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Abstract 

In this study we investigate the performance of noble metal co-catalysts on anodic 

TiO2 nanotubes for the photocatalytic degradation of a model pollutant. We create the 

noble metal decoration (nanoparticles of Au, Pt and mixed AuPt) intrinsically and 

extrinsically. Intrinsic decoration is achieved using a noble metal containing titanium 

alloy for anodic tube growth. Extrinsic decoration is carried out by physical vapor 

deposition (PVD) of the same noble elements on pure titania tubes. We find AuPt 

intrinsic decoration to provide a significant enhancement for the photocatalytic 

decomposition of the model pollutant acid orange 7 (AO7) due to a synergistic effect 

in the formed AuPt alloy. The AuPt alloy provides a photocatalytic activity that is 

higher than comparable extrinsic decoration or single element (Pt or Au) intrinsic 

decoration. 

Keywords: TiO2 nanotubes; AuPt alloy; photocatalysis; dye degradation; 

nanoparticles
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1. Introduction 

TiO2 nanotubes (NTs) obtained by electrochemical anodization of a metallic 

Ti substrate are widely studied in photocatalytic applications due to their unique 

combination of geometry and functionality.[1] These nanotube arrays are directly 

grown vertically aligned from a metallic titanium substrate, with an easy control of 

the geometry during the synthesis via the electrochemical parameters. The large 

surface area, as well as their unique electronic and ionic properties,[1,2] make 

nanotubular structures suitable for many photoelectrochemical or photocatalytic 

applications, including pollutant degradation or water purification.[3–8] 

In photocatalytic applications the TiO2 photoexcited charge carriers react with the 

environment without an external applied voltage (in contrast to photoelectrochemical 

reactions). Under aerated conditions, conduction band electrons react with O2 to form 

O2• radicals or superoxides, commonly referred to as reactive oxygen species (ROS) 

while valence band holes may be captured by water to form OH• radicals or may 

directly oxidize organic species to CO2 and H2O. This effect is used for the 

photocatalytic degradation of unwanted pollutants in air or waste water. Overall, ROS 

species produced at the valence band and at the conduction band may contribute to 

efficient destruction of organic pollutants. In order to increase the efficiency by 

accelerating charge transfer reaction rates of the electron transfer to the environment, 

co-catalysts are frequently used.[8–12] Most commonly used co-catalysts on TiO2 are 

noble metals (NM) such as Au, Pt or Pd,[13–16] which can lead to a beneficial 

Schottky junction and thus not only to a significantly improved charge transfer but 

also may provide catalytic features for the reactions of electrons with electron 

acceptors (mainly O2).[10,17] Other beneficial effects of some co-catalysts may be 

that visible light induced surface plasmon resonance effects can occur, enhancing the 
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light absorption region and therefore the catalytic activity in the visible light 

range.[8,18–20] The overall co-catalyst activity depends not only on the size and 

distribution of the noble metal particles but also significantly on their relative 

placement on the nanotubes.[8,21] 

Usually, for NM@TiO2 systems that are based on nanotubular structures, the 

deposition of metal particles is carried out by chemical or photoassisted chemical 

deposition[15,22,23] or by conventional sputtering.[23,24] Another common NM 

deposition approach is by sputtering-dewetting. Here first noble metal films are PVD-

deposited on the top of highly organized TiO2 nanotubes, and then these films are 

dewetted thermally, i.e. the film splits up into particles.[25–27] When sputtering 

noble metals on the tubular structures, the loading can be controlled, and the cluster 

size and distribution of the NM particles can be influenced by the dewetting 

conditions of the noble metal film – this allows to maximize the efficiency as co-

catalyst for photocatalytic reactions.[25–28] 

Another most straightforward and unique approach to dope or decorate anodic 

TiO2 nanotubular structures, is the growth of the nanotube layers from Ti-alloy 

substrates. For Ti-alloys with non-noble metals, such as Nb, Ru or Ta, during the 

anodic reaction these alloyed metals are oxidized and can lead to mixed-oxide or 

doped nanotubes – i.e., these metal ions can be incorporated in the oxide lattice.[2] In 

contrast, for noble metals at low amounts e.g. < 1% for Au or Pt in the Ti alloy,[29–

31] the NM is not oxidized but instead a self-decoration of the TiO2 nanotubes with 

metallic nanoparticles (NP) takes place.[29,30] 

In the present work, we use both techniques: i) thin noble metal dewetted films, 

and ii) intrinsic noble decoration, and compare their effectiveness as photocatalyst. 

For intrinsic decoration we use anodic oxidation of titanium alloys that contain either 
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the individual noble metals such Au (Ti0.2at%Au), Pt (Ti0.2at%Pt), or both (i.e. 

Ti0.1at%Au0.1at%Pt), to produce uniformly and intrinsically NP decorated NTs, that 

can then act as co-catalyst for the degradation of a model pollutant acid orange 7 

(AO7). For these tubes we find that the activity is significantly enhanced for the 

intrinsic decoration with bimetallic AuPt compared with the single element tubes or 

any extrinsically decorated NTs. 

2. Materials and Methods 

For the nanotube preparation, Ti sheets (99.6 purity) of 0.2 mm thickness and 

alloys containing 0.2 at.% Au, 0.2 at.% Pt, 0.1 at.% Au + 0.1 at.% Pt were used 

(purchased from HMW Hauner GmbH & Co). Prior to anodization, samples were 

mechanically ground with #320, 800, 1200 and 2000 grit size SiC paper. 

Subsequently, samples were degreased by sonication in acetone and ethanol, followed 

by rinsing with deionized water and drying with nitrogen gas. Anodization was 

performed in ethylene glycol containing 0.15 M NH4F at 45 V for 30 min in a two-

electrode system. After anodization, samples were immersed in ethanol for 20 min, 

rinsed with deionized water, and dried with nitrogen.  For the extrinsically decorated 

samples, loading of the noble metal was done using plasma sputter deposition (Leica, 

EM SCD500). All nanotubular samples (intrinsically and extrinsically decorated) 

were annealed/dewetted at 450°C for 1 hour using a Rapid Thermal Annealer with a 

heating and cooling rate of 30°C/min. 

Morphological characterization was performed in a field-emission scanning 

electron microscope (FE-SEM, Hitachi S-4800) and in a transmission electron 

microscope (30 TEM/STEM Philips) coupled with EDS. The composition and 

chemical state were characterized by X-ray photoelectron spectroscopy (XPS, PHI 

5600, US), and peaks were shifted to C1s at 284.8 eV. For the crystallographic 
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properties of the materials, X-ray diffraction (XRD, X’pert Philips MPD) equipped 

with a Panalytical X’celerator detector, with graphite monochromized Cu Kα radiation 

(λ = 1.54056 Å) was used. 

Elemental depth profile analysis was performed using a Horiba Jobin-Yvon 5000 

RF glow discharge optical emission spectroscopy (GDOES) instrument in an argon 

atmosphere of 650 Pa by applying an RF of 3000 MHz and a power of 27 W. Light 

emissions of characteristic wavelengths were monitored throughout the analysis with 

a sampling time of 0.1 s to obtain depth profiles. The signals were detected from a 

circular area of approximately 4 mm diameter.  

The reflectance spectra of all the samples were measured by using a Lambda 950 

UV-VIS spectrometer with a 150 nm integrated sphere (Perkin Elmer) in the 

wavelength range of 800-200 nm (as background, a white-flat surface of BaSO4 was 

employed). 

For the photodegradation tests, the samples were immersed in a solution 2.5×10
-5

 

M of acid orange 7 (AO7) and were irradiated with a UV LED 365 nm (50 mW/cm
2
) 

for 2 h. Every 20 min the absorbance of the solution was measured in a UV/VIS 

Perkin Elmer Lambda XLS spectrophotometer. 

 

3. Results and discussion 

Figure 1a shows a schematic representation of the NTs used in this work: a) using 

intrinsic decoration by direct electrochemical anodization of the NM-alloy (NM: Au, 

Pt or both Au and Pt), and b) by using an extrinsic decoration of the tubes by 

sputtering, where particles are mainly present at the tube top. All nanotube layers 

were grown in a fluoride containing ethylene glycol electrolyte at 45 V for 30 min 

(more details are given in the experimental part) using the alloys or pure titanium as 
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substrates. Subsequently, the layers were converted to anatase by annealing in air at 

450 °C for 1 h. For the intrinsically decorated layers, metallic particles are observed 

not only at the top of the morphology (Figure 1b), but are also uniformly distributed 

along the NTs length, independently of the alloy used, as shown for NTs on TiAuPt in 

Figure 1d and for NTs on TiAu and TiPt alloys in Figures S1 and S2, respectively. 

All NT array layers exhibit similar thickness (i.e., a tube length of ≈ 4 µm. Due to 

the low NM content in the alloys, the tube growth and morphology is not affected by 

the noble metal. For all intrinsic noble metals the uniform distribution of 

nanoparticles can be ascribed to a mechanism that has been reported for Au-Al 

alloys,[32] that is, the matrix metal is selectively oxidized out of the alloy leaving 

behind noble metal that accumulates to particles underneath at the metal/oxide 

interface. NM clusters then are decorated onto the growing oxide while the oxide tube 

grows.[33–35] 

For extrinsically decorated TiO2 nanotubes, Figure 1c shows an example of Au 

decorated TiO2 NTs after sputtering, coating and dewetting; clearly, the Au layer is 

visible after dewetting as Au particles at the top of the nanotubes (see experimental 

part for details). Using this approach the Au nanoparticles have a maximum 

penetration depth of around 300 nm into the nanotubes (as observed in the cross-

section SEM images, see also Figure S3).  

Figure 2a shows the XRD patterns of TiO2 NTs before (i) and after annealing in air 

at 450°C for 1 hour (ii), after annealing only an anatase pattern is observed (besides 

the titanium peaks from the substrate). Before annealing, all as-formed nanotubes 

grown on either Ti or the noble metal alloys are amorphous. From the XRD patterns 

of TiO2 nanotubes grown on alloys and annealed under similar conditions (i.e. (iii) - 

TiAu, and (iv) - TiPt alloy), not only anatase but also some traces of rutile can be 
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identified. However, no Au or Pt peaks are detected, due to the low concentration of 

the noble metals in both alloys (i.e. lower than the detection limit of XRD). 

From XPS, the Au4f and Pt4f peaks can easily be evaluated in the intrinsically 

decorated NTs, namely NTs grown on the TiAu, TiPt and TiAuPt alloys (Figure 2b 

and c, using as reference a TiO2 NTs layer grown on Ti), as well as for the 

extrinsically doped tubes (Figure S4). The composition evaluated from the XPS data 

of the intrinsically decorated nanotubes, i.e. grown on Ti0.2at%Au, Ti0.2at%Pt alloys 

or on TiAuPt (0.1at%Au and 0.1at%Pt) – see Table S1, is in good correlation with 

their nominal noble metal amount. Considering the Au and Pt peak positions for the 

intrinsic and extrinsic decorations, it is worth mentioning that the Au + Pt extrinsic 

decoration (sputtered 1 nm Au and 1 nm Pt, followed by dewetting) on the NTs shows 

no shift in the Au4f and Pt4f peak positions, namely the Au4f7/2 is at ≈83.53 eV and 

the Pt4f7/2 is ≈70.61 eV (as shown in Figure S4). 

In contrast, for intrinsically decorated NTs, we observe a shift in the Au4f peak 

and Pt4f peak that together with TEM-EDS investigations confirm the alloy nature of 

the nanoparticles (Figure 2d-f and Table S2).[31,36] 

In order to characterize the distribution of the NM nanoparticles we carried out 

XPS and GDOES measurements of such layers. The XPS sputter depth profile of the 

first 300 nm of the intrinsically decorated nanotubes with AuPt particles (Figure S8a), 

i.e. nanotubes grown on the TiAuPt alloy, confirms that similar amounts of Au and Pt 

of ≈0.1 at% are present. To obtain the distribution over the entire length, glow 

discharge optical emission spectroscopy (GDOES) sputter depth profiles were 

acquired resulting in similar amounts of Au and Pt content throughout the length of 

the NTs on TiAuPt alloy (using as reference NTs on pure Ti) – as shown in Figure 

S8b, for more details see supporting information. To compare the overall loading of 
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the tubes with noble metals, namely to compare the PVD coated and intrinsic layers, 

we performed EDX analysis as given in Table S3. The data shows that in all cases a 

composition close to the nominal values was obtained – but more importantly that the 

overall amount of noble metal after PVD is comparable to the intrinsic amount. 

These tubes were then used to investigate the photocatalytic degradation of the 

model pollutant (AO7). Figure 3a shows the kinetics of the photodegradation of AO7 

for intrinsically decorated TiO2 NTs and Figure 3b shows the kinetics for extrinsically 

decorated NTs. From these data, the kinetic constants can be evaluated (compiled in 

Figure 3c). Overall, for Au decoration a beneficial effect on the degradation 

efficiency of AO7 can be observed. However, it is also evident that a decrease in 

photoefficiency is observed when only Pt is present, both for intrinsic and extrinsic 

decoration of the tubes. This can be ascribed to an inactivation of the co-catalyst by 

forming Pt oxides as a result of annealing in air, as indicated by the XPS data in 

Figure S4-S7.[24,37] Clearly, a signature of PtO is obtained for these tubes (Figure 

S4 and S6). If one compares nanotubes with extrinsic decoration and with intrinsic 

decoration, clearly much higher efficiencies are obtained for the intrinsic decoration. 

This may be ascribed to the combination of particle size and distribution as well as 

their embedding in the nanotube wall. However, most remarkable is that the 

synergetic effect in the photodegradation of AO7 observed for the alloyed 

nanoparticles intrinsically decorated on the NTs (NTs grown on TiAuPt alloy) is not 

present for the Au+Pt nanoparticles decorated extrinsically onto the NTs, i.e. if this 

enhancement would only be related to the simultaneous presence of both noble metals 

(Au and Pt), then it follows that the Au+Pt nanoparticles decorated onto tubes would 

also have a higher efficiency than the elements alone. However, as this is not the case 

we ascribe the enhanced photocatalytic activity for AO7 of the intrinsically decorated 
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tubes to the formation of mixed AuPt alloy nanoparticles that takes place only for the 

intrinsic decoration (i.e. obtained as a result of anodizing TiAuPt alloys). 

In order to explore if additional plasmonic effects contribute to the photocatalytic 

efficiency, we performed reflectivity measurements for the tubes that were decorated 

with nanoparticles (Figure S9). For the nanotubes decorated intrinsically with Pt or 

AuPt, no plasmon resonance was observed. However, in presence of Au nanoparticles 

extrinsically decorated onto the nanotubes, a plasmonic effect is apparent (i.e., a clear 

plasmonic band is only visible for 2 nm nominal thickness Au decoration or partially 

for nanotubes grown on the TiAu alloy with 0.2at% Au). From these data it can be 

concluded that the enhancement in the photodegradation reactions of the intrinsically 

decorated nanotubes with the mixed AuPt nanoparticles is not due to plasmonic 

features. 

Previous works on electrocatalysis have reported an enhanced rate for the oxygen 

reduction reaction (ORR) on AuPt compared with the same loading of Pt or Au alone. 

A key effect was attributed to the ability of Au atoms to provide Au-OHads 

intermediates that are formed from O2 and water that then can easily react with 

neighboring Pt atoms to form a range of ROS-products.  In other words, on an AuPt 

alloy the electron transfer to the electrolyte oxygen becomes accelerated which also 

diminishes electron recombination with valence band holes – thus enabling a higher 

life-time of holes and therefore a higher reaction possibility of the holes with the 

organic compound to oxidatively destroy it. As a result, bimetallic AuPt co-catalysts 

on titania NTs show a much higher photocatalytic activity for AO7 degradation 

compared to a plain combination of Au or Pt nanoparticles. This is evident by the 

comparison with Au and Pt nanoparticles that were fabricated on the NTs by 

sputtering and dewetting. In this case no bimetallic alloyed particles are formed and 
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the photocatalytic dye degradation tests do not show a synergetic effect of Au and Pt 

features. 

4. Conclusions 

In conclusion, we demonstrate that bimetallic AuPt decorated TiO2 nanotubes can 

efficiently be produced by anodization of Ti-Au-Pt alloys, while only individual Au + 

Pt nanoparticle decoration is achieved by an element sputtering/dewetting approach. 

We show that the intrinsically formed bimetallic AuPt co-catalytic particles show a 

synergetic beneficial co-catalytic effect in the photocatalytic destruction of pollutants 

when using TiO2 nanotubes. This synergy is absent if Au and Pt are present as 

individual decorations on the tubes. We ascribe the overall effect to a facilitated ORR 

on the bimetallic AuPt co-catalyst; this leads to an enhanced ROS production at the 

conduction band and at the valence band which in turn provide an enhanced pollutant 

degradation rate. 
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Figure 1. a) Schematic representation of TiO2 NTs intrinsically decorated by direct 

anodization of alloy (left) and extrinsically decorated by sputtering and dewetting a 

noble metal on the top of the NTs anodically growth on Ti foil (right); b) Top view of 

the NTs on TiAuPt alloy; c) Top view of the Ti NTs with 1 nm of Au dewetted and d) 

Cross section of the NTs on TiAuPt alloy with magnifications in the top, middle and 

bottom part. 
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Figure 2. a) XRD patterns of (i) as-formed TiO2 NTs; (ii) annealed at 450°C TiO2 

NTs; (iii) NTs on TiAu and (iv) NTs on TiPt alloys. b) and c) high resolution XPS 

spectra of Au4f and Pt4f for NTs on Ti (Ref) and on TiPt (Pt alloy), TiAu (Au alloy) 

and TiAuPt (AuPt alloy) alloys. d) TEM image of AuPt nanoparticle on the top of 

NTs grown on TiAuPt alloy. TEM-EDS elemental mapping of e) Au and f) Pt in the 

selected region of d). 
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Figure 3. Photodegradation curves of AO7 with: a) intrinsically and b) extrinsically 

decorated TiO2 NTs; (c) kinetic constants of AO7 degradation with intrinsically and 

extrinsically decorated TiO2 NTs. 
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 AuPt alloy particles can intrinsically be decorated on anodicTiO2 nanotubes  

 Anodization is carried out using AuPtTi alloys 

 Alternatively extrinsic noble metal decoration is done by sputter-dewetting 

 The photocatalytic activity for intrinsically decorated tubes is significantly higher than 

for extrinsic decoration 
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