() : std::string

5 X +hasIRSupport() : bool
+getPrefix() : std::string

+hasOptimizer() : bool
+getOptionString(o :Option) : std::string
+generatelR(

src : std::string,

Version _. t/lg:glor?ltgssttréngstrmg
—id: std::string options : std::list<Options>) : std::string
- functionName: std::string +runOptimizer(.
.) src : std::string,
- fileName_src: std::string versionID : std::string,
- fileName_IR: std::string options : std::list<Options>) : std::string
- fileName_IR_opt : std::string +generateBin()
- ﬁIeName_b{n: std::string ?me StsdtdStSrtI:I?‘lg
- handle : void* versionlID : std::string,
- optionList : std::list<Option> options : std::list<Options>) : std::string
- genlRoptionList : std::list<Option> +loadSymbol(
- optOptionList : std::list<Option> bin : std::string,
- compiler : std::shared_ptr<Compiler> func : std::string) : void*
+getld() : std::string [P
+preparelR() : bool
+compile() : bool ClangLibCompiler
+getSymbol() : void*

SystemCompilerOptimizer SystemCompiler

Figure 1: Simplified UML class diagram of LIBVC

which exploits the compiler-as-a-library paradigm through the Clang APIs'.
Please note that ClangLibCompiler is installed only if LLVM and 1ibClang
dependencies are satisfied. The last important class is the Version class,
which represents a compute kernel defined in a specific source file, with a
given compiler configuration. A Version object is compiled with the chosen
Compiler using an ordered list of Options. It contains a unique identifier,
references to Compiler and Options used to compile it, and references to
the files that are generated by the Compiler while compiling the Version.
The configuration of a Version object is immutable throughout the lifetime

http://clang.1llvm.org/docs/Tooling.html

of that object. The Version class also provides APIs to control the stages
of the compilation process: it is possible to create a Version object and
postpone the execution of the selected Compiler to a later stage.

2.2. Software Functionalities

LIBVC provides an easy-to-use interface that can be employed to perform
the dynamic compilation of a kernel, and to load compiled Versions as C-like
function pointers. LIBVC itself does not provide any automatic selection of
which Version should be executed. The decision of which Version is the
most suitable for a given task is left to policies defined by the programmer
or other autotuning frameworks such as mARGO¢t [13] or ¢Tuning [14].

LIBVC comes in two different flavours: with detailed low-level APIs and
with simple high-level APIs. The latter is optimized for the most common use
cases, they exploit the default system compiler and do not support any exter-
nal optimization tool, whereas low-level APIs allow a more fine grained setup
and support split-compilation techniques [15]; hence, the resulting source
code is slightly more verbose.

The typical usage of LIBVC involves different stages. The first task must
be the declaration and initialization of the Version-independent tools, such
as Compilers and Version builders, which are helper objects designed to
properly setup a Version configuration. Low-level APIs allow the program-
mer to customize one or more Compiler implementations. High-level APIs
expose a special function to transparently perform this task; it is required
to be invoked just once in the whole process lifetime. After that, it is pos-
sible to proceed to the Version configuration. The programmer can, by
using low-level APIs, dynamically forge and arrange Options, set the cho-
sen Compilers, manipulate file and kernel names to identify the code to be
compiled. The Version builder is the component which allows this low-level
setup. Once the Version builder has its fields filled up, it can be finalized to
generate a Version object. High-level APIs receive all these parameters and
produce a Version object in a single function call. High-level APIs limit the
configuration to one Version at a time while low-level APIs allows parallel
configuration of multiple Versions. Once a Version object is finalized, it
has to be compiled. The compilation task is activated by the programmer
through a dedicated API. It may trigger more than one sub-task when it
involves split-compilation techniques. In the absence of compilation errors,
and regardless of which APIs are being used, at the end of this stage LIBVC
generates a binary shared object. From this same shared object LIBVC loads
a function pointer symbol, which points to the kernel.

The target kernel may include other files or refer to external symbols.
LIBVC will act just as a compiler invocation and will try to resolve external

© 0w N9 O s W N =

o e T T S S O S
© 00 9 O U ks W N = O

20

symbols according to the given compiler and linker options.

LIBVC defers the resolution of the compilation parameters to run-time.
The only piece of information that is needed at design-time is the prototype
of the kernel, which has to be used for a proper function pointer cast.

LIBVC also provides hooks to enable tracking and versioning of the com-
piled versions.

3. Illustrative Examples

LIBVC can be exploited to apply a wide range of optimization through
the dynamic compilation. The official repository? provides some examples
of usage in the test files. In this section we show and discuss a generic use
case of continuous program optimization performed through LIBVC. Listing
1 illustrates the dynamic adaptation of a counting sort algorithm to the
data workload. In particular, the counting sort implementation is specialized
through recompilation using LIBVC every time the min and max value of
range of the data to be sorted change. When the min and max values of the
range of the data are known at compile-time it is possible to perform array
allocation and loop optimizations more efficiently.

Listing 1: Benchmark of a statically linked kernel performing counting sort against a
dynamically compiled version of the same kernel using LIBVC high-level APIs

// libVersioningCompiler High—Level API header file
#include ”versioningCompiler/Utils.hpp”

// define kernel signature
typedef void (xkernel_t)(std::vector<int32_t> &array);

ve::version_ptr_t getDynamicVersion (int32_t min, int32_t max) {
// wersion configuration wusing libVC — start
const std::string kernel_dir = PATH TOKERNEL;
const std::string kernel_file = kernel_dir + ”kernel.cpp”;
const std::string functionName = ”vc_sort”;
const vc::opt_list_t opt_list = {
ve :: make_option (7—03") ,
ve:: make_option ("—std=c++11") ,
ve::make_option (?—I"+kernel_dir),
ve:: make_option ("-D_MIN.VALUE RANGE="+std :: to_string (min)) ,
ve:: make_option ("-DMAX VALUE RANGE="+std :: to_string (max)) ,

}s

ve::version_ptr_t version = vc::createVersion(kernel_file ,
functionName, opt_list);
// version configuration using libVC — end

’https://github.com/skeru/libVersioningCompiler

7

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

}

// version compilation — start
kernel_t f = (kernel_t) vc::compileAndGetSymbol(version);

if (f) {

return version;

// version compilation — end
return nullptr;

int main(int argc, char const *xargv[]) {

const std::vector<std::pair<int, int> > data_range = {
std :: make_pair<int ,int >(0,256) ,
std :: make_pair<int ,int >(0,512) ,
std :: make_pair<int ,int >(0,1024) ,

b

const size_t data_size = 1000000000;

// initialize libVersioningCompiler
ve::ve_utils_init () ;

for (const auto range : data_range) {
TimeMonitor time_monitor_ref;
TimeMonitor time_monitor_dyn;
TimeMonitor time_monitor_ovh ;

// running reference wversion — statically linked
for (size_t i = 0; i < iterations; i++) {
// produce workload to process
auto wl = WorkloadProducer<int32_t >::get_ WL_with_bounds (
range. first , range.second);
const auto meta = wl.getMetadata () ;
time_monitor_ref.start () ;
sort (wl.data, meta.minVal, meta.maxVal); // call reference
time_monitor_ref.stop () ;

}

// measuring overhead of preparing a new version — start
time_monitor_ovh.start () ;

auto v = getDynamicVersion(range. first , range.second);
kernel_t my_sort = (kernel_t) v—>getSymbol () ;
time_monitor_ovh.stop () ;

// measuring overhead of preparing a new version — end

// running dynamic version — dynamically compiled
for (size_t i = 0; i < iterations; i++) {
// produce workload to process
auto wl = WorkloadProducer<int32_t >::get_WL_with_bounds (
range. first , range.second);

68
69
70
71
72
73
74

75
76
77

time_monitor_dyn.start () ;
my_sort (wl.data); // just a call to a function pointer
time_monitor_dyn.stop () ;

}

// consider average time—to—solution

std :: cout << range.second << 7.” << time_monitor_ref.getAvg
() << 7.7 << time_monitor_dyn.getAvg()) << 7.7 <<
time_monitor_ovh.getAvg()) << std::endl;

}

return 0;

}

Listing 1 reveals the several stages of the compilation flow of LIBVC. In
the main function, an initialization is needed before using LIBVC. This is
done in line 40 using a simple API invocation. From line 8 to line 20 we
see how to configure a new Version for dynamic compilation. The following
lines (22 - 27) perform the actual dynamic compilation. It is possible to
notice in line 69 the call to the dynamically compiled kernel, which is very
similar to the call to a statically linked kernel (line 53).

As proof of concept, we tested the benefits of continuous program op-
timization implemented with LIBVC by comparing the time-to-solution of
the statically linked kernel against a dynamically compiled version of the
same kernel, as shown in listing 1. We compiled both the statically linked
and the dynamically compiled kernels using the same compiler and the same
optimization level. A full project using code from listing 1 is available on
github®. We run this example to sort an array of 1 billion 32-bits integers.
The platform used to execute the experiment is a supercomputer NUMA
node that features two Intel Xeon E5-2630 V3 CPUs (@2.4 GHz) with 128
GB of DDR4 memory (@1866 MHz) on a dual channel memory configuration.

Table 1 shows that dynamically compiled kernels always performs better
with respect to the reference statically linked implementation. We define
as range size the difference between max and min values of the range of the
data to be sorted. We observe an important speedup when the range size is
smaller than 8192 possible values. In those cases the main part of the speedup
comes from a more efficient memory allocation of the array in the dynamically
compiled kernels. We also notice that the overhead of dynamically compiling
a new Version is not related with the range size. This overhead can be
absorbed within 3 iterations when the range size is small, and within less
than one thousand iterations in the worst case.

3https://github.com/skeru/countingsort_libVC

Range TTS TTS speedup | overhead payback
size reference | LIBVC

[elements| | [ms] [ms] (%] | [ms] [iterations]
256 2831.33 2368.12 19.56 | 1355.99 3
512 2822.84 2352.27 20.00 | 1345.25 3
1024 2820.67 2347.28 20.17 | 1356.86 3
2048 2831.92 2351.99 20.41 | 1361.37 3
4096 2914.13 2440.47 19.41 | 1353.05 3
8192 3967.59 3966.21 0.03 | 1354.12 982
16384 5168.64 5163.51 0.10 | 1370.82 268
32768 6459.75 6430.77 0.45 | 1358.26 47

Table 1: Experimental results of Time-To-Solution (TTS) averaged over 100 executions on
a Ubuntu x86_64 system. Kernels were compiled using gcc 5.4.0 with optimization level
-03.

It is also possible to use LIBVC to dynamically compile and run several
functions or the same function with different options. A more complex exam-
ple of usage of LIBVC which exploits these features can be found on github?
where we dynamically compile and run the full PolyBench/C [16] benchmark
suite within the same C++ program.

4. Impact

LIBVC is a software tool that supports the generation and execution
of multiple versions of C++ kernels. This means that LIBVC allows a
wider range of users to adopt continuous optimization practices by gener-
ating workload-dependent specializations of one or more kernels. Accord-
ingly, LIBVC enables the development of autotuning techniques, as well as
the comparison of different autotuning algorithms within a neutral platform
with any desired compiler. By providing the option to select multiple compil-
ers, LIBVC can be easily adopted by industrial users, such as supercomputing
centers, as they are often constrained to vendor-specific compilers.

LIBVC is used within the European project ANTAREX [17, 18], which
aims at expressing the capability of applications to self-adapt to runtime
conditions (we call this practice autotuning) through a Domain Specific Lan-
guage (DSL) and at providing runtime management and autotuning support
for applications that target green and heterogeneous HPC systems up to
Exascale. The application functionality is expressed through C/C++ code

‘https://github.com/skeru/polybench_1ibVC

10

(possibly including legacy code), whereas the non-functional aspects of the
application, including parallelization, mapping, and adaptivity strategies are
expressed through the DSL developed in the project. The application auto-
tuning is delayed to the runtime phase, where the software knobs (application
parameters, code transformations and code variants) are configured according
to the runtime information that is retrieved from the execution environment.
LIBVC serves to dynamically provide code transformations and code vari-
ants in the ANTAREX tool flow. The ANTAREX consortium includes two
major European supercomputing centers, as well as industrial users in the
automotive and bioinformatics application domains.

Case Study: Geometrical Docking Miniapp. To assess the impact of the pro-
posed tools on a real-world application we employ a miniapp developed within
the ANTAREX project [17] to emulate the workload of the geometric ap-
proach to molecular docking. This class of application is useful in the in-
silico drug-discovery process, which is an emerging application of HPC, and
consists in finding the best fitting ligand molecule with a pocket in the tar-
get molecule [19]. This process is performed by approximating the chemical
interactions with the proximity between atoms.

We processed a database of 113161 ligand molecule-pocket pairs on the
same test platform we describe in section 3. The evaluation of every ligand
molecule-pocket pair is independent with respect to the other pairs. There-
fore, we implemented an MPI-based version of the same miniapp. The input
dataset is partitioned among the slave processes.

The initial code base was not developed by the authors, it was developed
by another team at Politecnico di Milano. We integrated the code which
is executed by each slave process with LIBVC, as for the serial version. It
took one hour of work to integrate the miniapp source code with the LIBVC.
The integration required to add or modify a total of 60 lines of code over an
original code size of 1300 lines of code, which is less than 5% of the code size.

The baseline miniapp took 4354.95 seconds before the integration. After
the integration the miniapp took 1783.93 seconds — including the overhead for
dynamic compilation — for a speedup of 2.44x with respect to the baseline.
The speedup is achieved by exploiting code specialization on geometrical
functions.

Although the overhead of performing dynamic compilation on every par-
allel process slows down the running time, the speedup we obtained in the
serial version of the miniapp is confirmed also in the parallel case. We run the
MPI-based miniapp using 4, 8, 16, and 32 parallel processes. We obtained a
speedup of 2.39x, 2.24x, 1.99x, and 1.63x respectively.

11

Case Study: OpenModelica Compiler. To assess the impact of the proposed
tools on a legacy code we employ the C code which is automatically gener-
ated by a state-of-the-art compiler for Modelica. Modelica is a widely-used
object-oriented language for modeling and simulation of complex systems.
OpenModelica [20] is an open source compiler for the Modelica language. It
translates Modelica code into C code, which is later compiled with clang
and linked against an external equation solver library.

As test case, we simulated a transmission line model [21] of 1000 ele-
ments. We modified the C and Makefile code automatically generated by
the OpenModelica compiler to integrate the simulation C source code with
LIBVC and properly compile it. It took two hours of work to integrate the
automatically generated code with the LIBVC. The integration required to
add or modify a total of 65 lines of C code and 5 lines of Makefile code over
an original code size of 633390 lines of code, which is less than 0.015% of the
code size.

The baseline code took 374.25 seconds before the integration. After the
integration the simulation took 295.00 seconds — including the overhead for
dynamic compilation — for a speedup of 1.27x with respect to the baseline.
The speedup is achieved by recompiling the C code which implements the
model description by using a deeper optimization level (-03) with respect to
the default one (-00). In this case, the compilation time that it is spent on
optimizations is widely paid back by a faster execution time.

5. Conclusions

We have presented LIBVC, a lightweight library to support continuous
optimization in HPC environments. The tool is employed within the context
of the ANTAREX project to optimize the execution of computationally in-
tensive kernels that are repeatedly called within large scale applications with
long execution times. While the library is designed to be integrated with
other tools in the ANTAREX workflow, it can also be used as a standalone
tool with minimal effort by application developers.

Acknowledgements

This work is partially supported by the European Union’s Horizon 2020
research and innovation programme, under grant agreement No 671623, FET-
HPC ANTAREX.

The authors wish to thank Danilo Labanca, Valentina Ionata, and Diego
Gaboardi from Politecnico di Milano for providing the source code of the
miniapp employed in section 4.

12

The authors wish to thank Emanuele Baldino, and Francesco Casella

from Politecnico di Milano for providing the Modelica source code of the
Transmission Line example employed in section 4.

1]

W. Ziegler, R. D’Ippolito, M. D’Auria, J. Berends, M. Nelissen, R. Diaz,
Implementing a “one-stop-shop” providing smes with integrated hpc
simulation resources using fortissimo resources, in: eChallenges e-2014
Conference Proceedings, 2014, pp. 1-11.

B. Koller, N. Struckmann, J. Buchholz, M. Gienger, Towards an envi-
ronment to deliver high performance computing to small and medium
enterprises, in: Sustained Simulation Performance 2015, Springer, 2015,
pp- 41-50.

D. A. Reed, J. Dongarra, Exascale computing and big data, Communi-
cations of the ACM 58 (7) (2015) 56-68. doi:10.1145/2699414.

T. Kistler, M. Franz, Continuous program optimization: A case
study, ACM Trans. Program. Lang. Syst. 25 (4) (2003) 500-548.
do0i:10.1145/778559.778562.

D. Nuzman, R. Eres, S. Dyshel, M. Zalmanovici, J. Castanos, Jit tech-
nology with c¢/c++: Feedback-directed dynamic recompilation for stat-
ically compiled languages, ACM Trans. Archit. Code Optim. 10 (4)
(2013) 59:1-59:25. doi:10.1145/2541228.2555315.

B. Fahs, T. Rafacz, S. J. Patel, S. S. Lumetta, Continuous optimiza-
tion, in: Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, ISCA 05, IEEE Computer Society, Washing-
ton, DC, USA, 2005, pp. 86-97. doi:10.1109/ISCA.2005.19.

S. Benkner, F. Franchetti, H. M. Gerndt, J. K. Hollingsworth,
Automatic Application Tuning for HPC Architectures (Dagstuhl
Seminar 13401), Dagstuhl Reports 3 (9) (2014) 214-244.
doi:10.4230/DagRep.3.9.214.

H. Chen, J. Lu, W.-C. Hsu, P.-C. Yew, Continuous adaptive object-
code re-optimization framework, in: P.-C. Yew, J. Xue (Eds.), Advances
in Computer Systems Architecture, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004, pp. 241-255. doi:10.1007/978-3-540-30102-8_20.

P. Basu, S. Williams, B. V. Straalen, L. Oliker, P. Colella, M. Hall,

Compiler-based code generation and autotuning for geometric multigrid

13

[10]

[15]

[16]

[17]

on gpu-accelerated supercomputers, Parallel Computing 64 (Supplement
C) (2017) 50 — 64, high-End Computing for Next-Generation Scientific
Discovery. doi:10.1016/j.parco.2017.04.002.

J. Cohen, T. Rayna, J. Darlington, Understanding resource selection
requirements for computationally intensive tasks on heterogeneous com-
puting infrastructure, in: J. A. Banares, K. Tserpes, J. Altmann (Eds.),
Economics of Grids, Clouds, Systems, and Services, Springer Interna-
tional Publishing, Cham, 2017, pp. 250-262. doi:10.1007/978-3-319-
61920-0_18.

Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, C. Wu,
Evaluating iterative optimization across 1000 datasets, in: Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 10, ACM, New York, NY, USA, 2010,
pp. 448-459. doi:10.1145/1806596.1806647.

M. Tartara, S. Crespi Reghizzi, Continuous learning of compiler
heuristics, ACM Trans. Archit. Code Optim. 9 (4) (2013) 46:1-46:25.
do0i:10.1145/2400682.2400705.

D. Gadioli, G. Palermo, C. Silvano, Application autotuning to support
runtime adaptivity in multicore architectures, in: Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 In-
ternational Conference on, IEEE, 2015, pp. 173-180.

G. Fursin, A. Lokhmotov, E. Plowman, Collective Knowledge: towards
R&D sustainability, in: Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE’16), 2016, pp. 864-869.

A. Cohen, E. Rohou, Processor virtualization and split compilation

for heterogeneous multicore embedded systems, in: Design Automation
Conference, 2010, pp. 102-107. doi:10.1145/1837274.1837303.

T. Yuki, Understanding PolyBench/C 3.2 kernels, in: International
workshop on Polyhedral Compilation Techniques (IMPACT), 2014.

C. Silvano, G. Agosta, S. Cherubin, D. Gadioli, G. Palermo, A. Bar-
tolini, L. Benini, J. Martinovi¢, M. Palkovi¢, K. Slaninova, et al., The
antarex approach to autotuning and adaptivity for energy efficient hpc
systems, in: Proceedings of the ACM International Conference on Com-
puting Frontiers, CF 16, ACM, New York, NY, USA, 2016, pp. 288-293.
do0i:10.1145/2903150.2903470.

14

[18] C. Silvano, G. Agosta, A. Bartolini, A. R. Beccari, L. Benini, J. Bispo,
R. Cmar, J. M. Cardoso, C. Cavazzoni, J. Martinovi¢, et al., Autotuning
and adaptivity approach for energy efficient exascale hpc systems: the

antarex approach, in: Proceedings of the 2016 Conference on Design,
Automation & Test in Europe, DATE 16, 2016, pp. 708-713.

[19] A. R. Beccari, C. Cavazzoni, C. Beato, G. Costantino, Ligen: a high
performance workflow for chemistry driven de novo design (2013).

[20] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Sal-
damli, D. Broman, A. Sandholm, Openmodelica - a free open-source
environment for system modeling, simulation, and teaching, in: 2006
IEEE Conference on Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, 2006, pp. 1588-1595.
d0i:10.1109/CACSD-CCA-ISIC.2006.4776878.

[21] F. Casella, Simulation of large-scale models in modelica: State of the
art and future perspectives, in: LINKOPING ELECTRONIC CON-
FERENCE PROCEEDINGS, 2015, pp. 459-468.

Required Metadata

15

Nr. | Code metadata description Please fill in this column
C1 | Current code version v1.2
C2 | Permanent link to code/repository | https://github.com/skeru/
used for this code version libVersioningCompiler
C3 | Legal Code License LGPL v3
C4 | Code versioning system used git
C5 | Software code languages, tools, and | C++, cmake, LLVM, Clang.
services used
C6 | Compilation requirements, operat- | Suggested system: Ubuntu 16.04
ing environments & dependencies x86_64 or version greater. Required
dependencies: dl, uuid-dev. Op-
tional dependencies: llvim-4.0-dev,
libclang-4.0-dev.
C7 | If available Link to developer docu- | See README.md in the repository
mentation /manual
C8 | Support email for questions stefano.cherubin@polimi.it

Table 2: Code metadata (mandatory)

16

