

Considering Space Debris related impacts into the LCIA framework

LCIA method developments in a global perspective SETAC Europe Annual Meeting 2018, Roma - May, 14th

<u>Thibaut Maury^{1,2}, Philippe Loubet¹, Camilla Colombo³, Mirko Trisolini³, Aurélie Gallice²</u> & Guido Sonnemann¹

¹CyVi group – ISM, Université de Bordeaux, ²ArianeGroup – Design for Environment, ³Politecnico di Milano – Aerospace department

⊠ thibaut.maury@ariane.group

SUMMARY

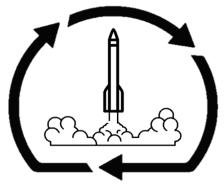
- 1 CONTEXT & OBJECTIVES
 - 3 RESULTS 4 CASE STUDY
- 2 MATERIALS & METHODS
- **5** CONCLUSION

01 CONTEXT & OBJECTIVES OF THE WORK

ECO-DESIGN IN EUROPEAN SPACE SECTOR

Environmental legislation is evolving fast

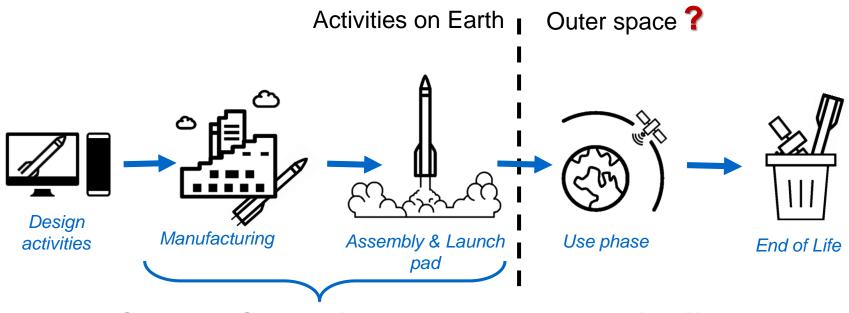
• European directives: REACh regulation, RoHS, Critical Raw Materials...


French Space Operation Act (full entry into force in 2020),

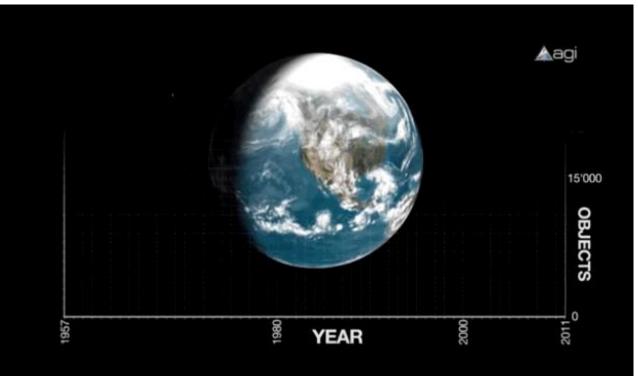
UNCOPUOS guidelines for the long-term sustainability of outer space activities

LCA has been identified as the most appropriate tool to evaluate and reduce the environmental impact of space activities

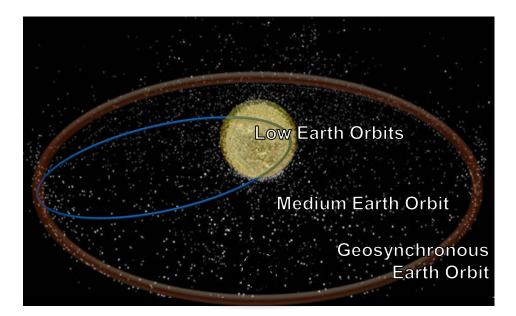
Ariane 6 development – Contractual requirement:


- Perform an LCA of Ariane 6 in exploitation phase
- Compare to A5 ECA

LIFE CYCLE OF SPACE MISSIONS

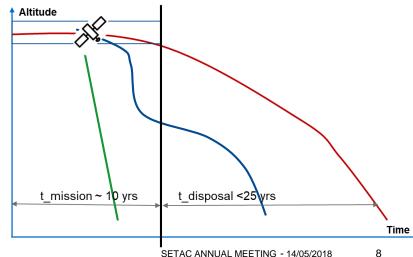

Ensuring sustainability on both Earth and orbital environment

Current LCA studies do not cover the entire life-cycle


THE GROWING THREAT OF SPACE DEBRIS

94% of the catalogued objects around Earth are **Space Debris** *(dead satellites, parts of launchers, fragments...)*

SPACE DEBRIS DISTRIBUTION

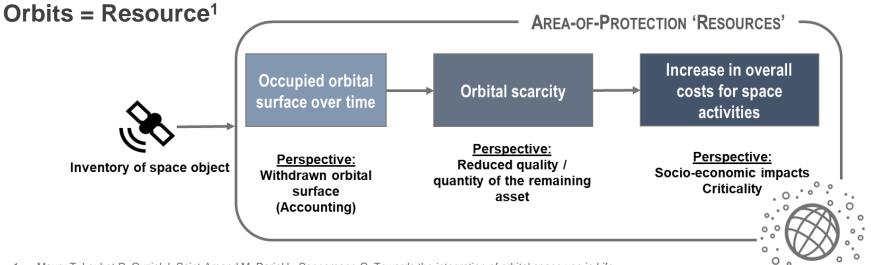

Orbital Region	% earth orbital volume	% of the catalogued population
LEO (200 – 2000km)	0,30%	75%
MEO (2.000 – 36.000km)	> 95%	~17-20%
GEO (~ 36.000km)	3%	~ 5-8%

OBJECTIVES OF THE WORK

Make the link between eco-design and Space Debris via LCA methodology

- Development of Characterization Factors (CF) assessing potential impacts of space mission on orbits
- Application of the CF on 3 post-mission disposal scenarios in LEO to study potential trade-offs with different dwelling time
 - No management of the End-Of-Life
 - Delayed Re-entry (< 25 yrs)
 - Direct Reentry (< 1 yr)

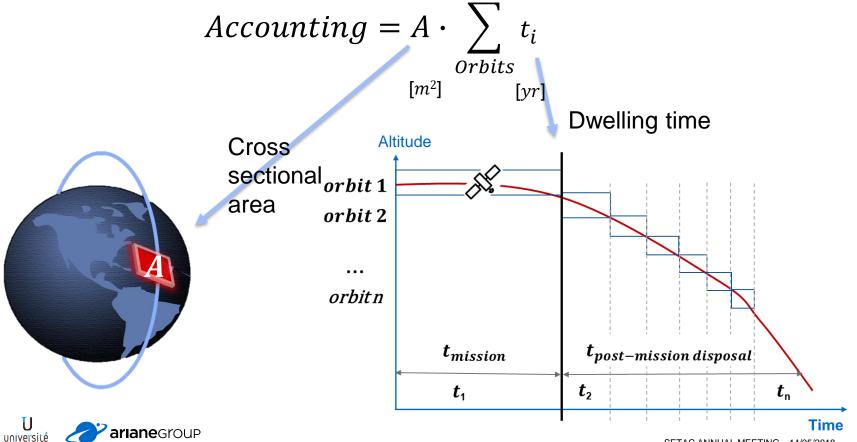
02 MATERIAL & METHODS



RESOURCE APPROACH FOR SPACE DEBRIS RELATED IMPACTS

Definition of Resource use in LCA

 Resource is seen as a support providing services to man-made environment and economy - JRC vision on provisioning capacity based on Dewulf et al. 2015)



1. Maury T, Loubet P, Ouziel J, Saint-Amand M, Dariol L, Sonnemann G. Towards the integration of orbital space use in Life Cycle Impact Assessment. *Sci Total Environ*. 2017;595:642-650. doi:10.1016/j.scitotenv.2017.04.008.

LIFE CYCLE INVENTORY

BORDEAUX

CHARACTERISATION FACTORS Debris related impacts

Each orbit presents a different state of scarcity which allows to classify and differentiate them

 $Impact = Accounting \cdot CF$

We decide to characterize orbital scarcity with the average **flux of debris** crossing the target orbits

$$Impact = A \cdot \sum_{Orbits} t_i \cdot \overline{\Phi_i}$$
$$[\#_{debris}] \quad [m^2] \qquad [yr] \quad [\#_{debris} \cdot m^{-2} \cdot yr^{-1}]$$

Calculated impact: avg. number of debris crossing the target surface during the dwelling time of the spacecraft

CHARACTERISATION FACTORS : Φ_i MASTER-2009 Model

Orbital environment

Debris Population > 1cm

Launch and mission related objects (1,2%) Explosion (62,4%) / Collision fragment (26,4%) Sodium Potassium (NaK) droplets (6,8%) Solid Rocket Motor (SRM) slag (2,7%) $\Phi_i = Density \cdot \Delta v_p$ [#.m⁻³] [m.yr⁻¹]

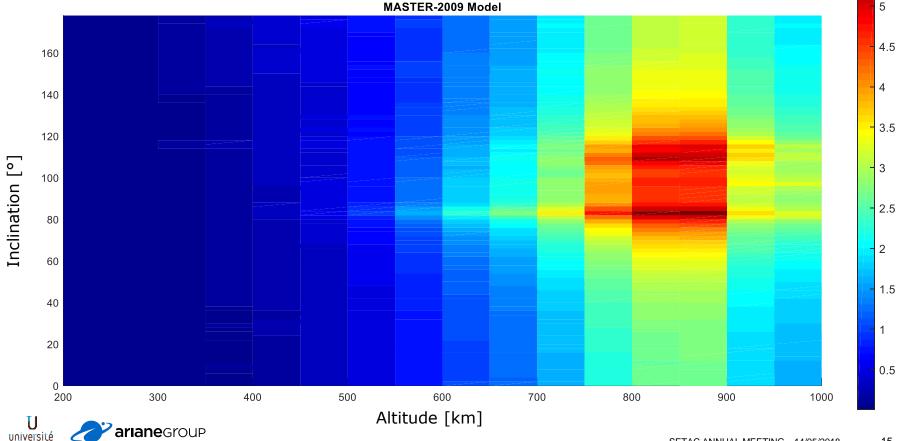
• We assume circular target orbits

Meteoroid and Space Debris Terrestrial Environment Reference Model

MASTER 2009

- The flux is calculated for a period of 35 years in a business as usual perspective
- All the LEO region is characterised: [200-2.000] km & [0-180°] inclination

03 RESULTS



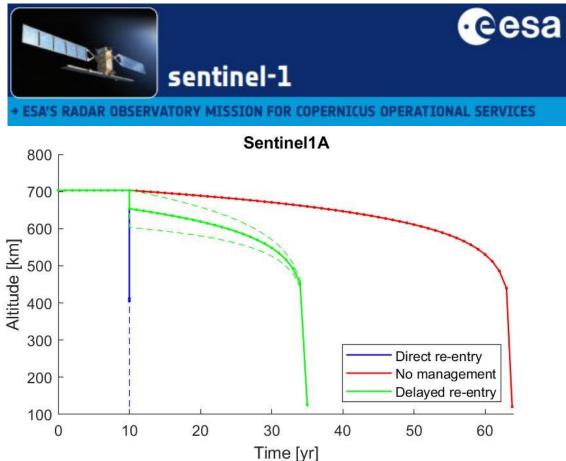
CHARACTERISATION FACTORS : FLUX OF DEBRIS INTO ORBITS

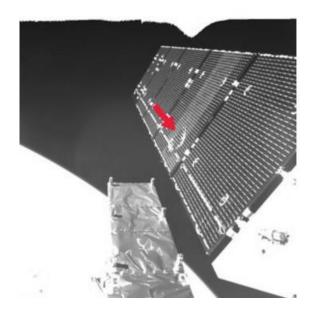
Average flux [#.m⁻².yr⁻¹] vs Altitude[km] and Inclination[deg]

time range (yr) [2018-2053] - size(m) [0.01-100]

MASTER-2009 Model

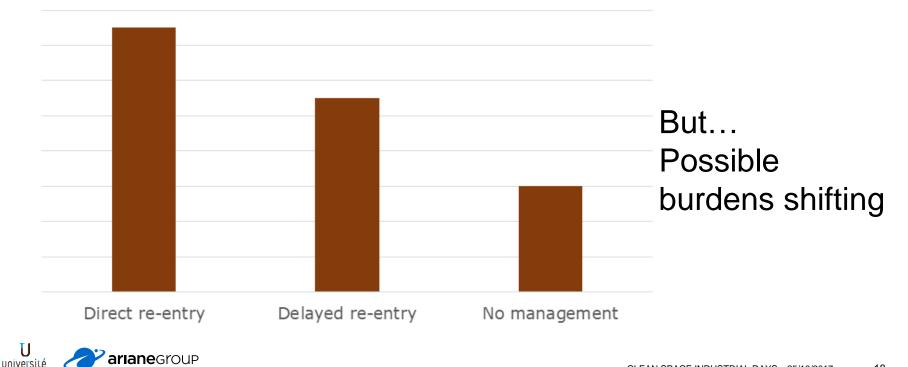
BORDEAUX


×10⁻⁴ 5.5



04 CASE STUDY SENTINEL 1-A

SENTINEL 1-A



Assessing different EOL scenarios

SENTINEL 1-A Impact results

Propellant Load (arbitrary values)

05 CONCLUSION

TAKE-HOME MESSAGE

- Orbital volume supporting satellite activities is a non-renewable resource, depleted by the presence of Space Debris
- A dedicated set of characterisation factors has been developed to characterize the orbital stress into the LEO region [<2,000km] & [0-180°]
- The indicator is suited to compare EOL scenarios as shown with the Sentinel 1-A case study.
- This indicator will be applied to the Heavy Launcher Ariane 6 (Currently in design phase)

Thanks for your attention

 \bowtie thibaut.maury @u-bordeaux.fr

