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Abstract—Driven by the fourth industrial revolution (Industry
4.0), future and emerging Internet of Things (IoT) technolo-
gies will be required to support unprecedented services and
demanding applications for massively dense machine-type con-
nectivity, low latency, high reliability and distributed information
processing. In this article, we describe a novel approach to
IoT architectures based on a wireless cloud network (WCN)
platform that can lease advanced communication and sensing
services to off-the-shelf industrial wireless devices via a dense,
self-organizing cloud of wireless nodes. The paper introduces, at
first, the proposed architecture and illustrates an experimental
case study inside a pilot industrial plant evaluating the proposed
architecture performance based on cooperative communication.
Next, it gives an overview of consensus-based distributed signal
and information processing algorithms. Finally, human body
localization and radio vision applications based on distributed
processing of wireless signals are investigated to support future
and emerging human-machine interaction modes.

I. INTRODUCTION

The next generation Internet of Things (IoT) is expected to
be underpinned by 5G wireless communication technologies.
Considering the exponentially increasing number of IoT de-
vices [1], in the near future wireless IoT networks will become
topologically dense, with huge numbers of complex interac-
tions taking place and evolving towards self-organising ar-
chitectures. For example, current industrial automation trends
towards Industry 4.0 paradigms are driving the transformation
of factories into highly flexible and reconfigurable production
systems, where radio technologies will play a crucial role
only if paired with advanced solutions to support massive
machine-type communication (mMTC), ultra-reliable and low
latency data publishing, as well as applications demanding for
self-organization and advanced distributed sensing capabilities.
Commercial-off-the-shelf (COTS) IoT technologies designed
for industrial set-ups [2], [3], namely Industrial Internet of
Things (IIoT), support long-term deployments while commu-
nication protocols are primarily designed to maximize battery
lifetime [4] or optimized to handle periodic or non-critical
traffic [5]. To allow wider adoption of wireless networks in
an industrial context, a substantial technology innovation is
thus required in terms of new types of devices embedding
a large set of functions in a decentralized fashion such as

Monica Nicoli, Gloria Soatti,
and Umberto Spagnolini
DEIB, Politecnico di Milano University
{monica.nicoli, gloria.soatti, umberto.spagnolini } @ polimi.it

self-configuring and learning protocols, communication and
computing strategies to support delay/safety-critical applica-
tions. Although the majority of existing wireless network
designs focus on energy consumption, recently some works
have begun to underline the crucial role of optimizing latency
and reliability as these requirements are essential to support
mission-critical applications (see [5] and references therein).
Even if experimental validations [6] and comparative analysis
[7] confirm the potential of these emerging solutions, their
practical deployment to replace an existing industrial network
is still to be addressed.

In line with the above scenarios, the design of both wireless
physical (PHY) and medium access control (MAC) layers
of the next generation IoT systems, is arguably the most
challenging and problematic task as it must be built on
fundamentally different principles that support and enhance
the functionality of the entire network: such principles should
exploit the complexity of the network topology and embrace
dense and massively-interacting communication paradigms.
In this paper, we describe a new approach to wireless IoT
based on a dense cooperative wireless cloud network (WCN).
As shown in Fig. 1, advanced communication and sensing
services can be transparently provided to COTS devices via
a dense, self-organizing cloud of wireless nodes. In this
cloud, information is forwarded via multiple relays to the
intended destinations using cooperative communications and
distributed signal processing tools. Network organization, and
management (i.e., multiple access in a shared spectrum), as
well as sensing tools are fully decentralized. COTS devices at
the edge are blind to the inner workings of the cloud. They can
access to cloud services through cloud access nodes while the
cloud is able to self-organize to provide augmented services
on-demand.

The WCN concept goes beyond theory, in fact it has
been actively developed and demonstrated by the DIWINE
project (http://diwine-project.eu/public), focusing on several
industry-scale applications [8]. To support WCN functions,
distributed signal processing is crucial to let the nodes acquire
the network-state information necessary to set up the cloud
functionalities and self-organize without the support of any
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Fig. 1. Cloud-assisted industrial IoT architecture underlaid with a distributed
and self-contained wireless cloud network platform.

central coordinator. On the other hand, centralized algorithms
require each node to broadcast the raw data to a fusion center
(FC), which is responsible for processing and sending back
the outcome to all nodes. Although they guarantee optimal
performance, these solutions are penalized by the latency
and communication/computational overhead required for data
aggregation/processing at the FC, that badly scale with the net-
work size. Furthermore, they are vulnerable to device failure at
the FC or closely located nodes. Distributed algorithms enable
the devices to fuse their sensed data and infer the desired
information relying solely on local processing and interactions
with neighbors. Such interactions can be exploited to infer, or
learn, patterns of interest that are hidden in the data sparsely
observed by the devices (or agents), make collective decisions,
reveal relationships or recognize behaviors of interest. Even if
each agent may not be capable of sophisticated behaviors on
its own, the combined action of all agents allows to solve
complex tasks.

The paper is organized as follows. In Sect. II we review the
WCN architecture and give details of a practical demonstrator
that has been evaluated inside a testing pilot industrial plant
[9]. In line with the 5G evolution, a multi-RAT (Radio Ac-
cess Technology) architecture is discussed for critical process
monitoring, where cloud nodes (CNs) employ IIoT wireless
standards to interface with the field devices and an ad-hoc
cooperative system for reliable intra-cloud communications.
Next, in Sect. III, we summarize the theoretical underpinnings
of intra-cloud distributed processing to support augmented
sensing and control functionalities. In Sect.IV, consensus-
based network localization and device-free radio sensing of the
environment through radio frequency (RF) signal inspection
is described. We finally conclude by summarizing open issues
and future developments.

II. WIRELESS CLOUD NETWORK ARCHITECTURE FOR
INDUSTRIAL IO0T: NETWORK FUNCTIONS AND VALIDATION

In this section we describe the platform that integrates the
WCN functions with an industry-standard wireless sensor net-
work implementation. In particular, as described in Fig. 2-(a),
the proposed platform consists of wireless field devices under-
laid with a distributed and self-contained network of CN that

can lease advanced networking functions to standard industrial
field devices upon request. Here, the field devices comply
with the WirelessHART [10] standard (IEC 62591). Cloud
devices autonomously self-organize to meet specific service
requirements not supported by existing industrial systems. The
proposed WCN design points towards a disruption of the host-
centric structure of current IIoT standards in favor of device-
centric architectures, which exploit intelligence also at the
field device side to incorporate distributed services on demand.
Cloud radio modules are equipped with a dual RAT. The first
radio technology guarantees backward compatibility with the
WirelessHART air-interface, as well as device authentication
with the Host station, which controls the industrial monitoring
functions [9]. The second radio technology supports the new
cloud functions and adopts a proprietary radio interface. The
cloud access (CA) nodes provide an interface to industrial
field devices requesting cloud services and seamless traffic
off-loading. Communication among CA nodes (field-side CA-
F and Host side CA-H nodes, respectively) is implemented by
cooperative transmissions. In what follows, we describe the
implemented functions for networking inside the cloud and
the experimental validation in an industrial plant.

A. Networking Functions for Low-latency Data Publishing

Current industrial wireless solutions [2] support few crit-
ical applications, with limited scheduling options due to an
optimized design for energy consumption and deterministic
traffic management. In addition, unlike wired communication
solutions (i.e., CAN, Fieldbus), the radio link quality is typi-
cally impaired by harsh environmental conditions (e.g., build-
ing blockage, metallic obstructions, interference) that often
impose a certification of the communication reliability through
network planning optimization tools as well as post-layout
verification [11]. As a result, some relevant mission-critical
data publishing workloads required in specific applications are
more difficult, and in some cases impossible, to handle.

Data publishing happens when the field device detects some
relevant conditions that generally require either a low-latency
reaction, a highly reliable or a high-throughput data transfer. In
the example of Fig. 2-(b), a low-latency data publishing task
is leased to the WCN: the CA nodes handle asynchronous
events taking place either at a remote wireless field device
or at the Host station (or both), so that suitable corrective
actions can be applied. The availability of a low-latency
upstream (field device to Host) and downstream (Host to
field device) data forwarding mechanism also enables the fast
exchange of request-response messages, typically consisting
of few datagrams.

As summarized in Fig. 2-(b) (on the left), communication
among the CNs takes place over a series of contiguous, syn-
chronized slots of 10 ms each, organized in super-frames of 8
slots and hyper-frames collecting a data publishing transaction
(or communication session) of 16 consecutive super-frames.
CA devices interfacing with the cloud is implemented over
6 contiguous channels (data publishing channels - DPCH).
Two shared broadcast channels (SBCH) are also configured
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Fig. 2. (a) WCN architecture: dual radio technology (RAT) implementation with battery-powered CN prototypes (courtesy of Pepperl+Fuchs). (b) Cooperative-
multihop message passing, chain-start, chain-end and ACK superframes. Latency and throughput comparison with COTS IIoT designs: a standard WirelessHART

network (IEC 62591) is used as benchmark for performance comparison.

inside each superframe to propagate CA control/configuration
functions as well as to implement distributed sensing tasks.
More details are given in Sect. IV. Focusing on data pub-
lishing, a sequence of cooperative transmissions is imple-
mented to connect source and destination CA nodes, where
cloud devices act as intermediate decode and forward relays
[12]. The cooperative link abstraction consists of separate
radios encoding/transmitting or decoding/receiving messages
in coordination [13]. Experimental validations in controlled
laboratory environments (e.g., see [14]) showed that such
systems could achieve enhanced reliability compared to stan-
dard multi-hop solutions as mimicking the performance of
a wired system. Despite some recent attempts to develop
cooperative relaying features tailored to wireless IoT networks
[15], practical methods to integrate such schemes into an
industrial standard are still missing [9].

In the proposed set-up, validated in the next sections by
experimental trials, the communication among the CNs takes
place over consecutive DPCH slots. Within each slot, a single
cloud device can thus transmit while selected CNs along the
route path can receive in multicast mode. The cooperative
algorithm allows an implicit-retry capability resulting from
its multiple packet propagation and receive opportunities. In
more details, the CA source node tunnels the input data-
grams through the cloud section: each CN here handles data
forwarding by duo-cast mode (e.g., transmitting the same
datagram/packet towards the two following nodes in the route
path), up to when the CA destination node is reached. Thus,
each packet always has two propagation opportunities and,
similarly, the destination node has always two packet receive
opportunities, corresponding to a cooperative diversity order
[16] of 2. In what follows, the performance indicator adopted
for performance assessment is the latency (e.g., 95-th per-
centile), measured with respect to the first successful datagram

reception.

B. Experimental Validation

In Fig. 2-(b) (on the right), latency and throughput results
are discussed by collecting measurements obtained in different
sites within a testing industrial plant described in [9]. For all
cases, the proposed distributed system handles the delivery of
data acting as a hardware as a service (HaaS) provider and
implementing the cooperative forwarding scheme previously
described. The goal is to experimentally verify, in a real-world
testbed, the performance of the cloud section as specifically
tailored as a complement to regular IIoT designs. Unlike
previous proposals [17], the CNs are here designed to augment
conventional industrial network functions and they can lease
extended services to pre-existing industrial equipment, upon
request. The PHY layer of the CN transceiver complies with
the IEEE 802.15.4e [10] and operates over the 2.4GHz band.
However, it is configured to double the data-rate (500kb/s) to
ensure a substantial publishing rate increase.

System validation shows substantial improvements com-
pared with standard single-path source routing (IEC 62591
compliant) solutions. An order of magnitude increase of
throughput was made possible by the cloud (in the range 2-4
Kbyte/s), while a twofold increase in packet delivery rate has
been observed in most of the investigated settings. The table of
Fig. 2-(b) (on the right) provides a summary of the achievable
figures, focusing on high-throughput datagram transfer (kb/s),
reliable throughput for request-response messages (kb/s) and
corresponding 95-th percentile latency (ms). For each case,
the cloud platform performance is compared with current
COTS implementation (WirelessHART), for typical 3 to 6-hop
topologies.

The use of the multihop-cooperative transmission chain
provides a sufficiently high level of immunity to multipath
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Fig. 3. (a) Self-organizing IoT network; (b) Example of distributed consensus
for the estimation of parameters 6.

fading and interference: it thus guarantees high reliability and a
reasonable level of determinism during communications, being
this a crucial requirement for real-time control applications. As
depicted in the corresponding histograms in Fig. 2-(b), the 95-
th percentile latency is below 180 ms in all cases, considering
relatively short (3 hops) to long hopping sequences (6 hops).
Notice that, for proper actuation/configuration actions, the
desirable communication latency is 250 ms or below. The
maximum publishing latency can be scaled down from 6 up
to 10 times compared to current industrial solutions.

III. DISTRIBUTED SIGNAL AND INFORMATION
PROCESSING

Data processing is essential in the IoT architecture to
extract application relevant information from the sensed data.
Low latency applications, such as process control in IIoT [9]
and road safety [18], [24], call for decentralized solutions
where sensing nodes manage the computing tasks locally by
cooperating to self disclose the information without sending
the data to a remote unit. In this section, we focus on
consensus-based methods [22], [23] for distributed inference
exploiting the cloud-assisted IoT platform in Fig. 2. Consensus
methods are used within the WCN for distributed estimation
of application-relevant parameters by successive refinements
of local estimates at individual nodes.

A. Consensus-based Algorithms for Distributed Processing

Consider a set of K nodes, distributed over a given area (as
in Fig. 3-(a)), which have to cooperatively estimate p unknown
real-valued parameters, 8 = [0 - - - HP]T. In consensus-based
algorithms, the estimate of the parameters of interest 0 is

computed at each node k, with k = 1,..., K, by successive
refinements of the local estimate 8}, (g) based on data exchange
with neighbors through iterations ¢ = 1,2, ..., until a consen-

sus is reached within the network, i.e., ék(oo) — é, as shown
in Fig. 3-(b). A weighted-consensus approach is considered,
where the estimate at node & is updated at iteration ¢ as [22]:

Or(a+1) = 01(q) + Wy Y (éz‘(Q) - 9k(q)) (D
i1€EN

with A, denoting the set of neighbors for node k, Wy, a
positive-definite weighting matrix and ¢ a step-size parameter.
The estimate (1) is known to converge to the weighted average

POLIMI Building 20, 3 floor

—— Conventional
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Fig. 4. Consensus-based localization in indoor scenario with 17 nodes based
on IEEE 802.15.4 standard including 8 anchor nodes and 9 devices for
localization purpose. The proposed consensus-based method (orange ellipse)
outperforms the conventional approach (light blue ellipse) and to closely attain
the CRB shown as a reference (black dashed contour).

6, (c0) = (Zj;vvj—l) 'SSE W16,(0) of the initial
estimates, provided that € is selected to guarantee conver-
gence [22]. In the conventional average consensus method
[23], the weighting matrix is set Vk to W; = I,, with I,
being the p-dimensional identity matrix, so that the estimate
converges to the arithmetic average of the local estimates,
01 (c0) = = S, 8,(0). On the other hand, if the weighting
matrix is selected as W = I'Cy, being Cj, the covariance
of 8y, (0) and T' a scaling matrix, the estimate convergences
to the optimal (in the minimum-varliance sense) centralized
solution Gy (c0) = (Z]K:1 Cj_l) Zszl C;lék(O), with
minimal inter-node signaling (see [22] for details). Note that
the conventional approach is suboptimal with respect to the
weighted consensus method as it does not account for the
different accuracies of the local estimates at different nodes.

Consensus methodologies are used in the following sections
as basis to develop distributed algorithms for self-organization
of cloud-assisted IoT networks, especially for passive radio
sensing for positioning and people occupancy detection (see
Sect. IV)

IV. DISTRIBUTED RADIO SENSING FOR LOCALIZATION
AND VISION RECONSTRUCTION

Localization and vision technologies are expected to play
a key role in next generation of cyber-physical systems. In
the specific field of IloT applications, tight integration of
physical (e.g., robots, automation and production systems)
and software components (e.g., control, monitoring, failure
prediction, human-machine interfaces - HMI - applications)
is made more complex by the interactions and collaborations
with human workers.

In what follows first, we show a simple example of
consensus-based network localization in indoor scenario, next
device free localization scenario is explained and implemented
using consensus-based radio sensing in cloud.

Fig. 4 shows an example of consensus-based network lo-
calization for an indoor IoT scenario with 17 IEEE 802.15.4
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Fig. 5. (a) Cloud-assisted distributed estimation of user location or occupancy based on RSSI features exchanged among CNs, (b) device-free occupancy
estimation using a network of 14 CNs (top) and RSSI histograms from individual CNs (bottom), (c) device-free location estimation using a network of 14

CNs (left) to compute the likelihood maps (right).

compliant nodes, including 8 anchors acting as reference nodes
and 9 devices to be cooperatively localized from D2D received
signal strength (RSS) measurements. The weighted-consensus
algorithm is here used to enable each device to acquire the
whole network topology, by successive refinements of local
position estimates and repeated D2D interactions. In the figure,
the average location accuracy is represented in terms of error
ellipse at 39% level confidence. The proposed consensus-based
method (i.e., orange ellipses) is shown to significantly improve
the conventional approach (i.e., light blue ellipses) and to
closely attain the CRB shown as a reference (i.e., black dashed
contour lines).

Device free localization (DFL) exploits RF signals ex-
changed between CNs to sense, detect and monitor alterations
of the propagation environment that are induced by people or
objects moving inside the WCN area. These methods allow the
device-free human body motion recognition where the target
does not carry any electronic device. These techniques rely
solely on the acquisition and processing of the same electro-
magnetic (EM) fields propagated for the WCN connectivity.
Body-induced alterations of the EM field, that covers the
monitored area, are measured and processed in real-time by the
CNs to extract information about the subject (e.g., presence,
position, or activity) or compute an image of the environment
that originated the EM perturbation. RF device-free techniques
have the advantage of not requiring any wearable devices,
which in most industrial environments are largely unfit, and of

being used also in presence of fumes, vapours and occluding
materials.

DFL can be applied in industrial workspaces to track and
protect operators, and to support safety, particularly in shared
human-machine workspace [21]. As shown in Fig. 5-(a), each
CN collects channel quality information (CQI) from the physi-
cal layer, such as the channel state information (CSI), or upper
layers, such as the RSS, and sends such information to the CA
nodes. For instance, focusing on RSS processing applications,
the received power level (expressed in dBm) that is measured
by a generic CN can be expressed as P(0) = Py — Ar(0) +w
where P, is the deterministic path-loss term that depends
only on the geometry and the propagation characteristics of
the empty scenarios (i.e., the environment without any target
inside), while the Gaussian random variable w includes the
lognormal terms due to both multipath and measurement
disturbances. The extra attenuation term Az (@) is due to
the body-induced effects with respect to the empty scenario.
According to the EM framework shown in [19], Ar(€) can
be modeled in terms of the monitored parameters 6 such as
the target size and position, the link geometry and the small
movements of the targets. This model can be also used to
derive closed-form fundamental limits to DFL accuracy [20],
thus providing an analytical method for DFL system design,
calibration and network 2-D pre-deployment assessment.

Cloud devices act as virtual sensors, as they communicate
with neighbors to fuse, process CQI data locally and perform



low-level decisions on the sensed parameters 6. For example,
occupancy detection is a low level sensing task where 6
represents the spatial density of parameters that is inferred
by processing RSS measured over different sub-channels and
links. CNs independently extract and evaluate features from
RSS data to highlight any anomalous alteration of the EM
field as possibly induced by body presence. These features
can be defined in terms of extra attenuation, mean, likelihood,
and spatial/frequency correlations of the received RF signals.
Detected features indicating potential anomalies in the RSS
field are then shared with neighbor CNs, while a consensus
algorithm (Sect. III) is used to reach a decision about body
presence. This information can be then used by the cloud
for high level sensing tasks such as device-free positioning
(where @ represents the targets’ locations), number of targets
(for 8 = Q) or activity recognition (with 6 denoting the type
of activity).

Fig. 5 shows the experimental layout for occupancy detec-
tion in an indoor environment with two targets. In Fig. 5-(b)
the RSS histograms highlight the body-induced perturbations
of the radio signal strength observed by a CN, compared with
the empty environment, where no target is inside the monitored
area. Targets are moving along the line-of-sight (LOS) path. As
shown in the figure, RSS values are sensitive to the presence
of the subject in the surroundings of the CN, thus making
detection of the occupied environment possible through RSS
data inspection. In Fig. 5-(c), the localization of the subject
is obtained by distributed fusion of RSS features computed
by different CNs. Localization can be implemented based on
the consensus approach. It shows the WCN used for tests
that consists of 14 cloud devices. Consensus is here based on
distributed fusion of local log-likelihood information obtained
by individual CNs. The location likelihood maps obtained by
the consensus procedure are plotted in Fig. 5-(c) on the right,
where the target location 8 = [z, 2]T is estimated according
to the maximum likelihood criterion [21].

V. CONCLUDING REMARKS

In this paper, we described a novel platform, referred to as
wireless cloud network (WCN), that can lease advanced com-
munication and sensing services to off-the-shelf IoT wireless
devices via a dense network of self-organizing wireless nodes.
The WCN paradigm is underpinned by distributed signal
processing and offers the potential for improved reliability,
connectivity and latency compared with current IoT solutions.
An experimental case study for Cloud-IoT based device-free
radio sensing considered for subject tracking. Future work will
consider the applicability of the proposed platform in emerging
high-frequency radio networks, ranging from the 60 GHz to
the sub-THz bands (100-150 GHz).
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