
  

  

Abstract — The cerebellum plays a crucial role in motor 
learning and it acts as a predictive controller. A biological 
inspired cerebellar model with distributed plasticity has been 
embedded into a real-time controller of a neurorobot. A 
cerebellum-driven task has been designed: the vestibular-
ocular reflex (VOR), which produces eye movements  
stabilizing images on the retina during head movement. The 
cerebellar controller drives eye compensation, by providing 
joint torque based on network output activity.  

We compared a cerebellar controller with only the cortical 
plasticity and a cerebellar controller with also the plasticity 
mechanisms at deep nuclei, in VOR multiple sessions. The 
results were interpreted using a two state multi-rate model 
integrating two learning processes with different sensitivities to 
error and different retention strengths. 

The cerebellar model showed effective learning along task 
repetitions, allowing a fine timing and gain adaptation based on 
the head stimulus. The multisite plasticity proved superior to 
single-site plasticity in generating human-like VOR acquisition, 
extinction and consolidation especially in complex tasks like 
gain-up and multi-session VOR.  
 

I. INTRODUCTION 

The cerebellum plays a crucial role in motor learning, 
from associative conditioning of discrete behavioral 
responses to on-line adaptation in voluntary and reflex 
movement control [1, 2]. 

In order to learn and store information about body-
environment dynamics in internal models of movement so as 
to act as a predictive controller, the cerebellum is thought to 
employ long-term synaptic plasticity (Long-term Depression 
(LTD) and Long-Term Potentiation (LTP)). The plasticity at 
the Parallel Fibers/Purkinje Cells (PF-PC) synapses has 
classically been assumed to subserve this function [3]  

In order to assess the role of cerebellar plasticity in 
learning, several cerebellar model were developed and tested 
in the context of various sensorimotor tasks. Simplified 
analog models in which learning occurred as long-term 
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synaptic plasticity at the PF-PC synapses only, under 
instructive control by climbing fibers, were tested in 
computational simulations of classical condition and other 
tasks [4, 5, 6]. In order to stress the learning robustness into 
noisy environments, the system was embodied, i.e. the 
cerebellar model drove in real-time the motor learning of 
real robots performing collision avoidance and eye 
movement tasks [7, 8].  

However, the model needs to be continuously enriched 
with cutting-edge neurophysiological knowledge. In 
particular, the PF-PC plasticity alone cannot account for the 
broad dynamic ranges and multiple time scales of cerebellar 
adaptation. Hence, very recently [9], beside the PF-PC 
cortical plastic, a cerebellum model was endowed with 
biological plausible plastic mechanisms at two synaptic sites 
of the deep cerebellar nuclei: Mossy Fibers/DCN (MF-
DCN) and PC-DCN [10, 11]. The model was tested in a 
computational simulation of a tracking task; the cerebellar 
model learnt to improve the motor commands computed by 
a crude inverse dynamic model, successfully dealing with a 
varying payload at the arm end-effector.  

In this work, as for the single-plasticity models, we aim at 
stressing the enriched cerebellar model into an embodied 
system, challenging it in cerebellar-mediated paradigms 
taken from human functional neurophysiology. Thus, we 
have embedded the cerebellum model into a real robotic 
platform performing a vestibular-ocular reflex (VOR) 
protocol with multiple consecutive sessions of acquisition 
and extinction. The VOR produces eye movements which 
stabilize images on the retina during head movement. The 
VOR tuning is ascribed mainly to the cerebellar flocculus. as 
indicated by lesion, pharmacological inactivation and 
genetic disruption studies [12].  

In particular, by comparing the distributed plasticity 
model with a simpler one implementing only the PF-PC 
learning rule, we show the roles of the multiple plasticity 
mechanisms in real robotic sensorimotor tasks. We have 
interpreted the data by applying a two-state model with two 
learning rates [13]. Indeed, the hypothesis is that the 
cerebellum learns on two different time-scales, so that the 
cerebellar cortex operates as a fast learning module while 
deeper structures, like the Deep Cerebellar Nuclei, operate 
as a slow learning module and are responsible for a skill 
consolidation into persistent memory [13, 14, 15]. 

 
 

II. METHODS 
 

A. Cerebellum model [9] 
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As input, the GRanular layer (GR) circuit is capable of 
generating not-recurrent time-evolving states, repeated in 
each trial.  

The Purkinje cells, receiving error from Climbing Fibers 
and state information from GR, works as a state-error 
correlator (1). The DCN cells integrate the excitatory 
activity coming from MFs and the inhibitory activity coming 
from PCs (2). The weights of these two connections evolve 
as the learning rules in (3) and (4). The model is 
schematized in Fig 1.A. 

 

∆WPFj-PCi
(t)= �

LTPMAX
(εi+1)α −  LTDMAX  ·  εi(t)  if PFj is active at t

0                                    otherwise
      (1)    

                                                                          

Where ∆WPFj--PCi  is the weight change between the jth PF 
and the ith PC associated with the agonist muscle (i=1) or 
with the antagonist muscle (i=2), εi(t) is the current activity 
coming from the associated ith CF (which represents the 
normalized gaze error), LTPMAX  (=0.01)  and 
LTDMAX  (=0.04)   are the maximum LTP/LTD values and α 
is the LTP decaying factor (set at 1000 in order to allow a 
fast decrease of LTP and prevent early plasticity saturation). 
 
DCNi(t)=WMF-DCNi − Pur𝑖𝑖(t) ·WPCi-DCNi, i=1,2                (2)  

 

Where DCNi represents the firing rate of the DCN cell 
associated with the agonist (i=1) or antagonist (i=2) muscles, 
Puri(t) is the current activity coming from the associated 
PCs, WMF-DCNi  is the synaptic strength of the MF-DCN 
connection at the ith muscle, and WPCi-DCNi  is the synaptic 
strength of the PC-DCN connections at the ith muscle. 

 

∆WMF-DCNi(t)=
LTPMAX

(Puri(t)+1)∝ − LTDMAX ·Puri(t),  i=1,2   (3) 

 
Where ∆WMF-DCNi represents the weight change between 

the active MF and the target DCN associated with the ith 
muscle, LTPMAX  (=3∙10-6)  and LTDMAX (=5∙10-8)   are the 
maximum LTP/LTD values and α is the LTP decaying factor 
(=1000). 
 

∆WPCi-DCNi(t)=LTPMAX·Puri(t)α· �1 −
1

(DCNi(t)+1)∝�+ 

                        −LTDMAX ·�1 − Puri(t)�,  i=1,2                    (4) 
 

Where ∆WPCi-DCNi is the synaptic weight adjustment at the 
PC-DCN connection reaching the DCN cell associated with 
the ith muscle, Puri(t) is the current activity coming from the 
associated PCs, DCNi(t) is the current DCN firing rate, 
LTPMAX (=2∙10-6) and LTDMAX (=2∙10-6)  are the maximum 
LTP/LTD values and α is the LTP decaying factor (=1000). 
 
 
B. Protocol 

VOR produces eye motion compensating for head 
rotations in order to stabilize the visual target (Fig 1.B). The 
VOR learning is based on the temporal association of the 
two stimuli, head turn and motion of retinal image, i.e. the 
system learns that one stimulus will be followed by another 
stimulus and a consequent predictive compensatory response 
is gradually produced and accurately tuned [16, 17]. In real 
robot, the VOR protocol was reproduced by using the 2nd 
joint as the head, on which a desired joint displacement was 
imposed, and the 3rd joint as the eye motion driven only by 
the cerebellar module. The set-up was arranged so that the 
two involved joints (2nd and 3rd) moved on a horizontal plane 
(Fig 1.C). The visual error, thanks to the tracking system, 
was computed as the disalignment angle between the actual 

 
 

Figure 1.  Cerebellar model and set-up 
(A): cerebellar model with VOR-specific input and output signals 
(modified from [11]). The yellow arrows represent the plasticity sites. 
(B): human-like VOR task. (C): the VOR is reproduced into the 
robotic platform by using the second joint of the robotic arm as the 
head (imposed rotation) and the third joint (determining the 
orientation of the second link, on which the green laser is placed) as 
the eye. The disalignment between the gaze direction (i.e. second link 
orientation) and the environmental target to be looked at) is computed 
through geometric equations from the optical tracker recording. The 
image slip is fed into the Climbing Fibers pathway, head vestibular 
stimulus represents the system time-state, not-recurrently decoded by 
the GR layer; the DCN modulate the eye compensation motion. 



  

gaze, i.e. the orientation of the second link of the robot, and 
the desired one aligned with the fixed object to be looked at. 
It was sent on the IOs corresponding to the actual error sign. 
The DCN activity was proportionally translated into a net 
torque on the 3rd joint, positive or negative depending on the 
error sign at each time sample [18].  

The first tested protocol consisted of a sequence of 100 
repetitions where a head turn of 28° in 2 seconds was 
imposed , followed by 100 repetitions with a head turn 
increased to 43°, thus requiring a VOR gain-up, and finally 
back to head turn of 28° in 2 seconds for 100 trials. The 
Root Mean Square (RMS) of gaze error was computed. 

Then, a second test was carried out, made up of two VOR 
sessions (session1 and session2) . Each VOR session 
consisted of 200 trials: 100 of acquisition (head rotation of 
28° in 2 seconds) directly followed by 130 trials of 
extinction (head turn null), then a phase of 100 trials of re-
acquisition (head rotation of 28° in 2 seconds) starts. Finally, 
a second phase of 70 trials of extinction takes place. Both 
tests were performed embedding the cerebellum model with 
one plasticity (PF-PC) and embedding the model with the 
three plasticity sites. 
 
C. Set-up 

The main robot was a Phantom Premium 1.0 
(SensAbleTM), with 3 DoFs, each equipped with digital 
encoders and controllable by torque commands. It was 
integrated with an optical tracking system, a VICRA-Polaris 
(NDITM), acquiring marker-tools at 20 Hz. The controller, 
ad-hoc developed in C++, exploited the low-level access 
provided by the Haptic Device Application Programming 
Interface, sending the torque signals to the joints by servo 
loops (HDCALLBACKS) executed in high-priority threads 
at 1 kHz. For the tracking device, the low-level libraries 
from Image-Guided Surgery Toolkit (http://www.igstk.org/), 
based on Request-Observer-patterns, were used to acquire 
the visual information. The cerebellar adaptive module was 
embedded into the C++ controller. 
 
D. The two-state model of learning 

The VOR kinetics were modeled by the two state multi-
rate model [19]. The net adaptation (y) was made up of the 
sum of two processes, fast and slow. The fast process (xf) 
responded strongly to large errors but had poor retention, 
while the slow process (xs) responded weakly to small errors 
but retained information well. 
 

x(n+∆n) = A·x(n)+B·e(n) 

y(n)=C·x(n)+D ·e(n) 

 

A= �
As 0
0 Af

� ;  𝑩𝑩 = �
Bs
Bf
�;  𝑪𝑪 = [1   1];  𝑫𝑫 = 0 

Where the x vector was composed by the two state vectors 
 

(xs , xf):  x(n)= �
xs(n)
xf(n)� 

 
Bf and Bs were the learning rates (Bf > Bs), Af and As were 

the retention factors (Af < As), n was the trial and ∆n was the 
discrete trial increment. The motor output, i.e. the net 
adaptation, corresponds to the RMS of the cerebellar output 
within each trial. The error e(n) was the difference between 
the net adaptation y(n) and the “optimal” state f(n) dependent 
from the task phase (e(n) =y(n)- f(n)). For the acquisition 
phases, f(n) was quantified as the maximum cerebellar 
output reached by the network (in the plateau when the error 
was stabilized at minimum value). For the extinction phases, 
f(n) was quantified as zero, since no eye compensation 
driven by cerebellum was required. The free parameters As, 
Af, Bs and Bf were initialized to values reported for force-
field experiments: 
 

A= �0.99 0
0 0.75� ; B= �0.02

0.3 � 
 

The model was applied to all VOR sessions of the second 
test. The two processes were initialized to zero level, 
corresponding to a naїve behavior. By an iterative 
prediction-error minimization method, the free parameters of 
the model were adjusted to optimize the fit with input-output 
coming from experimental data, i.e. the cerebellar output 
provided to neurorobot as output and its difference with 
respect to the “ideal” torque level required depending on the 
head stimulus (acquisition level or extinction level). The 
goodness-of-fit was evaluated by computing the coefficient 
of determination (R-square) value from actual data and 
model data in terms of eye compensation torque (cerebellum 
output).  
 
 

III. RESULTS 
 

In these experiments we have investigated the role of 
multiple cerebellar plasticity sites, by testing learning during 
a gain-up VOR protocol and during a two-session VOR 
protocol, performed by a real robot. All tested acquisition 
phases showed that at beginning of learning, the RMS gaze 
error was up to 12°. During learning, the cerebellar 
controller tuned eye motion in order to continuously 
compensate head rotation. At the end of training the gaze 
RMS error was reduced to less than 1°. This behavior was 
comparable with neurophysiological studies focused on 
visual-vestibular training where an image slip around 0.2° 
was achieved [20].  

The incomplete zeroing of the gaze error is due to the not 
repeatability in time and space across trials for uncertainty in 
the motion and sensory recordings of the real low friction 
robot used in the tests. 

The gain-up VOR protocol highlighted the crucial role of 
multiple DCN plastic sites for  implementing an adaptable 
gain control facing varying operative ranges (Fig. 2). The 
gain-up VOR adaptation could be performed only by the 3-



  

plasticity cerebellar controller. The 1-plasticity controller 
could not tune the gain, so that no adaptation was possible 
when PCs were already silent before the gain-up test.  

 
 
The multiple-session VOR protocol shed light on the 

memory factor. The two cerebellar controllers behaved 
similarly during a single  VOR session (session 1), with 
comparable acquisition rates, steady late acquisition, and 
similar extinction rate. However, when the system was re-
tested for the same task (session2), the 3-plasticity controller 
demonstrated a faster re-acquisition rate. Somehow, it 
exploited previous learned skill (Fig. 3.A): indeed, the 
extinction phase of session1 did not reset all the plastic 
changes achieved in the acquisition training. The synaptic 
changes are depicted in Fig 3.B. 

In order to model the 3-plasticity module behavior, the 
multi-rate model of learning has been applied on the 
multiple-session protocol (Fig. 3.C). The optimization 
procedure of the parameters yielded: 
 

A= �1 0
0 0.9� ; B= �0.03

0.07� 
 

Eye motion generation in the first trials was driven mainly 
by the fast process; then, as acquisition progressed, learning 
was taken over by the slow process. Finally, extinction was 
largely driven by the fast process. The slow process was not 
completely reset during extinction; thus, the starting point of 
the re-acquisition was slightly different from the initial state. 
This could explain a slightly faster early re-acquisition than 
early acquisition. Comparing the whole model output (net 
adaptation) and the experimental output, along both 
sessions, the model fitting was robust and highly significant 
(R2=0.955). When fixing one state, thus using a single-state 
model, the fitting goodness decreased to R2=0.8. It suggests 
that the two state multi-rate model could be generalized to 
VOR. 

 
 

IV. DISCUSSION 
 

In this robotic tests we have shown that a cerebellar 
controller with multisite plasticity can effectively drive a 
complex VOR paradigm in a real robot. The multisite 
plasticity proved superior to single-site plasticity  in 
generating human-like VOR acquisition, extinction and 

 

 
 

Figure 3.  Multiple-session VOR 
(A): the RMS gaze error along trials is reported; in grey when the eye 
motion was controlled by the 1-plasticity cerebellar model, in black by 
the 3-plasticity cerebellar model. The dashed vertical lines delimitate 
the acquisition and extinction phases of each session; session1 and 
session2 are separated by a vertical dotted line. (B): the synaptic 
weights at the three plasticity sites, for each trial. In grey: PF-PC (dark 
grey: on the “negative” PC; light grey: on the “positive” PC). In 
orange: MF-DCN (solid line: on the “negative” DCN; dashed line: on 
the “positive” DCN). In light blue: PC-DCN (solid line: on the 
“negative” DCN; dashed line: on the “positive” DCN). (C): the curves 
represent the cerebellar output, in terms of eye actuation signal: the 
model outputs (purple: slow state; green: fast state; red: net adaptation) 
and the real test output in black (RMS eye torque control signal within 
each trial) achieved with the 3-plasticity cerebellar controller, along the 

   

 
 

Figure 2.  VOR gain-up 
The RMS gaze error along trials is reported; in grey when the eye 
motion was controlled by the 1-plasticity cerebellar model, in black by 
the 3-plasticity cerebellar model. The vertical dashed lines separate the 
three sequences with different head rotation: 28°, 43° (gain-up 
condition) and 28° in 2 seconds. 

 



  

consolidation especially in complex tasks like gain-up and 
multi-session VOR.  

These tests have allowed a functional role to be assigned 
to the multiple cerebellar plasticity sites. The 3-plasticity 
controller was able to behave both as timing and gain 
controller, demonstrating high accuracy in a closed-loop 
sensorimotor task. The cerebellar model extension with the 
DCN plasticity sites enhanced robot adaptation allowing to 
deal with changing stimuli and environmental conditions. 

 
 
 
The underlying hypothesis is that the cerebellum learns on 

two different time-scales, so that the cerebellar cortex 
operates as a fast learning module while deeper structures, 
like the cerebellar nuclei, operate as a slow learning module 
[15]. The coexistence of two processes proceeding at 
different rates resembled EBCC learning in rabbits [15] and 
force-field learning in humans [19].  

The existence of a fast rapidly reversible learning process 
emerged during the early acquisition and extinction phases. 
The existence of a slower process emerged in late 
acquisition. Moreover, the slow process could be associated 
to the consolidation mechanism evolving slowly along 
sessions.  

In the model, the fast process was driven by large errors, 
while the slow process was driven by small errors. It is 
consistent with previous studies showing that in the 
vestibular-ocular reflex, inhibition of Purkinje cell activity 
affected only the adaptation mechanisms engaged by large 
errors [21].  

Fast and slow processes were updated simultaneously 
from motor learning errors, supporting a parallel architecture 
of motor memory [13]. The direct association of the 
plasticity sites and the learning states was not 
straightforward: for example, DCN plastic changes were 
slower, but their effect was not exhaustively modeled by the 
slow state (a similar reasoning could be applied to cortical 
plasticity and the fast state). A deeper analyses, maybe using 
more states, could be needed to better model cerebellar 
learning. 

 
V. CONCLUSIONS 

 
In this work, for the first time, we have embedded a 

realistic cerebellar controller equipped with distributed 
plasticity into a neurorobot operating in real-time, 
challenging the system in the cerebellum-mediated closed-
loop tasks The aim is to assess the role of multiple cerebellar 
plasticity in sensorimotor learning, thus fostering our 
understanding of human learning processes, linking low-
level neural circuit mechanisms with high-level motor 
control and adaptation.  As a further advance, the platform 
could  be updated with new neurophysiological properties 
and the distributed plasticity model could be translated into a 
more realistic spike-timing computational scheme [22]. 
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