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Abstract 26 

Transcriptional regulation is critical to cellular processes of all organisms. Regulatory mechanisms 27 

often involve more than one transcription factor (TF) from different families, binding together and 28 

attaching to the DNA as a single complex. However, only a fraction of the regulatory partners of each 29 

TF is currently known. In this paper, we present the Transcriptional Interaction and Coregulation 30 

Analyzer (TICA), a novel methodology for predicting heterotypic physical interaction of TFs. TICA 31 

employs a data-driven approach to infer interaction phenomena from chromatin immunoprecipitation 32 

and sequencing (ChIP-seq) data. Its prediction rules are based on the distribution of minimal distance 33 

couples of paired binding sites belonging to different TFs which are located closest to each other in 34 

promoter regions. Notably, TICA uses only binding site information from input ChIP-seq 35 

experiments, bypassing the need to do motif calling on sequencing data. We present our method and 36 

test it on ENCODE ChIP-seq datasets, using three cell lines as reference including HepG2, GM12878, 37 

and K562. TICA positive predictions on ENCODE ChIP-seq data are strongly enriched when 38 

compared to protein complex (CORUM) and functional interaction (BioGRID) databases. We also 39 

compare TICA against both motif/ChIP-seq based methods for physical TF−TF interaction prediction 40 

and published literature. Based on our results, TICA offers significant specificity (average 0.902) 41 

while maintaining a good recall (average 0.284) with respect to CORUM, providing a novel 42 

technique for fast analysis of regulatory effect in cell lines. Furthermore, predictions by TICA are 43 

complementary to other methods for TF–TF interaction prediction (in particular, TACO and 44 

CENTDIST). Thus, combined application of these prediction tools results in much improved 45 

sensitivity in detecting TF–TF interactions compared to TICA alone (sensitivity of 0.526 when 46 

combining TICA with TACO and 0.585 when combining with CENTDIST) with little compromise in 47 

specificity (specificity 0.760 when combining with TACO and 0.643 with CENTDIST). TICA is 48 

publicly available at http://geco.deib.polimi.it/tica/.  49 
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Introduction 54 

Transcription factors (TFs) are proteins involved in the initiation and regulation of gene transcription. 55 

DNA-binding domains present on TFs make them able to bind to specific DNA sequences, such as 56 

promoter sequences near transcription start sites (TSSs). Some bound TFs help to form the 57 

transcription initiation complex, while others bind distal regulatory regions to either stimulate or 58 

repress transcription of the targeted genes [1]. Transcriptional regulation is the most common form of 59 

gene control and the action of TFs allows for unique expression of each gene in different cell types 60 

and/or during different stages of cell development [1]. 61 

Members of TF families often require some interactions with other members from the same or 62 

even a different family [2]. These interactions can be of various nature, from protein dimerization and 63 

concurrent DNA binding to recruitment or suppression of other TFs’ binding in the proximity of a 64 

DNA-binding domain or site [3,4]. Depending on the choice of partner, nature of the interaction, and 65 

cellular context, each interactor triggers a series of regulatory events, thus leading to a particular 66 

cellular fate [5]. The binding of TFs to their specific motifs in genomic regulatory regions has been 67 

the focus of extensive study; given that only a limited amount of TFs can be encoded in a genome, let 68 

alone be expressed at any given moment, combinatorial gene regulation strategies are required to 69 

generate diverse expression patterns [6]. Nevertheless, only some combinatorial regulatory effects 70 

are known, partially due to the intrinsic complexity of examining all combinations of a large number 71 

of TFs and partially due to the many confounding effects that influence TF DNA-binding and 72 

co-binding during in vivo confirmation experiments [7]. Thus computational methods provide a 73 

powerful supplement to wet-lab experiments in discovering co-regulation phenomena. 74 

In this paper, we present the Transcriptional Interaction and Coregulation Analyzer (TICA), a 75 

computational method for in silico discovery of combinatorial TF interaction, based on ChIP-seq data. 76 

The “interactions” considered in this study include direct binding between TFs, presence of TFs in the 77 

same complex without direct contact between TFs, and blockage of another TF from binding its 78 

cognate partners. All three cases mentioned above exhibit co-located peaks in the regulatory region(s) 79 

of the cognate target genes of the TFs. Therefore, we look for significant co-located peaks in 80 

ChIP-seq datasets for the TFs studied. It is of note that we do not attempt to distinguish between the 81 

three kinds of aforementioned interactions or to decipher the regulatory effect of such interactions on 82 

the expression of cognate target genes. 83 

We implemented TICA using the genometric query language (GMQL) [8], a high-level, 84 

interval-based query language for genomic datasets to support knowledge discovery across genomic 85 

repositories. GMQL extends the set of relational algebra operators with domain-specific ones, such as 86 

COVER, MAP, and JOIN, which were used to identify valid binding peaks and efficiently detect 87 



region hits in the neighbourhood of TF binding sites (TFBSs) and TSSs. Python was used for 88 

statistical testing (with modules pandas [9], NumPy [10], and scipy [11]). The TICA implementation 89 

is accessible as a web service at http://geco.deib.polimi.it/tica/.   90 

 91 

Methods 92 

Conceptual description  93 

TICA combines ChIP-seq peak datasets from a list of TFs in a single cell line and generates 94 

interaction hypotheses, that is to say TF pairs that exhibit significant colocation based on 95 

experimental data. 96 

Our model was built based on the assumption that interacting TFs must be enriched in 97 

co-locating peaks, and in the promoters of their cognate target genes, that is, if two binding sites from 98 

two different TFs are in the promoter region of the same TSS, then there is a chance that they regulate 99 

the expression of the splicing isoform defined by that TSS. Since physical interaction is directly 100 

linked with coregulation [12], we assume that the more such binding sites of two different TFs are 101 

found in the promoter region of the same TSS, the more likely these two TFs cooperate (or compete) 102 

for the regulation of the same gene. Therefore, TFs are predicted to be interacting if the distance 103 

distributions of the TF couples (defined as the number of base pairs intervening between the closest 104 

ends of the regions that form the couples) is significantly skewed towards to 0 when compared to 105 

those of random TF pairs. 106 

 107 

Data pre-processing 108 

Transcription factor binding sites 109 

TICA requires genomic distances between TFBSs to be computed at precision levels close to 110 

single-digit base pair lengths, so the preferred format for TICA input data is ENCODE narrowPeak 111 

(https://genome.ucsc.edu/FAQ/FAQformat.html\#format12). When multiple samples are given for a 112 

single TF in a cell line, we consider as a binding site any region that is found in at least one of the 113 

original samples after merging overlaps. 114 

Since TICA can in principle use any point-source binding information, we expect that some 115 

peaks in our input datasets could be artefacts or otherwise not significantly different from background 116 

noise. In addition, experimental evidence has suggested that TFs exhibit multiple binding sites 117 

clustered around target genes [13]. Based on the idea of binding clusters, we screen all binding events 118 

in the input dataset and filter out the binding events that do not reach a minimum amount of same 119 

binding events in a scanning area of 1 kb upstream and downstream of their boundary, which is set as 120 

3 in our experiments. 121 



 122 

Transcription start sites 123 

Transcriptomics studies [14] suggest that not all spliced versions of a given gene are actively 124 

transcribed in every single cell line. Thus, TICA uses a two-step filter to select only TSSs that are 125 

active in a given cell. First, since TSSs that have a high amount of TF binding in their promoter region 126 

are more likely to be transcribed [15], we consider a TSS to be actively transcribed when the number 127 

of surrounding TFBSs is above a certain threshold, which is a parameter of the model. For our 128 

experiments, we consider a nominal value of 50 TFBSs to be sufficient. Promoter regions are 129 

standardized as spanning from -N bases upstream to +M downstream of the TSSs (also parameters of 130 

the model; Table 1). Second, evidence for active transcription is given by the presence of certain 131 

histone modifications upon or in the area surrounding a TSS, we thus use ChIP-seq broadPeak 132 

sequencing data (for reasons discussed in [16]) of the histone marks. These include H3K36me3 133 

(found on the gene body of actively-transcribed genes [17], H3K4me1 (found in enhancer regions of 134 

actively-transcribed genes [18]), as well as H3K9ac and H3K4me3 (both found in promoter region of 135 

actively-transcribed genes [19]). A TSS is considered actively transcribed if at least one nucleotide 136 

base can be found in each of these regulatory regions with the relevant histone mark. GMQL queries 137 

for TFBS and TSS filtering are presented in File S1. 138 

 139 

Minimal distance couple 140 

We define two binding sites     and     of two different TFs, TF1 and TF2, to be a minimal distance 141 

couple (mindist couple) if: 142 

                
     

          

     

                
     

          

where    and    refer to the sets of all binding sites available for TF1 and TF2, respectively, and 143 

       is the chromosome-wise base-pair distance on the genome (the distance between TFBSs on 144 

different chromosomes is assumed to be infinite). We define d as the mindist couple distance, and we 145 

observe that it is well defined for each mindist couple (due to the existence of the minimum of a finite 146 

set of numbers). To account for the localized nature of genomic interactions, we impose an upper 147 

bound on d, which equals to the sum of one standardized promoter length plus one standardized exon 148 

length (Table 1). 149 

To compute the mindist couple distances, first we merge the lists of binding sites (filtered as 150 

described in Data pre-processing section) for the two TFs of interest, keeping track of the source. 151 

Then for each of the sorted binding sites (henceforth anchor), we check if two conditions are met: (1) 152 



at least one of the two adjacent binding sites belongs to a different (i.e., the other) TF; and (2) the 153 

distance from the anchor to at least one of the differently-labelled TFBS is below the aforementioned 154 

upper bound. Figure 1 exemplifies the process using synthetic data. 155 

 156 

Prediction algorithm 157 

TICA requires two conditions for TF−TF interaction prediction. First, if two TFs are physically 158 

interacting while binding to the genome, their binding sites should generally be found close to each 159 

other. If not, their binding sites should be spread widely from one another. Second, most of the TF 160 

couples in a cell line are expected to be non-interacting [5]. Therefore, after pairing the closest 161 

binding sites between two TFs, interactors should exhibit a distribution significantly skewed towards 162 

0 with respect to random, non-interacting TF couples (Figure 2 and Figure 3). 163 

Following these assumptions, we developed a two-fold test based on mindist couple distribution 164 

to predict interactions. Firstly, a deterministic rule excludes TF couples which do not present enough 165 

biological information in the datasets. Then, a combination of statistical tests that aggregate 166 

information from the distributions is evaluated to determine whether a couple is more skewed than 167 

the typical distribution in the same cell line. 168 

 169 

Biological information thresholding 170 

The more couples are found to co-locate in the promoter region of the same TSSs, the more likely 171 

they actually interact in order to regulate the same genes [20]. Hence, we hypothesize that TF pairs 172 

that do not co-locate in a large enough number of sites are unlikely to be interactors; also, if too few 173 

couples are found in promoters, the TFs are unlikely to be part of a regulatory module [21]. Therefore, 174 

we only consider as valid those predictions where candidates have a high enough amount of mindist 175 

couples, and for which the percentage of said couples that co-locate in the same promoter is also 176 

sufficiently high. Both these minimum levels are parameters of the algorithm and can be tuned by the 177 

users. 178 

 179 

Statistical tests 180 

Assuming two candidate TFs offer enough biological information, by pairing all their binding sites 181 

we determine their observed distance distribution. To infer whether a physical interaction occurs, we 182 

compute test statistics that describe the skewedness of the observed distribution towards zero. The 183 

chosen test statistics are median, median absolute deviation (MAD), average, and the long (right) tail 184 

size. Median, MAD, and average are well-known centrality measures, whereas the long tail size is to 185 

the best of our knowledge a novel contribution to the field (described below). 186 



 187 

Right distribution tails 188 

The concept of distribution right long tail can roughly be identified as the points of said distribution 189 

which are greater than or equal to a certain threshold value. The key observation is that if two TFs 190 

frequently co-locate close to each another, the number of mindist couple that has a large intracouple 191 

distance should be low. This is a complement of the reasoning of Jankowski and colleagues [22,23]: 192 

physically interacting TFs show mindist couple distance distributions which are tightly packed 193 

around low values, e.g., Myc-associated factor X (MAX) and Myc (Figure 3), whereas randomly 194 

picked TF couples give rise to distributions which are significantly more spread out, e.g., 195 

CCCTC-binding factor (CTCF) and Myc in Figure 2). In our work, we consider the 1000-bp mark as 196 

the starting point for the right tail, whereas the 500-bp mark is more suited to the cases with a lower 197 

number of couples available. An example of the shape and size of the right tail for distance 198 

distributions is shown in Figure 4. 199 

 200 

P values and null hypotheses 201 

Each statistic is used to test whether or not a candidate couple is significantly different from the 202 

respective null distribution. P value for these tests is defined as the fraction of points in the null 203 

distribution corresponding to the respective test statistics which are closer to 0 in magnitude. Thus, 204 

we reject a certain null hypothesis    at P value threshold    (say, 0.05) for test statistic   with 205 

respect to TF1 and TF2 if and only if                        where P is the empirical 206 

frequency measure and    is a generic point in the null distribution generated by  . 207 

Briefly, we build null distributions for each cell line by randomly sampling candidate couples 208 

from a list of background TFs, i.e., those with a TFBS count between the top 10% and bottom 10% 209 

marks after filtering (to remove the most extreme combinations) and extracting the mindist couples’ 210 

distance distribution (disregarding promoter colocation). We compute each of the four test statistics 211 

on such distribution: each of these is a point of the corresponding null distribution to be used in the 212 

final test. This process is repeated many times (usually at least 10,000), generating the required null 213 

distributions. 214 

TICA tests the aforementioned null hypothesis for a subset of the aforementioned test statistics 215 

defined by the user and calls a candidate pair of TFs as interacting if and only if a minimum number 216 

of such hypotheses (also defined by the user) is rejected in this way. When testing on 3 out of 4 of the 217 

aforementioned statistics (baseline scenario), we selected a P value threshold of 0.20 for all tests 218 

associated (Table 1) and detailed reasons for this lax choice are given in File S2. 219 

 220 



Validation 221 

To the best of our knowledge, there is no single gold standard for the evidence of physical interactions 222 

and/or non-interactions. In particular, it is not clear how one should define a pair of TFs as 223 

non-interacting, given that most databases report only positive cases and are potentially incomplete. 224 

Nonetheless, two TFs that interact and have binding sites close to each other are expected to be part of 225 

the same protein complex. Thus, a positive prediction that is confirmed by a protein complex 226 

database is more likely to be correct with respect to one that isn’t. 227 

To investigate this, we confront our predictions with CORUM [24], a catalogue of protein 228 

complexes in mammalian organisms derived experimentally; we use human core complexes database 229 

released on July 2nd, 2017 (http://mips.helmholtz-muenchen.de/corum/#download). We also 230 

compared our prediction with a curated list of human protein-protein interactions in BIOGRID [25] 231 

as secondary evidence. Details are reported in File S2. 232 

A pair of TFs can be considered as actually positive and supported by CORUM if its components 233 

are mentioned together in at least one CORUM complex. We assume that if a certain TF is not 234 

mentioned at all in the database then it is not an object of the involved study; therefore, all pairs 235 

containing that TF are discarded from the set of predictions that are searched for in the database. 236 

Finally, we define a pair of TF as negative if it is not positive and both its TFs cannot be discarded. We 237 

also restrict our interactions to complexes/interactions that contain TFs only. 238 

Given the actually positive and negative sets defined above, we compute the recall/sensitivity 239 

and specificity measures, which remain invariant when the positive/negative proportion changes in 240 

the test data. This is important since we do not have a clear idea of how such positive/negative 241 

proportion changes when the databases get updated. We use the geometric mean performance 242 

          to combine recall and specificity, which works better when the positive:negative split 243 

is unbalanced [26]. 244 

We also compute the enrichment ratio, defined as recall divided by (1− specificity). The higher 245 

the enrichment, the more accurate we can expect the predictions to be. There are, however, some 246 

caveats. First, CORUM is incomplete, so the observed recall may be lower than actual when a 247 

predicted TF−TF interaction is co-operative or competitive in nature (hence not reported). Second, 248 

CORUM also includes complexes that are not involved in gene transcription, so the observed 249 

specificity may be lower than actual when a predicted non-interacting TF−TF pair is found as a 250 

co-complex pair. At the same time, the observed recall may be higher than actual when some 251 

predicted interacting pairs are actually non-interacting. However, since we restrict CORUM proteins 252 

to TFs in this study, the latter situation is minimized. 253 

Finally, direct literature investigation allows us to be much more specific about the nature and 254 



contents of the evidence supporting a prediction. We perform manual investigation in published 255 

studies and literature that support our positive predictions by searching on public interfaces such as 256 

PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) for published studies pertaining to a selected subset 257 

of interactors. We mark as “confirmed” a positive prediction when there is evidence in the literature, 258 

regardless of cell lines, that the two TFs physically bind to each other, bind to the same complex, or 259 

there is a statement that they are co-factors or that they compete for the same co-factors or target 260 

genes. As the process is time-consuming, we limit our manual checks only to a small subset of 261 

predictions for each cell line (Table S1). 262 

 263 

Results  264 

TICA parameters choice maximizes recall without sacrificing specificity 265 

We performed several computational experiments using TICA on human ChIP-seq data from various 266 

immortalized cell lines to evaluate its performance. Three reference cell lines were tested, including 267 

HepG2 (liver carcinoma), K562 (chronic myelogenous leukaemia), and GM12878 (healthy blood 268 

cells). Data was downloaded from the ENCODE phase 2 (around 12% of samples) and 3 (around 269 

88% of samples) repositories, using human genome assembly version 19 (hg19) as reference 270 

alignment. Table 2 reports the dataset cardinality for each cell line. We fitted our parameters using 271 

datasets from HepG2, a cell line with abundance of ChIP-seq libraries available in ENCODE and of 272 

gene expression [27], suitable for building null distributions and tuning parameters. Table 1 reports 273 

threshold values chosen for each parameter, including the minimal number of minimal distance 274 

couples (see Methods) and minimal percentage of TSS co-location. These values have been chosen to 275 

maximize recall, since tuning has shown that this choice does not significantly impact specificity. 276 

We investigated whether the parameters fitted on HepG2 provide good results on other cell lines 277 

as well. To do this, we run TICA on two additional, well-studied cell lines (HEK293 and HeLa-S3) 278 

using the HepG2 parameters and ENCODE phase 3 datasets. A good performance was achieved on 279 

HeLa-S3 with respect to both databases (3% of possible interactors reported as a complex in CORUM 280 

and 8% as a PPI in BioGRID), on par with other cell lines (Table S2). For HEK293, we found out that 281 

only 13 TFs available in our ENCODE datasets are found in CORUM; on the other hand, while more 282 

than 150 ENCODE TFs are found in BioGRID, only 67 out of ca. 13,000 possible pairs are reported 283 

as PPIs (0.5%). We thus conclude that the reference datasets are not adequate enough to be used in 284 

validation for HEK293. 285 

 286 

 287 

Type and number of TICA predictions  288 



We compiled lists of candidate and background TFs for each cell line (Table S3). Candidate pairs are 289 

compiled using TFs for which narrowPeak data in the corresponding cell line is available in 290 

ENCODE at the time of writing. Due to the way binding sites are matched by TICA (see Methods), 291 

we cannot predict homotypic TF−TF interactions (i.e., interactions between TFs of the same kind). 292 

Thus, given N TFs for which experimental data are available and assuming the symmetry of 293 

interaction phenomena, we have up to N(N−1)/2 possible tests. We computed all the statistics listed in 294 

Methods, requiring at least three of the corresponding tests to be rejected for a prediction to be called 295 

positive. Detailed listings of candidates and predicted interactions obtained by running TICA on all 296 

cell lines using the default parameters are reported in Table S4.  297 

 298 

Enrichment with respect to CORUM is above 1 for all cell lines 299 

Using FANTOM TF list for humans [28], we found 535 TFs out of 3601 proteins in CORUM 300 

complexes and 5709 couples of TF−TF interactions. Observing the confusion matrices with respect to 301 

CORUM, we note that the number of true negatives (e.g., 1079 in HepG2 data) is much higher than 302 

that of false positives (293), and even one to two orders of magnitude higher than that of false 303 

negatives (40), indicating that TICA shows very high specificity across all test scenarios.  304 

In Table S2, we report recall, specificity, and enrichment analysis of TICA predictions with 305 

respect to CORUM and for all three cell lines and their intersections. We observe that enrichment 306 

ratio remains well above 1 for all test scenarios (minimum at 1.505, and almost always above 2.000). 307 

We expect many of our predicted positives that could not be verified using CORUM (i.e., the 308 

presumed false positives) to be real positives, which awaits biological validation. For instance, out of 309 

the 42 (109 – 67) sampled positive predictions for HepG2 that were analyzed for CORUM (i.e., both 310 

TFs in each of these 42 couples were found in CORUM), 35 (32% of the total) are not reported to be 311 

co-complexed in CORUM (Table S5). Notably, 21 of these 35 predicted interactions have literature 312 

support. Thus, 32% of the current presumed false positives with respect to CORUM might turn out to 313 

be true positives. For K562, a similar calculation suggests 45 (54.2% of the total) of the current 314 

presumed false positives might turn out to be true positives.  315 

 316 

TICA predictions are confirmed by manual literature investigation  317 

We performed manual literature investigation of selected predictions in tumour cell lines (HepG2 and 318 

K562) and classified the predictions according to whether they can be verified as positives or 319 

negatives with respect to literature, as described in Methods. As shown in Figure 5, about half of the 320 

predictions were confirmed in published literature. Notably, more than 50% of these prediction were 321 

also confirmed in one of the two databases (CORUM and BioGRID), suggesting a strong biological 322 



support for TICA predictions, irrespective of cell lines. A complete report of the literature 323 

investigation is given in Table S1. 324 

 325 

Cross-cell validation in the three cell lines shows TFs predictions in healthy to be validated 326 

We then investigated the amount of overlap between the sets of predicted positive interactions in 327 

different cell lines. To do so, we used the Jaccard Coefficient, defined as the ratio between the sizes of 328 

the intersection and of the union of the two sets. Moreover, we compared a single cell line with the 329 

combined predictions in the other two; when merging or intersecting predictions in different cells, we 330 

only consider those where both TFs are shared between the target cell lines. As shown in Table 3, 331 

GM12878 shares almost 50% of its positively-predicted interactions with HepG2 and the same with 332 

K562. This is consistent with the fact that GM12878 is derived from a healthy donor, and hence its 333 

TF−TF complexes should be basal in nature, unlike aberrant versions in tumour cell lines. 20% of 334 

positive TF–TF interaction predictions in GM12878 (on common TFs) are shared across all the three 335 

considered cell lines, further validating this hypothesis (Table S6). 336 

 337 

Comparison with other TF-TF interactions prediction methods  338 

To evaluate the improvement with respect to the state of art in TF–TF prediction, we compared TICA 339 

with three other methods for TF interaction prediction. These include TACO that predicts 340 

cell-specific TF dimers based on enrichment of motif complexes [23], CENTDIST that is a co-motif 341 

scanning algorithm ranking co-TF motifs based on their distribution around ChIP-seq peaks [29], and 342 

a computational method based on nonnegative matrix factorization (NMF) [30]. Results are tabulated 343 

in Table 4. 344 

Using TACO, Jankowski et al. reported the top 10 best ranking predicted motif dimers using 345 

ChIP-seq data on cell line K562 (ibidem, figure 4, page 6) [23]. We compiled the list of all TFs 346 

belonging to these dimers and intersected it with data available in ENCODE. This resulted into 28 347 

relevant TFs and 378 candidate TF pairs. Data for these pairs was extracted and fed to TICA. The 348 

resulting predictions were compared with T CO’s original dimers.  ote that if a TF pair is not 349 

reported in the aforementioned dimer list, we assume the corresponding TACO prediction to be 350 

negative. We observed that TICA has a 3-fold higher recall with respect to TACO on the 378 351 

candidate list, with only 13% less specificity, resulting in a 1.6-fold increase in geometric mean 352 

performance. 353 

We then selected 10 highly-conserved TFs from the list of ENCODE ChIP-Seq data available for 354 

HepG2 and submitted them to CENTDIST. Feeding the list of TFs and their CENTDIST-predicted 355 

partners to TICA resulted in 406 candidate predictions. It is of note that due to the assumptions and 356 



target heterotypic interactions, homotypic predictions in CENTDIST positive counts are not 357 

considered. As shown in Table 4, TICA has a much better enrichment ratio than CENTDIST with 358 

respect to CORUM/BioGRID, demonstrating better specificity but lower recall. However, 359 

comparison of recall rate is biased in favor of CENTDIST, since CENTDIST predictions were used to 360 

select the TFs for further consideration. It is also worth mentioning that CORUM complexes and 361 

CE T IST’s co-motifs are not cell-line specific; hence some verified CENTDIST-only predictions 362 

may be false positives in the cell lines tested. 363 

To compare our results with the NMF method [30], we extracted complexes on cell lines GM12878 364 

and K562 reported previously (Figure 3 in [31]) and compared with TICA predictions on shared TFs. 365 

Validation was done using GeneMANIA [31], a gene network builder based on functional annotations 366 

that is used by Giannoupoulou et al. [30]. On GM12878, TICA shows improved recall but reduced 367 

specificity, resulting in greater geometric mean performance, but lower enrichment ratio with respect 368 

to the databases (Table 4 again); on K562, performance between the two methods with respect to 369 

proposed complexes is similar  (Table 4). However, there is no report of the full list of predicted 370 

complexes [30]; so we expect that the comparison is skewed similarly to the CENTDIST comparison. 371 

 372 

Discussion 373 

In this study, we reported TICA, a new method for predicting interactions between TFs based on 374 

structural and positional information of their binding sites. By exploiting the expressive and 375 

distributed nature of the GMQL language together with simple statistics, TICA provides fast 376 

combinatorial analysis of interactions between TFs for detecting their potential physical interactions. 377 

Its main advantage lies in allowing users to do parallel pre-screening of possible novel interactions. 378 

TICA shows high specificity toward the commonly-used protein complexes (> 80%), and thus can be 379 

exploited to weed out unlikely interactions.  380 

The enrichment ratio of TICA's predictions with respect to CORUM ratio is above 1 in all 381 

scenarios, which indicates that it can effectively separate true TF−TF interactions and 382 

non-interactions. Of note is the fact that TICA reports fewer TF-TF interaction predictions on healthy 383 

cell line GM12878 as opposed to disease cell lines HepG2 and K562. Healthy generally have lower 384 

transcriptional activity than cancer cells [27], providing indirect evidence supporting the correctness 385 

of the prediction ratio. 386 

The right tail size feature in TICA is (to the best of our knowledge) a novel introduction to the 387 

field. To investigate the relative impact of this feature, we computed all measures under three 388 

alternative conditions: using all four features (baseline scenario), using only the 1000-bp right tail 389 

size, and using all other three measures (i.e., without the right tail size). As reported in Table S7, 390 



incorporating the right tail size test consistently leads to improved geometric mean performance, 391 

irrespective of databases and/or cell lines considered. Using right tail size (with the baseline 392 

parameters) alone beats all other three measures in terms of geometric mean performance by a large 393 

margin in two out of the three cell lines examined. However, we detected lower database enrichment 394 

ratio when using the right tail size test alone compared to the baseline scenario. This might be due to 395 

a bias in the comparison: using the baseline P value (0.2) in the right tail size test results in laxer 396 

conditions for positive calling with respect to the three way test, leading to better recall but lower 397 

class separation power. 398 

 399 

Novel interactions predicted are confirmed by manual investigation 400 

We extracted lists of novel interactions predicted using TICA on the three aforementioned cell lines: 401 

we define an interaction as a novel prediction if evidence for it can be found in CORUM but not in 402 

PubMed. The combined support by TICA structural predictions and protein complexes/ functional 403 

interaction databases is a strong indicator that these interactions are likely to be real. A full list is 404 

provided in Table S8; henceforth we highlight some interesting examples.  405 

SIN3A / TFAP4 in HepG2 is supported by the fact that efficient TFAP4 DNA binding is known to 406 

require another bHLH protein (http://www.genecards.org/cgi-bin/carddisp.pl?gene=TFAP4) and 407 

SIN3A contains paired amphipathic helix (PAH) domains, many of which contain basic regions close 408 

to the HLH motif (http://atlasgeneticsoncology.org/Educ/TFactorsEng.html). The interaction 409 

between CEBPB and NR2F2 in K562 is notable because there is evidence of a connection between 410 

these two TFs and the regulation of gonadotropin-releasing hormone (GnRH) [32]. Another 411 

interesting prediction is JUN / STAT1 in K562. Although we could not find up-to-date evidence of 412 

their interaction in vitro, JUN is known to interact with STAT3 [33] and STAT1 binds to its interacting 413 

partners at the same or very close to the binding sites of STAT3 [34], suggesting a potential 414 

interference scenario where tumour suppressor STAT1 could bind to JUN at ST T3’s binding sites 415 

and thus prevents the formation of JUN/STAT3 complexes in tumor cells. This speculation is 416 

supported by evidence of upregulation of c-JUN in mice with knocked-down STAT1 [35]. Finally, 417 

evidence has been found that cells transduced with a C-terminally truncated Runx1, which lacks 418 

important cofactor interacting sites, showed increased transcription of c-Myc [36], supporting the 419 

prediction of MYC / RUNX1 in K562.  420 

 421 

Taking the union of multiple predictors leads to increased performance. 422 

Based on the comparison discussed in Results, we speculate that taking the union of TICA and TACO 423 

or CENTDIST in a given cell might produce an overall improved performance. To validate this 424 



possibility, we computed quality measures on the predictions resulting from taking the union of 425 

positive predictions from TICA and TACO or CENTDIST (Table 4). We notice a moderate drop in 426 

specificity (expected due to taking the union  of two predictors) which is balanced by a sizeable 427 

increase in recall, leading to an overall increase in geometric mean performance and enrichment ratio, 428 

supporting our hypothesis. 429 

 430 

Conclusions 431 

TICA is a novel methodology that employs genomic positional information of TFBSs to predict 432 

physical interactions between TFs. The main advantages of TICA are three-fold. (1) TICA leverages 433 

novel, parallel computing techniques to efficiently scan ChIP-seq point-source (1bp-sized) binding 434 

site datasets and extract high-confidence binding sites and active TSSs. (2) TICA does not require 435 

motif information for TFBSs, bypassing incompleteness of selected motif databases and related 436 

accuracy issues. (3) TICA demonstrates very high level of specificity even at the laxest levels of 437 

parameters, allowing users to weed out non-interacting TF−TF pairs with high levels of confidence 438 

before proceeding to experimental validation. 439 

TICA has shown to be as reliable if not better than similar interaction prediction algorithms that 440 

rely on precise motif information, while allowing for significantly higher output rates (ranging 5000− 441 

22,000 predictions on available cell lines). Moreover, TICA appears complementary to alternative 442 

TF−TF interaction prediction approaches (viz., TACO and CENTDIST), and combining their 443 

predictions greatly improves sensitivity of the predictions at moderately-reduced specificity. 444 

Finally, selected TF−TF pairs could be competing for the same cognate genes and interaction 445 

partners (competitive interactors) instead of being part of the same complex (cooperative interactors) 446 

Both interactions are interesting in the domain of gene expression regulation, and we plan to address 447 

their classification in future studies.  448 

 449 

Authors’ contributions  450 

SP designed the TICA methodology and analyzed the data. PP contributed to the algorithm’s 451 

construction and performed the code optimization. SC participated in the study design and result 452 

validation. LW conceived the study, contributed to the design of TICA, and validated the results. SP 453 

drafted the manuscript. All authors reviewed and approved the final manuscript.  454 

 455 

Competing interests 456 

The authors have declared no competing interests. 457 

 458 



Acknowledgments 459 

This work was supported by the European Research Council (ERC) Advanced Grant GeCo 460 

(Data-Driven Genomic Computing; Grant No. 693174) awarded to SC. We would like to thank 461 

members of the GeCo project for helpful insights. LW was supported in part by a 462 

Kwan-Im-Thong-Hood-Cho-Temple chair professorship and in part by a tier-1 grant (Grant No. 463 

MOE T1 251RES1725) from the Ministry of Education, Singapore. 464 

 465 

References 466 

[1] Hughes TR. A handbook of transcription factors. Berlin: Springer Netherlands; 2011. 467 

[2] Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their 468 
evolutionary origin, and species distribution. In: Hughes TR, editor. A handbook of 469 
transcription factors. Berlin: Springer Netherlands; 2011,p.26−73. 470 

[3] Zhang Y, Dakic A, Chen R, Dai Y, Schlegel R, Liu X. Direct HPV E6/Myc interactions induce 471 
histone modifications, Pol II phosphorylation, and hTERT promoter activation. Oncotarget 472 
2017;8:96323−39. 473 

[4] Zhang Z, Hu X, Zhang Y, Miao Z, Xie C, Meng X, et al. Opposing control by transcription 474 
factors MYB61 and MYB3 increases freezing tolerance by relieving c-repeat binding factor 475 
suppression. Plant Physiol 2016;172:1306−23. 476 

[5] Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent formation of 477 
transcription factor pairs alters their binding specificity.  ature 2015;527:384−9. 478 

[6] Smale ST. Core promoters: active contributors to combinatorial gene regulation. Genes Dev  479 
2001;15:2503−8.  480 

[7] Odom, Duncan T. Identification of transcription factor-DNA interactions in vivo. Subcell 481 
Biochem 2011;52:175−91. 482 

[8] Masseroli M, Pinoli P, Venco F, Kaitoua A, Jalili V, Palluzzi F, et al. Genometric query 483 
language:  a novel approach to large-scale genomic data management. Bioinformatics 484 
2015;31:1881–8. 485 

[9] McKinney W. Data structures for statistical computing in python. Proc 9th Python Sci Conf 486 
2010;51−6. 487 

[10] Walt SVD, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical 488 
computation. Comput Sci Eng 2017;12:22−30. 489 

[11] Jones E, Oliphant E, Peterson P. SciPy: open source scientific tools for python. 2001. 490 

[12] Geisel N, Gerland U. Physical limits on cooperative protein-DNA binding and the kinetics of 491 
combinatorial transcription regulation. Biophys J 2011;101:1569−79. 492 

[13] Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, et al. Low affinity binding 493 
site clusters confer Hox specificity and regulatory robustness. Cell 2015;160:191−203. 494 

[14] Wiesner T, Lee W, Obenauf AC, Ran L, Murali R, Zhang QF, et al. Alternative transcription 495 
initiation leads to expression of a novel ALK isoform in cancer. Nature 2015;526:453–7. 496 

[15] Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, et al. Transcribed 497 
enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 498 
2015;347:1010−4. 499 



[16] Sloan CA, Chan ET, Davidson JM, Malladi VS, Strattan JS, Hitz BC, et al. ENCODE data at 500 
the ENCODE portal. Nucleic Acid Res 2016;44:D726–32. 501 

[17] Singer M, Kosti I, Pachter L, Mandel-Gutfreund Y. A diverse epigenetic landscape at human 502 
exons with implication for expression. Nucleic Acid Res 2015;43:3498–508. 503 

[18] Karnuta JM, Scacheri PC. Enhancers: bridging the gap between gene control and human 504 
disease. Hum Mol Genet 2018;27:R219−27. 505 

[19] Du Y, Liu Z, Cao X, Chen X, Chen Z, Zhang X, et al. Nucleosome eviction along with 506 
H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment. Cell 507 
Death Differ 2017;24:1121−31. 508 

[20] Yu, X, Lin J, Zack DJ, Qian J. Computational analysis of tissue-specific combinatorial gene 509 
regulation: predicting interaction between transcription factors in human tissues. Nucleic 510 
Acids Res 2006;34:4925−36. 511 

[21] Koudritsky M, Domany E. Positional distribution of human transcription factor binding sites. 512 
Nucleic Acids Res 2008;36:6795−805. 513 

[22] Jankowski A, Szczurek E, Jauch R, Tiuryn J, Prabhakar S. Comprehensive prediction in 78 514 
human cell lines reveals rigidity and compactness of transcription factor dimers. Genome 515 
Res 2013;23:1307−18. 516 

[23] Jankowski A, Prabhakar S, Tiuryn J. TACO: a general-purpose tool for predicting 517 
cell-type–specific transcription factor dimers. BMC Genomics 2014;15:208. 518 

[24] Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G. CORUM: the 519 
comprehensive resource of mammalian protein complexes—2009. Nucleic Acid Res 520 
2010;38:D497−501. 521 

[25] Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, et al. The 522 
BioGRID interaction database: 2017 update. Nucleic Acids Res 2017;45:D369−79. 523 

[26] Batuwita R, Palade V. Adjusted geometric-mean: a novel performance measure for 524 
imbalanced bioinformatics datasets learning. J Bioinform Comput Biol 2012;10:1250003.  525 

[27] Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N, et al. Increased global 526 
transcription activity as a mechanism of replication stress in cancer. Nat Commun 527 
2016;7:13087. 528 

[28] Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al. An atlas of 529 
combinatorial transcriptional regulation in mouse and man. Cell 2010;140:744–52. 530 

[29] Zhang Z, Chang CW, Goh WL, Sung WK, Cheung E. CENTDIST: discovery of 531 
co-associated factors by motif distribution. Nucleic Acids Res 2011;39:W391–9. 532 

[30] Giannopoulou E, Elemento O. Inferring chromatin-bound protein complexes from 533 
genome-wide binding assays. Genome Res 2013;23:1295−306. 534 

[31] Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The 535 
GeneMANIA prediction server: biological network integration for gene prioritization and 536 
predicting gene function. Nucleic Acid Res 2010;38:W214−20. 537 

[32] Gillespie JM, Roy D, Cui H, Belsham DD. Repression of gonadotropin-releasing hormone 538 
(GnRH) gene expression by melatonin may involve transcription factors COUP-TFI and 539 
C/EBP beta binding at the GnRH enhancer. Neuroendocrinology 2004;79:63–72. 540 

[33] Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum HE, Wagner EF, et al. The 541 
transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell 542 
Death Differ 2016;23:576−82 543 



[34] Friedrich K, Dolznig H, Han X, Moriggl R. Steering of carcinoma progression by the 544 
YIN/YANG interaction of STAT1/STAT. Biosci Trends 2017;11:1−8. 545 

[35] Levano S, Bodmer D. Loss of STAT1 protects hair cells from ototoxicity through modulation 546 
of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis 2015;6:e2019 547 

[36] Jacobs PT, Cao L, Samon JB, Kane CA, Hedblom EE, Bowcock A, et al. Runx transcription 548 
factors repress human and murine c-Myc expression in a DNA-binding and C-terminally 549 
dependent manner. PLoS One 2013;8:e69083. 550 

 551 

Figure legends 552 

Figure 1  Example of mindist couple extraction on synthetic TFBS data 553 

The closest binding site fitting the criteria becomes paired with the anchor and forms a mindist 554 

couple, and their distance is defined as the couple distance accordingly. If both the adjacent binding 555 

sites are valid and tied for the closest, two different mindist couples with identical distance values 556 

are generated. If none of the two is valid, no couple is generated and the algorithm then proceeds to 557 

the next binding site. Note that a single binding site does not have to belong to only one couple, but 558 

any couple formed by the exact same binding sites (in any order) is only counted once. A. The TF2 559 

binding sites (yellow) can only be associated to the first TF1 sample (blue), as the next one in the 560 

sorting has the same label. B. and C. TF1 is associated to both TF2 sites. These couples are found 561 

twice but only counted once. D. One of the two TF2 sites is out of admissible range for the TF1 site, 562 

so only one couple is found. E. and F. Both TF1 sites are equally distant to the anchor TF2 site, both 563 

generate a mindist couple. 564 

 565 

Figure 2  Histograms of distance distribution for TF couple CTCF and Myc in HepG2 566 

A. Distance distribution of the TF couple for CTCF and Myc, for which there is no evidence known 567 

to support the interaction behavior. B. Zoomed view of the distribution short and long tails. In both 568 

panels, blue columns denote the head of the distribution (couples with distance ranging 0 −500 bp), 569 

red columns denote the short right tail of the distribution (distance > 1000 bp), and orange columns 570 

denote the long right tail of the distribution (distance > 500 bp). Note that the 500-bp tail and 571 

1000-bp tail overlap for the distances > 1000 bp. CTCF: CCCTC-binding factor. 572 

 573 

Figure 3  Histograms of distance distribution for TF couple MAX and Myc in HepG2 574 

A. Distance distribution of the TF couple for MAX and Myc, which are well-known interacting TFs. 575 

B. Zoomed view of the distribution short and long tails. In both panels, blue columns denote the 576 

head of the distribution (couples with distance ranging 0−500 bp), red columns denote the short 577 

right tail of the distributions (distance > 1000 bp), and orange columns denote the long right tail of 578 

the distribution (distance > 500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the 579 



distances > 1000 bp. MAX, Myc-associated factor X. 580 

 581 

Figure 4  Mindist couple distance right tails using TFs ARID3A and ATF1 on cell line HepG2 582 

Blue columns denote the head of the distributions, red columns denote the short right tail of 583 

distribution (distance > 1000 bp) and orange columns denote the long right tail of the distribution 584 

(distance > 500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the distances > 1000 bp. 585 

 586 

Figure 5  Summary of positive predictions supported by the literature 587 

A. Literature analysis of the positive predictions for cell line HepG2. A positive prediction can be 588 

“Verified as POS” if interaction evidence is found in published literature (green); “Verified as  EG” 589 

if evidence is found that there is no interaction between members (red); or it can be “Unverified” if 590 

no evidence is found for either case (blue). B. Database cross-check of verified positive predictions 591 

for cell line HepG2. “Not in any database” (red) means that the predicted interactions are not found 592 

in either CORUM or BioGRID; blue indicates the number of positive predictions not found in 593 

BioGRID, whereas orange indicate the number of positive predictions not found in CORUM. Green 594 

slice indicates the number of predictions found in at least one of the two databases. C. Positive 595 

predictions literature analysis for cell line K562 (same color code as A). D. Database cross-check of 596 

verified positive predictions for cell line K562 (same color code as B). pred.: predictions. 597 
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Table 1  List of TICA parameters and related values  

Class Parameter Chosen value Category 

Genomic dimensions Gene body length 200 bp Nominal 

Promoter length 2000 bp Nominal 

Metric constraints Mindist couple max distance  2200 Computed 

Tests and thresholds Number of points in nulls  10,000 Tuned 

Test P value 0.2 Tuned 

Required number of rejected null 

hypotheses 

1 Nominal 

Minimum number of mindist couples 1 Tuned 

Minimum fraction of mindist couples 

colocating in a shared promoter  

0.01 Tuned 

Note: Parameters are classified as nominal, tuned or computed. Nominal values are chosen as 
standard or reference while tuned values are set according to data analysis methods. The computed 
mindist couple max distance is defined to be the sum of one standardized promoter length and one 
standardized gene body length. 

Table 1



Table 2  Dataset cardinalities for all cell lines used in TICA computational experiments  

Cell line No. of available TFs Total size (after filtering) No. of active TSSs 

HepG2 103 2.95 Gb 97,904 

GM12878 102 6.4 Gb 122,854 

K562 214 1.9 7Gb 59,556 

Note: Data are obtained from ENCODE phase 2 and 3 database, narrowPeak format. TSS, 
transcription start site. 

Table 2



Table 3  Cross-cell comparison of positive TICA predictions 

Cell line1  Cell line 2 
Positive predictions 

on shared TFs 

Jaccard 

coefficient 
Recall in 

cell line 1 

Recall in 

cell line 2 

HepG2 GM12878 46 0.146 0.177 0.426 

HepG2 K562 89 0. 163 0.256  0.309 

GM12878 K562 110 0. 186 0.460 0.237 

HepG2 GM12878 ∪ K562 121 0.191 0.111 0.210 

GM12878 HepG2 ∪ K562 142 0.186 0.181 0.276 

K562 HepG2 ∪ GM12878 185 0.192 0.079 0.645 

All cell lines (intersection) 14 0.186 0.089 / 0.206 / 0.130 

Note: For the intersection of all three cell lines, the recall value is given for all cell lines, in order (viz., 
recall with respect to HepG2, GM12878, and K562). For comparisons involving all three cell lines, a 
TF in a prediction must be shared between all cell lines in order for it to be accepted as part of the 
combination / intersection. 
 

Table 3



Table 4  Comparison between TICA, TACO, CENTDIST, and NMF predictions 

Predictor Cell line Recall Specificity Geometric mean 
performance Enrichment 

TICA  K562 0.421 0.807 0.583 2.181 

TACO K562 0.140 0.938 0.362 2.258 

TICA ∪ TACO K562 0.526 0.760 0.632 2.192 

TICA HepG2 0.278 0.857 0.488 1.944 

CENTDIST HepG2 0.390 0.720 0.530 1.393 

TICA ∪ CENTDIST HepG2 0.585 0.643 0.613 1.639 

TICA GM12878 0.424 0.611 0.509 NA* 

NMF GM12878 0.238 0.911 0.468 NA* 

TICA K562# 0.202 0.792 0.400 NA* 

NMF K562 0.214 0.835 0.423 NA* 

Note: Union of predictors is defined as predicting a positive interaction if and only if it is predicted 
positive by at least one of TICA and TACO/CENTIDIST (respectively). An interaction is predicted 
negative if and only if it is predicted negative by both methods. Comparison was performed only on 
the cell lines indicated (K562 for TACO, HepG2 for CENTDIST, GM12878, and K562 for NMF 
[23]). * indicates that there is no software available for database-wide comparison; # indicates that 
only a subset of TFs predicted by NMF to be in complexes are used for comparison. NMF, 
nonnegative matrix factorization method by Giannopoulou and colleagues [30]. 
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