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Abstract

This paper describes the development of a dynamic two-phase Volume-of-Fluid (VOF) solver to study the physics
of the primary jet breakup and flow transients induced by the nozzle geometry during the injector opening event
in high-pressure injection using the OpenFOAM technology. The dynamic solver has been extended to support
second-order discretization in time for moving mesh problems with automatic topology changes. The solver
extension includes curvature effect in the interface tracking. Phase change at the interface was modeled using
the Schnerr and Sauer model. While the solver is compatible with any kind of turbulence model, turbulence
effect have been treated using Large-Eddy Simulations (LES). Detailed numerical studies are presented to
demonstrate the conservation preservation property and accuracy of the solver. Code validation was performed
by comparing numerical results with experiments on a Continental XL 3.0 6-hole prototype injector. Finally,
limits of applicability of the cavitation model with a two-phase solver for the simulation of internal nozzle flows
of injectors are discussed.

Key words: spray VOF, internal nozzle flow, primary atomization, OpenFOAM, GDI injection simulation,
direct injection, dynamic mesh, needle motion, deforming domain, topological changes.

1. Introduction

Study of the fluid-dynamic behavior of single-orifice nozzles and fuel injectors with complex geometries is gaining
significance among researchers [1, 2, 3, 4, 2, 5, 6], largely because of their widespread use in the automotive
and aerospace industry. Atomization of the liquid spray ejected from the nozzle is mainly determined by
the high-pressure, high-Reynolds upstream internal flow which, in turn, is strongly affected by cavitation.
Cavitation is classified in two distinct forms, namely, “geometry-induced” and “vortex” (or string) cavitation.
The geometry-induced cavitation is initiated at sharp corners where the pressure falls below the saturation
value [7, 8] because of a sudden flow detachment and the accompanying recirculation region. String (or vortex)
cavitation, conversely, develops by the evolution of the vorticity which allows the formation of geometry-scale
vortices, and is significantly influenced by the walls and interaction with other vortices. Cavitation plays a
pivotal role in achieving finer atomization of the spray, required for improving the fuel economy and reducing
emissions [5]; however, it may also lead to a significant reduction in the nozzle volumetric efficiency and in
the stability of the spray. Cavitation can also lead to potential damage and wear of the hardware components,
leading to reduced reliability and increased cost. Furthermore, the role of cavitation is bound to gain importance
as the fuel pressure and the geometric complexity of injectors increase, due to the tight coupling between
cavitation and wall-generated turbulence. After a surface is initially affected by cavitation, it tends to erode
at an accelerated pace: the cavitation pits increase the turbulence of the flow and creates crevices that act
as nucleation sites for new cavitation bubbles, thus leading to an avalanche effect. The study of cavitation
has spurred a renewed interest towards the understanding of the complicated flow physics inside injectors.
Cavitation in Diesel injectors has been studied in detail by many researchers [1, 2, 3, 4]. In [2], enlarged
replicas of valve-covered orifice injectors, incorporating tapered converging holes, were studied. A similar work
on a large-scale nozzle has been presented in [3], where the compressibility of the liquid/vapor in the multiple
phase mixture was accounted by a homogeneous equilibrium model. A detailed characterization of such large-
scale vortical structures in a real geometry is a daunting task, because these vortical structures are highly
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transient and strongly affected by the nozzle geometry, operating conditions of the injector and the needle
motion [9, 10, 11, 12]. The simulation of the transient behavior of high-pressure injectors is therefore of great
importance in the prediction of real spray characteristics, since the transient nature of the flow is greatly affected
by the needle movement.

The aim of the present work is to implement a consistent framework for the simulation of internal nozzle
flows in high pressure injectors, to study the influence of the sac-filling process and flow acceleration on the
internal turbulent structures and the subsequent primary atomization. The multi-phase methodology used is
the Volume-Of-Fluid (VOF) [13, 14] approach, in which the Navier-Stokes equations are solved for a fictitious
fluid and weighted averaging of the fluid properties (mixture density and viscosity) is applied to form a closed
system of equations. The volume fraction of the i-th component αi is solved in an additional transport equation
to account for the presence of a fluid interface. A summary of the theory behind the authors’ development of a
two-phase VOF solver for two isothermal immiscible fluids supporting cavitation is introduced in Sec. 3. The
solver is an extension of the interPhaseChangeFoam solver-based family, originally available in all the releases of
OpenFOAM based on the Foundation version [15, 16]. Modifications to the calculation of the interface curvature
in solvers supporting cavitation are described in Sec. 5 and validation against numerical test cases is provided.
In Sec. 6, the formulation of the advective term in the transport equation of the void fraction is derived, with
the goal of ensuring proper conservation of the fluid-dynamic quantities in moving mesh problems; enforcement
of the Geometry Conservation Law (GCL) to support second-order discretization in time and mesh topology
changes are presented. The resulting dynamic solver and setup has been included in a set of dynamic libraries
compatible with the latest versions of OpenFOAM released by the Foundation [15]. The novel methodology
has been applied to the simulation of the needle opening event in a high-pressure injector, that was originally
designed and produced by Continental Automotive SAS within the FUI-MAGIE Framework [17, 18] for the
most recent Gasoline Direct Injection (GDI) engines. In Sec. 9, the implementation of advanced domain
decomposition algorithms to ensure good scaling performance with mesh topology changes on large numbers
of computing nodes is presented; finally, results from the simulations carried out on the HPC facilities made
available by the Argonne National Laboratory are reported and discussed in Sec. 10. Comments about modeling
condensation by the Schnerr-Sauer model in combination with a two-phase solver for the simulation of internal
nozzle flows is discussed in Sec. 11.

2. The Continental XL 3.0 6-hole prototype injector

The geometry used for validation is the Continental XL 3.0 6-hole prototype injector (Fig. 1a), an injector
especially developed to enable a detailed comparison of experiments with simulations. Fig. 8a shows a 1/6
section of the injector domain (the needle, the sac volume and the metering hole) and its immediate near-field,
represented by a large inlet volume. The needle is located at the top: with the needle closed, a dead space is
present in the sac volume, preventing the needle from touching the sensitive area of the hole inlet. Holes are
oriented at 45 degrees with respect to the vertical direction and are straight (there is no nominal convergence
factor); the hole length-to-diameter ratio is 1.1, the length (calculated along the axis) is equal to 0.221 mm
and the hole diameter is equal to 200 mm. For a fully open needle position, the static mass flow rate has been
measured on a real injector at different fuel pressures. An external cylindrical domain is placed below the hole
to capture the primary atomization. Measured experimental needle lift data (Fig. 1-b) were obtained from
Argonne National Laboratory (private communication).

3. Two-phase VOF solver supporting cavitation

The basic idea of the VOF approach is that the two-phase system can be represented as a mixture of the
phases in which the phase-fraction distribution includes a sharp yet resolved transition between the phases.
The phase-fraction equations for VOF with incompressible two-phase flow are:

∂αi
∂t

+∇ · αi(U−Ub) = Sα (1)

where Ub is the velocity of the moving grid, Sα is a source term proportional to the mass involved in the phase
change (either cavitation or condensation). Each phase i in Eq. (1) is defined by its local volume fraction αi
and has a partial volume Vi, that is a fraction of the volume V of the cell element (Vi ⊆ V ); αi ∈ [0;1] and∑

i

αi = 1 (2)
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(a) (b)

Fig. 1: (a) The Continental XL 3.0 6-hole prototype injector (b) measured experimental needle lift data (Dr. J. Wang, Argonne
National Laboratory).

Eq. (1) is written in a general low-Mach formulation and considers a mixture of (two) fluids with different
densities:

ρ =
∑
i

ρi (3)

and a mixture viscosity of:

µ =
∑
i

αiµi (4)

The source term Sα in the RHS of Eq. (1) includes the phase-change at the gas-liquid interface through
the cavitation model and couples the effects of the cavitation with the evolution of the interface directly; the
formulation used for the term Sα follows the theory of [19], as discussed in Sec. 4. In general, standard
finite-volume discretization schemes are applied to all terms in the VOF system of equations except for the
convection term (and possibly the transient term) in the phase-fraction equation. Numerical diffusion, which is
very high in the transport term in second-order spatial discretization, “smears” the sharp liquid-gas inter-phase.
In OpenFOAM, the strategy commonly followed in multiphase VOF solvers to model the transport of the void
fraction consists of an add convection-based term which compresses the interface and preserves boundedness;
this is similar to what is done for the treatment of the scalar-flux second-moment closure used for the “counter-
gradient” transport in some complex combustion models describing the dynamic of turbulent flames [20]. In
the VOF treatment, a common closure used for counter-gradient transport has the form:

∇ · [Uc α (1− α)] (5)

where Uc is the compression velocity at the interface between the phases, which is a consequence of the different
densities and the term α(1 − α) ensures boundedness. In the VOF solver used, the compression velocity is
modeled as:

Uc = cα|U|n̂ (6)

Cα is the compression coefficient, that is typically of the order of 1 [21]. The compression rate should be set such
that it ensures interface sharpness. Higher values of the compression rate might introduce numerical instability
or slow convergence; in order to ensure that the compression term does not bias the solution, it should only
introduce flow of α normal to the interface in the direction of the volume average interface normal n̂:

n̂ =
∇α
‖∇α‖

(7)

In the convention adopted, n̂ always points towards fluid 2, as shown in Fig. 2. In practical cases, 1 6 Cα 6 4
represents a good compromise to maintain a sharp interface in complex flows including, for instance, the breakup
of the liquid-jet.

Finally, the transport equation for the void fraction

∂α

∂t
+∇ · [α(U−Ub)] +∇ · [Uc α (1− α)] = Sα (8)
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Fig. 2: Schematic of the interface between two fluids. fσ is the surface tension force; n̂ and κ are namely the interface normal
and the curvature; according to the sign convention adopted, fσ is always oriented towards the concave interface, n̂ always points
towards fluid 2.

is solved together with the governing equations for an isothermal fluid. The momentum equation reads:

∂ (ρU)

∂t
+∇ · [ρU (U−Ub)] = −∇p+∇ · τ + ρg + fσ + SU (9)

where SU are the momentum source terms, ρg is the gravitational force term, fσ is the surface tension calculated
at the fluid interface and it is always oriented towards the concave interface (Fig. 2):

fσ = σ κ n̂ (10)

In (10), σ is the surface tension, n̂ is the unit normal vector of the liquid interface and κ is the interface
curvature, which is defined as:

κ ≡ ∇ · n̂ (11)

Eq. (9) is combined with the divergence-free constraint for incompressible flows to construct a Poisson equation
for pressure, where the source-terms representing the mass transfer between the phases are included.

4. Cavitation model

The formulation of the term Sα of Eq. (1) is based on the model by Schnerr-Sauer [19]; in this work, the
condensation term has been deactivated, as it will be discussed in Sec. 11; hence, Sα is defined as:

Sα = −Cv
ρvρl
ρ

3αlαv
RB

√
2

3

(
|p− psat|

ρl

)
(12)

where ρ is the mixture density, ρl and ρv are the liquid and vapor density respectively, αv is the vapor volume
fraction and pv is the saturation vapor pressure, Cv is a tuning parameter for the model (set to 1 in this work);
Rb denotes the radius of the bubbles, that is related to the density of nuclei nb and the diameter of nuclei dnuc
by:

αv = (1− αl + αnuc) =
4
3πR

3
bnb

1 + 4
3πR

3
bnb

(13)

with:

αnuc =
πd3nucnb

6

1 +
πd3nucnb

6

(14)

The cavitation model by Schnerr-Sauer is based on the Rayleigh-Plesset equation and therefore belongs to the
class of bubble based continuum models: in this family of models, usually applied to incompressible phases, the
cavitation is assumed to be blubby and the density of nuclei is required as an input parameter.
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5. Modification at the interface treatment in the solver

At the time of writing of this paper, the standard implementation of the two-phase VOF solver with cavitation
(interPhaseChangeFoam) available in any official distribution of OpenFOAM does not calculate the fluid inter-
face curvature κ at each time-step, after the transport of the void fraction with cavitation is solved. Following
the approach of other existing multiphase solvers available in the code [21], the Continuum Surface Force (CSF)
model of Brackbill [22] is used to model the unit normal vector to the liquid interface:

n̂ =
∇α
‖∇α‖

' n̂12 =
∇α1|f
‖∇α1‖f

(15)

and the curvature of the interface between the two phases

κ = −
∑
f

n12 · Sf (16)

is calculated and updated at each time-step. The subscript f (for face) in Eqs. (15) and (16) is used for
quantities that are interpolated on cell faces, starting from their value at the cell center.

Quantitative validation of the described code extensions was done by comparing the results of our simulations
with other CFD simulations on a benchmark problem proposed by [23]. We compare our results with three
incompressible interfacial flow codes used in [23]: TP2D (Transport Phenomena in 2D) [24, 25], FreeLIFE
(Free-Surface Library of Finite Element) [26] and MooNMD (Mathematics and Object-oriented Numerics in
MagDeburg) [27]. TP2D and FreeLIFE are based on the level-set approach applied on a static grid, while in
MooNMD the movement of the interface is done in a Lagrangian manner, after which the inner mesh points are
fitted to the new interface by an elastic mesh update by solving a linear elasticity problem. A similar comparison
with the VOF OpenFOAM solver interFoam has been published in [28]; since the integration of the surface
tracking on the modified cavitating solver interPhaseChangeFoam has never been tested, a new validation was
deemed to be necessary. In the tests reported in this section, the phase-change-related term Sα in Eq. (1) has
been deactivated. The test case studied consists of a two-dimensional rising bubble problem, where a gas bubble
immersed in a chamber filled with liquid moves until it breaks up. The case setup and boundary conditions are
described in Fig. 3. Liquid and gas phase fractions in the fluid are identified by α1 and α2 respectively. Forces
acting on the bubble are surface tension and gravity. The domain has an aspect ratio height/width=0.5; no-slip
boundary conditions on the velocity are set at the upper and lower boundaries, while free-slip is applied at the
right and left bounds; gravity g is oriented towards the negative y direction. At time t = 0 s, the bubble center
is located at (x, y) = (0.5, 0.5) and the bubble radius is rb,0 = 0.25 m. For a fair comparison with [23], the grid
used is Cartesian with a resolution 320x640 cells.

ρ1 [kg m−3] 1000

ρ2 [kg m−3] 1

µ1 [kg (ms)−1] 10

µ2 [kg (ms)−1] 0.1

g [m s−2] -0.98

σ [N m−1] 1.96

Re [–] 35

Eo [–] 125

Fig. 3: Domain, boundary conditions and fluids physical properties of the “bubble rising” test case
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The physical properties of the fluid have been reported in the table in Fig. 3: Eo is the Eötvös number, defined
as the ratio between the buoyancy force and surface tension:

Eo =
ρ1U

2
gL

σ
(17)

while Re is the Reynolds number of the liquid;

Re =
ρ1UgL

µ1
(18)

where L = 2rb,0 the characteristic length scale and Ug =
√

2grb,0 is the characteristic rising velocity. At
high values of Eo, the observed bubble shape will be in between the shape observed for the skirted and the
dimpled ellipsoidal-cap regimes, implying that breakup is likely to occur [29]. Problems with high values of Eo
challenging for interface tracking algorithms and can yields different numerical solutions in the evolution and
formation of newly created droplets.

(a) t = 0.6 s (b) t = 1.2 s

(c) t = 1.8 s (d) t = 2.2 s

Fig. 4: Bubble evolution from 0.6 to 2.2 s: — interPhaseChangeFoam (standard); — interPhaseChangeFoam (modified); - - TP2D
code [23].

Similar to [23], bubble evolution has been tracked in the simulations for a total time of 3 time units, the latter
being T = L/Ug and a fixed time step with ∆t = 1/640 s has been used for time marching. Second-order
backward differencing schemes have been used for time derivatives, while second-order central schemes were
used for the discretization of spatial operators. Initial conditions are defined by setting α2 = 0 to indentify the
gas region (bubble) and α1 = 1 for the surrounding liquid. Since this leads to a stair-cased shaped interface,
a preliminary simulation with g = 0 has been performed to relax the interface and to obtain a smooth bubble
shape. Results of a precursor simulation at t = 3 s were used as initial values for the rising bubble simulation.
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(a) TP2D

(b) FreeLife

(c) MooNMD

Fig. 5: Bubble breakup at time t=3 s; comparison between — interPhaseChangeFoam (standard), — interPhaseChangeFoam

(modified) and: (a) TP2D; (b) FreeLife, (c) MooNMD.

Comparisons of the calculation of the evolution of the bubble interface, identified by α1 = α2 = 0.5, have
been compared at different time intervals reported in [23] and are shown in Fig. 4 and 5. Starting from a
quiescent situation, the bubble first deforms towards the top, progressively reaching the skirted shape; later
on, thin filaments are formed and, in the end, droplets detach from the edges. The green line in Fig. 4 is the
interface calculated by the standard interPhaseChangeFoam solver; a clear discrepancy with the benchmark
case is apparent in Fig. 4 (a) at t = 0.6 s and worsens as the simulation proceeds; neither the skirted shape, nor
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the detached droplets are predicted. Results obtained from our modified solver are plotted in blue in Figs. 4 and
5 and compared with predictions of the bubble breakup from other codes. The modified solver (blue line) shows
significant the improvement in the interface tracking as compared with the standard interPhaseChangeFoam

solver (green line). In Fig. 5, comparisons of the bubble breakup at t = 3 s is reported. Each approach provides
different predictions of bubble breakup and, in absence of experimental data, it is hard to state which method
is the most accurate, as also stated in [23]. On the other hand, it is apparent that from Fig. 5 that without the
proposed code extensions the bubble breakup is not captured by the code.

For a more quantitative analysis of the results achieved, a comparison of the geometrical metrics [23] is provided:

1) bubble center of mass:

xc =

∫∫
A
α2xc dxdy∫∫
A
α2 dxdy

(19)

2) degree of circularity for a two-dimensional domain [30]:

C =
perimeter of equivalent circle

perimeter of bubble
=

2πreq∫∫
A
∇α2 dxdy

(20)

where req is the equivalent radius, defined as:

req =
1

π

(∫∫
A

α2 dxdy

)
(21)

the parameter C is equal to unity for a perfectly circular bubble and lower than unity for other cases;

3) mean rising velocity :

uc =

∫∫
A
α2u dxdy∫∫
A
α2 dxdy

(22)

The temporal evolution of xc, C and uc is shown in Figs. 6 and 7, respectively. The bubble centroid location
is satisfactorily predicted by all models, with no appreciable differences at least up to t = 2 s. The circularity
index and the rising velocity predicted by the VOF method are very close to the benchmark simulations;
without the correction on the curvature, a strong deviation of the solver from the reference starting at t = 0.5 s
is apparent; in particular, the greatest deviation is observed in the circularity index, because it is linked to the
bubble shape. It is likely that the procedure of modeling the surface tension effects in the different codes is the
the main reason for the difference in the evolution of the bubble shape at about t=2.4 s, when breakup starts.
While the authors’ VOF solver begins to produce elongated filaments while transitioning to the skirted bubble
shape, the TP2D presents a retraction of the filaments causing the bubble circularity to grow again after the
breakup has occurred; FreeLife and MoonMD behave similarly. Since there are no experimental results, it is
hard to reliably ascertain which of the methods is more accurate. Fig 7 shows the rising velocity uc, which is
captured fairly well by the standard VOF solver, with the exception of the local maximum around t = 2 s. The
modified solver shows good qualitative comparisons with other published results but discrepancies still exist
between various models possibly due to the differences in capturing the breakup (Fig. 5(b)), as discussed earlier.

(a) bubble centroid (b) bubble circularity

Fig. 6: Two-dimensional rising bubble problem, validation test case. Evolution in time of: (a) bubble centroid location C; (b)
bubble circularity C ∈ [0; 1]; circularity is equal to unity if the bubble shape is a perfect circle. Legend: − interPhaseChangeFoam

(standard), − interPhaseChangeFoam (modified), − ·− TP2D code, −−− FreeLIFE code, · · · MooNMD.
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Fig. 7: Two-dimensional rising bubble problem, validation test case. Evolution in time of the bubble rising velocity uc. Legend: −
interPhaseChangeFoam (standard), − interPhaseChangeFoam (modified), −·− TP2D code, −−− FreeLIFE code, · · · MooNMD.

6. Extension of the VOF formulation to moving boundary problems

Two kinds of moving mesh strategies can be employed to handle the displacement of the cell vertices in the
computational mesh, in order to simulate the prescribed motion of the needle:

- the displacement of the mesh interior domain vertices can be calculated by a semi-constrained motion solver
to preserve the mesh quality during its dynamic update. This functionality is available in the official releases
of OpenFOAM [15] and it therefore can be applied without any extension to the code. However, this
functionality has some inherent limitations, which are related to the continuous change of the cell volumes
and shapes: in particular, as cells are compressed, a reduction of their size ∆x leads to a reduction of the
time-step advancement due to the CFL criterion. Furthermore, the quality of the grid deteriorates with
large deformation. While the use of a Laplacian-based mesh smoother can help preserve good mesh quality
for longer time intervals, this aspect of change in cell volumes is still a limitation. Hence, mesh-to-mesh
interpolation is usually adopted in combination [31, 32] with the Laplacian-based smoothing approach.

- An alternative strategy (Fig. 8b) to move the mesh may be based on the use of automatic topological
changes. In this case, a single initial mesh is provided and an ad-hoc algorithm handles the mesh motion
in a fully automatic fashion, by adding and removing layers of hexahedral cells [33]. At the time of writing
of this paper, only basic features that employ topological changes are available in OpenFOAM and hence
significant developments were required to conduct the simulations presented in this work [34]. There are
multiple advantages of using a technique based on automatic topological changes for problems with large
domain deformations. Firstly, the approach preserves the initial mesh quality (skewness, non-orthogonality
and aspect ratio) during the entire simulation, since grids at different time steps differs only in layers of fully
orthogonal hexahedral cells. Furthermore, the changes in the resulting multi-block hex-dominant grid are
triggered only locally and the global morphology is not recalculated at runtime making the computations
extremely fast and efficient. Additional details about the methodology may be found in [33, 34, 35].
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(a) (b)

Fig. 8: (a) 1/6 section of the injector domain (the needle, the sac volume and the metering hole) and its immediate near-field,
represented by a large inlet volume. (b) Details of the face sets used to perform dynamic layering: topFaces and bottomfaces

are used to perform layer addition/removal, while detachFaces are used to perform dynamic attach/detach; needle-head is the
needle patch. Generation of the hexablock mesh is employed by an in-house automatic tool developed by the authors within the
OpenFOAM technology framework.

The computational grid of the injector, shown in Fig. 8b, is initially divided into two regions (the injector sac
and the nozzle) by an inner baffle, which is used to disconnect the injector sac from the nozzle at needle closure.
The needle closure is automatically triggered by the code when the distance between the needle surface and the
nozzle hole is lower than a set threshold value; in the simulations, the threshold value was assumed to be 0.5
µm (less than 1% of the maximum lift). For the moving needle, the user must define:

- the list of cells (cellSet) that will be rigidly moved along a prescribed direction by a prescribed needle lift
motion. In Fig. 8b, the area colored in purple represents the set of cells of the needle that are moving; cells
belonging to this cellSet can be of any kind (hex, tet, prism, hybrid) and they are adjacent to a layer of
hexahedral cells in the upper region;

- one or multiple lists of faces (faceSets), where dynamic layer addition/removal will be applied. For any
given face set, the mesh handling algorithm automatically calculates the average cell height of the cell
layer (hexahedral or prismatic) at run-time, to determine whether layer addition and/or removal must be
triggered. Cells in a deleted layer are merged into neighboring cells, with the value in the resulting cell being
the volume-average of deleted and neighboring cells; cell thickness of added layers can be defined either by a
dictionary or calculated by the motion solver to optimize the mesh quality. Checks for boundary proximity
and prevention of topological inconsistencies is performed by the code at run-time and the dynamic removal
of cell layers is automatically deactivated, if needed [33];

- a single list of faces (detachFaces, see Fig. 8b) where dynamic attach/detach of the boundaries is applied.
In particular, the attach/detach mesh modifier is automatically triggered by the dynamic mesh solver to
temporarily attach/detach two regions of the mesh through an arbitrary (conformal or not conformal) set
of faces, namely the detachFaces, to simulate opening/closure events.

The implemented dynamic VOF solver supports all of the above-mentioned strategies to move the grid; the
order of accuracy obtained by the two strategies is similar. The authors have extended the dynamic solver
used in this work to preserve second order accuracy in time with topology changes [36]. This extension will be
briefly described in sec. 7. The use of topological changes in the mesh motion requires a particular structure
of the mesh during generation and ad-hoc decomposition methods (discussed in sec. 9), while no particular
requirements are needed during pre-processing if cell deformation is applied. The mesh motion strategy based
on topological changes thus leads to a significant increase in the simulation speed when compared to the other
strategies. In Fig. 9, the performance of the two meshing strategies is compared: during the transient simulation
the needle moves according to the law reported in Fig. 1b). During needle opening (time t ≤ 2 ·10−4 s), cells are
expanded with cell stretching and the mesh motion does not significantly impact the time step advancement;
if a method based on topological changes is applied, hexahedral layers of cells are added and the mesh size
progressively increases. As a result, the simulation times of the two methods are comparable: the time required
by the continuous topology changes is compensated by the lower time needed by the solver to converge. When
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the needle reaches the maximum lift at time t ' 2 · 10−4 s (see Fig. 1b), the convergence rate of the solver
on the mesh where layers were added is much faster, since the initial quality of the mesh has been preserved.
Additionally, during needle closure (not shown in Fig. 9), cell size decreases during compression and the time-
step becomes progressively lower; on the other hand, with layer removal, cells-size do not change and the
time-step size during time marching is not influenced by the mesh, but only by the local flow velocity. The
resulting overall solution time of the transient simulation,including opening and closure, is cut by over 40% if
a mesh motion based on topological changes is used.

Fig. 9: Comparison in performance between different mesh motion strategies to perform a transient dynamic simulation of the
needle opening. In the y axis, non-dimensional walltime needed to complete the transient simulation (opening and closure event)
of the injector is plotted against the physical time (x-axis). The grid used with cell stretching was a 15 M cell mesh generated by
snappyHexMesh [15], of comparable quality (calculated at the initial time-step of the simulation) with respect to the grid used in
this work (Fig. 8b).

There are several reasons behind this reduction of computational time: first, the calculation of the Laplace
equation (or any point smoother) is not applied at each time step (unless specifically required by the user),
since only few points are moving due to the prescribed rigid motion. As a consequence: a) grids at different
time-steps differs only for layers of hexahedral cells and the initial mesh quality (skewness, non-orthogonality
and aspect ratio) is preserved during the entire simulation, enabling a high convergence rate of the solution over
the multi-block grid; b) the time-step of the simulation is affected only by the local flow conditions because the
local mesh size, with the exception of a single layer of cells, does not change in time. With the cell stretching
methodolgy, a reduction of the cell size occurs during the needle closure leading to a significant reduction of
the time step due to the CFL condition [33]. The proposed method is computational very efficient also when
applied to large grids, since mesh changes are triggered only locally on some processors and the morphology of
the mesh is not recalculated globally [34].

7. Dynamic VOF solver: numerical considerations

The discretized form of governing equations with moving grids must be modified to account for the change
of the cell volumes during the solution. Since the location of the grid is known as a function of time, the
solution of the Navier-Stokes equations must be written using relative velocity components at the cell faces; the
conservation equations for scalar quantities are then easily derived from the corresponding equations for a fixed
Control Volume (CV), by replacing the flow velocity vector U in the convective term with the relative velocity
U − Ub, Ub being the velocity at which the grid (integration boundary) moves. Hence, the phase transport
equation (1) takes the form:

∂α

∂t
+∇ · α(U −Ub) +∇ · [Uc α (1− α)] = Sα (23)

When topological changes are triggered, the reconstruction of the history of the volume changes during mesh
motion is non-trivial; for a generic variable φ, the conservation equation in the semi-discretized form for a cell
of volume V is defined as:

∂

∂t
(ρ φ) +

∑
f

ρf φf (ϕf − ϕm,f )−
∑
f

γφ∇φf = Sφ (24)
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In Eq. (24), ρ is the flow density, γφ is the diffusion coefficient, Sφ are the volume sources/sinks of φ, ϕf is the
absolute cell face flux ϕf = Uf · n; ϕM,f is the mesh flux due to point motion. To avoid any spurious mass
sources, the formulation of ϕM,f must fulfill the Geometric Conservation Law (GCL) [37]:

d

dt

∫
V

dV −
∫
S

ub · dS = 0 (25)

which in its semi-discretized form is:
dV

dt

∣∣∣∣t=n
t=n−1

−
∑
f

ϕm,f = 0 (26)

The fulfillment of the Discrete Geometric Conservation Law form (DGCL, Eq. 26) determines the method
of solution for the mesh flux ϕM,f ; a correct solution of the Discrete GCL (DGCL) ensures a proper mass
conservation in a constant-topology moving grid. In a moving boundary problem, variables at time (n) are
mapped onto the new mesh by a mapping procedure (interpolation)Mn+1

c , at t = n+1, where the new solution
must be solved. If the mesh topology is not varying, there is a one-to-one correspondence in the addressing of
the cells of the grids at different timesteps and:

Mc({c0 . . . cm}n) = {c0 . . . cm}n 7→ {c0 . . . cm}n+1 (27)

All flow intensive variables (pressure, velocity, etc.) can therefore be simply transformed from the old to the
new mesh as:

φ(tn,x(n+1)) =Mc[φ(tn,xn)] (28)

With layer addition/removal, if cells are split or merged across a time step the one-to-one correspondence
between the cells of the old and the new mesh is lost and the fulfillment of Eq. (26) throughout the mesh
change becomes more difficult to accomplish. Besides, the transported quantity φ and the cell volumes at the
old times (V n−1 and, if second order discretization in time is used, V n−2) must be estimated in added/merged
cells to compute the time derivatives ∂φ/∂t of Eq. (24). Hence, when layer addition/removal occurs, the mesh
change is computed in two steps. First, the mesh topology is modified and the volume history together with the
conserved variables are mapped onto the new mesh, before cell points are moved, in order to store the mapped
quantities for the calculation of the time derivatives of the conserved variables at the new time step; since the
face-to-face map cannot be computed across a topology change, cell face fluxes ϕnf are then recovered for the
whole mesh. In the second step, points are displaced according to the needle motion and DGCL is enforced by
a modified form of Eq. (28) and (27).

Even if the conservation of the DGCL is ensured, the recovered fluxes mapped over the faces of the CVs are
no longer compatible with the pressure field derived from the continuity equation calculated by the segregated
solver at the old timestep with the old mesh. When the mesh is moving, this causes an error in any conservation
equation where an advective term is present. For incompressible flows, where velocity U is the primary variable
in the momentum equation, the error of non-conservation in the momentum across remapping is apparent in
the moving cells and it is proportional to ∆t; on the other hand, with compressible flows, the error is less
apparent (in spite of being present) because it is split among the transported conserved variables ρU, for which
the momentum equation is solved. It is important to note that this source of error is not directly related to the
use of topological changes, but to the moving mesh in general. For each time step of the dynamic solver it is
therefore necessary to solve an additional Poisson equation (Eq. 29) for a pressure correction p′ [38]

∂p′

∂t
−∇2p′ +∇ · ϕn(xn+1)− [∇ · ϕn(xn)]

n+1
= 0 (29)

to ensure consistency between the face fluxes and the pressure field, which is related to the mass conservation:

ϕn+1 = ϕn(xn+1) +∇p′ (30)

The above-mentioned treatment of cell- and face-centered variables ensures conservativeness of the main flow
quantities, as long as the DGCL is fulfilled and continuity is enforced by Eqs. (29) and (30). Only in this
way the boundedness and conservativeness of Eq. (23) can be satisfied with mesh motion, in particular with
topology changes.

In multiphase flow calculations, the flux inconsistency between time-steps leads to a significant non-conservation
and unboundedness of the phase-fraction equation. The flux inconsistency is more apparent if the transport
equation for the phase fraction is solved explicitly: in OpenFOAM, the error induced by the face-to-face mapping
becomes large with the flux corrected transport technique (called MULES, Multidimensional Universal Limiter
for Explicit Solution [39]) used for the calculation of the continuity of the phase fraction. For each case studied
in this work, it was verified that the void fraction was lower than 1 during the entire simulation.
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8. Numerical solution method and computations

A three-dimensional 15 million-cell grid was used to simulate a 30 degree circumferential segment of the injector,
which shows a symmetry in the circumferential direction. The modeled domain includes a volume representing
the ambient where the flow jet penetrates. A pressure ratio of 30 bar was set between the inlet and the outlet
section, to reproduce the experimental conditions; hence, total pressure of 30 bar was set at the inlet section,
while a (total) pressure of 1 bar was set at the outlet. Since transient conditions were studied, the injector
was assumed to be closed at the beginning of the simulation and the liquid was assumed to be stagnant in the
injector sac; no liquid was assumed to be present in the nozzle region and in the part of the injector sac which
remains linked to the nozzle during the needle closure: this initial setup represents the experimental testing
condition where the injector is perfectly “clean” before the test (no residual liquid drops from previous tests are
present in the sac before the opening of the needle). The WALE model [40] was chosen to model turbulence.
A no-slip boundary condition for velocity was applied at the walls, while cyclic boundary conditions, implicitly
coupled for all flow independent variables, were used for the circumferential boundaries of the solution domain.
Second-order discretization in time and space was used for the algebraic operators in the governing equations.
The transport of the phase-fraction is solved explicitly at the beginning of each time step by means of the
Multi Universal Limiter for Explicit Solution (MULES) [21], a Flux Corrected Transport method to ensure the
boundedness of the α flux. In addition, special Total Variation Diminishing (TVD) methods were applied to
velocity compression terms. Experiments were performed at ambient temperature and the heat flux measured
at the walls was negligible; it was therefore reasonable to assume density variations linked only to pressure (in
particular if cavitation is present) and to neglect the influence of the temperature in the simulations. Simulations
were run on the Bebop Cluster at Argonne National Laboratory, which is equipped with 352 Intel Xeon Phi
7230 KNL (Knights Landing) nodes operating at 1.30 GHz with a 128 GB/node RAM (2 GB/core). The
KNL architecture has many new features for speeding up computations. Each core has two 512-bit vector
units (compared to 256-bits with Haswells/Sandy Bridge) and supports AVX-512 SIMD instructions leading to
significant improvement in scalar and vector performance. The vector peak performance is close to 3 TF for
double precision computations and close to 6 TF for single precision computations. Additional features such
as four-way multi-threading (or 256 threads per node), multiple memory tiers, large high bandwidth memory
(MCDRAM) and large bulk memory can enable better performance on compute bound, memory latency bound
and memory bandwidth bound problems. The dynamic solver could complete a full simulation of the injector
opening in less than 48 hours on 512 KNL cores.

9. Domain decomposition with topological changes

To run parallel simulations, the Finite-Volume (FV) mesh has to be decomposed into a set of sub-domains, each
to be assigned to a single core for processing. In simulations involving mesh motion with topological changes,
new constraints in domain decomposition arise. In OpenFOAM, as well as in most of the CFD codes, topological
changes cannot occur across inter-processor patches between neighboring sub-domains and the decomposition
algorithm must be constrained in this sense; in other words, decomposition must account for the constraints
given by the dynamic layering and, as a consequence, it might lead to unbalanced decomposition if automatic
procedures are used (see [33]).

A new application calcDecomposition has been developed to employ a semi-constrained (balanced) domain
decomposition and to simplify an inherently complex process. The following steps are performed:

1. different mesh regions, in accordance with the decomposition constraints (layer addition/removal zones,
attach/detach zones, unconstrained), are defined;

2. each region can be independently decomposed by selecting a specific decomposition algorithm to be applied
to an arbitrary (user-defined) number of sub-domains;

3. mesh regions where dynamic layering will be applied are decomposed to ensure processor boundaries to
be perpendicular to the layering faces (see Fig. 8b);

4. the remaining cells of the mesh are distributed among processors using non-constrained decomposition.

The domain decomposition strategy described is very flexible and allows for balanced decomposition with
complex geometries and topological changes, as shown in Fig. 10b. Almost linear speed-up (strong scaling)
could be achieved with 512 cores; tests on the same setup have proven that this would not have been possible
with standard/automatic decomposition algorithms [41] typically applied for small/medium grids.
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(a) (b)

Fig. 10: a) Balanced domain decomposition is achieved by selecting multiple regions in the mesh and by decomposing them among
different numbers of processors; each region can be decomposed by a different logic; b) decomposition of the injector mesh on 512
cores resulting from the developed algorithm. The number of cells per core is very well balanced (imbalance is < 5%). The red
line represents the number of cells per processor for a perfect balance. For the case considered, linear scalability was achieved up
to 896 cores.

10. Injector opening: simulation results and validation

In the VOF method, the two phases are described in the Eulerian framework and an additional equation is
solved for the liquid volume fraction to track the position of the gas-liquid interface. The main advantage of the
method is that it can handle liquid structures of any shape and that the wakes caused by droplets are directly
resolved on the computational grid: this limits the use of models in the simulation to a minimum and therefore
leads to a high accuracy. Additionally, including the modeling of phase-change at the interface, in the interface
transport equation, couples the effects of cavitation to the evolution of the interface directly. The main drawback
with this approach is the high computational cost, as a fine resolution is required to achieve high accuracy. The
focus of this work is to study the evolution of the cavitating fluid across the nozzle, with particular attention to
the fluid composition near the nozzle exit. With the HPC facilities usually available for calculation, the mesh
resolution required by a VOF method is prohibitive to accurately predict fluid phenomena such as the secondary
breakup of the liquid droplets, the aerodynamic drag or the evaporation of droplets. Hence, the undisturbed
region (the external cylindrical domain far from the nozzle) must be mostly intended to limit the influence of
the outlet boundary condition on the numerical solution of the internal flow field.

In Fig. 11, isosurfaces of the liquid phase fraction describing the evolution of the jet-flow near the nozzle exit
are compared with high-resolution high-speed camera visualizations acquired at the experimental facility at
Continental Automotive SAS. The temporal evolution of the spray plume, the primary atomization and the
near-field spray breakup structures seem to be properly captured; the spray angle on the cavitating side of the
jet (Fig. 11b), where droplets are formed, is also well described. The simulation is able to capture the flow
separation near the sealing band, that causes the deviation of the spray plume trajectory from the nozzle hole
axis and a reduction of the total spray angle.
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(a) t=0.9 µs aSOI

(b) t = 200µs aSOI

Fig. 11: Comparison between experimental high-resolution/high-speed camera visualization carried out at Continental SAS on the
XL 3.0 injector (left column) and the isosurfaces of the liquid phase fraction from the simulations (right column). Snapshots refer
to: (a) t=0.9 µs; (b) t = 200µs after the start of injection (aSOI). Injection pressure is 30 bar.

(a) t=2.5 µs (b) t=5 µs

(c) t=7.5 µs (d) t=10 µs

Fig. 12: Evolution of the flow at the early stage of injection, from the needle opening. The formation of a main vortex, whose axis
is parallel to the hole axis, is evidenced. The injector is conventionally assumed to start opening at time t= 0 [s].

Since the predicted evolution and the main features of the jet flow are in good agreement with the experimental
visualizations, simulations have been considered suitable for a deeper analysis also in those regions where
experimental visualizations are impossible to perform. Fig. 12 shows that, as the needle starts opening, the
pressurized jet accelerates, impinges on the nozzle wall and generates a recirculating region at the nozzle inlet.
While separating, the flow progressively deviates from the nozzle hole axis; a non-symmetric evolution of the
flow in the form of main vortex, whose axis is parallel to the hole axis, is registered along the nozzle and in
the near-field region (ambient). In Fig. 13a-13e, the contour plot of the velocity flow field is reported over a
cross-plane; on the same plane, the evolution of the phase fraction α is reported in Figs. 14a-14f. Figs. 13 and
14 show how cavitation evolves inside the nozzle: a jet flow generates near the region where flow is separating
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(Fig 13a-13d) and a “geometry induced” cavitation appears (Fig. 14a-14a). In Fig. 15 the evolution of the
volume fraction, at the early stage of injection, on three different planes cutting the injector nozzle is shown.
Constant pressure (black) isolines at p = psat are assumed to limit the cavitating regions; there are some small
areas in the nozzle where p = psat, which most probably delimit the cavitation. A recirculating region and a
pair of counter-rotating vortices, whose axis is normal to the nozzle plane, is formed in the jet core together
with finer turbulent structures responsible for the instability of the jet (Fig. 13e).

(a) t=2.5 µs (b) t=5 µs (c) t=7.5 µs (d) t=10 µs (e) t=12.5 µs (f) t=15 µs

Fig. 13: Contour plot of the velocity flow field over a mid-plane across the injector. Black lines limit the cavitating regions at
p ≤ psat.

(a) t=2.5 µs (b) t=5 µs (c) t=7.5 µs (d) t=10 µs (e) t=12.5 µs (f) t=15 µs

Fig. 14: Contour plot of the liquid phase fraction (blue=liquid, red=gas) over a mid-plane across the injector. Colors indicates the
liquid fraction, which ranges from blue (full liquid, α=1) to red (gaseous phase, α=0). Black lines limit the cavitating regions at
p ≤ psat.

(a) t=2.5 µs (b) t=5 µs (c) t=7.5 µs (d) t=10 µs

Fig. 15: Evolution of the volume fraction, at the early stage of injection, on 3 different planes along the nozzle axis. Black lines
are the contour of the saturation pressure, where cavitation occurs. Colors indicates the liquid fraction, which ranges from blue
(full liquid, α=1) to red (gaseous phase, α=0).

Between t=12.5 µs and t=15 µs, the cavitating gas near the jet tip (black contour, Fig. 14f) expands and
compresses the liquid, that in turn increases its velocity over the tangential direction, to form another additional
counter-rotating vortex pair, whose axis of rotation is now parallel to the nozzle axis: this is evidenced by the
red region in Fig. 13e, where the highest velocity magnitude is located not far from the wall and in Fig. 16,
where a greater detail of the turbulent structures is provided. The low pressure in the vortex core causes the
fuel to cavitate and elongated vapor regions are formed along the nozzle axis. In Fig. 16, isosurfaces represent
the areas at p = psat, where cavitation mainly occurs. Cavitating zones are mostly located in the proximity of
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two counter-rotating string vortices, that are formed by the flow pattern which develops at the injector opening
and that are evidenced by the lines calculated by the Q criterion.

(a) velocity field (b) Q criterion

Fig. 16: (a): iso-surfaces identifying the regions at p = psat; velocity streamlines show the formation of vortical structures; (b) a
counter-rotating vortex pair is identified by the Q criterion, that has been used to identify vortical structures inside the nozzle at
the early stages of the injector opening. Time instant: t=20 µs.

11. Important remarks about condensation

The results presented in the paper were obtained after deactivating the condensation term in the Schnerr-Sauer
model [19]. The solver used in this work accounts only for two-phases (liquid and gaseous), where each phase
is represented by a single-component fluid. With interPhaseChangeFoam, it is therefore not possible to track
the air and the fuel vapor within the gaseous phase. Fig. 17 shows the effects of including the condensation
term in the current two-phase solver. Fig. 17 shows that inclusion of the condensation term in the Schnerr and
Sauer model tends to favor the phase-change of air into fuel in the condensing regions, introducing a significant
error in the calculation of the liquid phase fraction particular in the regions near the nozzle exit as shown in
Fig. 17(b). The air trapped within the jet as shown in Fig. 17(a), that is usually depressurized because of its
high speed, is absent and manifests itself as additional condensed liquid fuel. The resulting jet looks more dense
and the cone angle is underestimated.

(a) no condensation term (b) with condensation

Fig. 17: Modeling condensation with a two-phase single-component solver might potentially favor the conversion of air (gaseous)
into liquid fuel in the condensing regions, introducting a significant error in the calculation of the liquid phase fraction. (a):
simulation of the jet flow with the condensation term deactivated in the Schnerr and Sauer model. (b) simulation of the jet flow
including condensation.

Neglecting condensation is justified for the problem considered in this work, largely because the nozzle geometry
and the operating conditions studied have been specifically designed to study cavitation and greatly limit
condensation of the cavitating bubbles in the nozzle. For this reason, the simulations show good agreement
with experimental results during the early stage of injection. Condensation would have been important to
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capture the flow physics far from the nozzle exit and to simulate the transient operation at the needle closure.
In regions far from the nozzle exit, the jet plume is pressurized by the drag force against the stagnant air in
the chamber, which induces the dispersed fuel vapor to be condensed into liquid: this usually happens in the
regions where the applicability of the VOF is questionable and therefore it is not of primary interest for the
present work. During the needle closure, the pressure in the nozzle hole decreases and the gas phase (air+vapor)
from the tank flows back and recirculates into the nozzle hole. For this case, tracking tracking the evolution of
the air and the fuel-vapor separately by the transport of their void fractions along with condensation effects, is
essential. Detailed development and validation of a multiphase solver supporting the tracking of three interfaces
(liquid/air, liquid/fuel vapour and air/fuel vapour) to simulate needle closure is currently underway. Another
alternative would be to model the flow as a multi-component mixture: in this case, the air and the fuel vapor
would be represented as two components identified by their mass fractions in a two-phase VOF single-fluid
solver. The underlying assumption at the base of this approach is the perfect mixing between the two gaseous
components (fuel vapor and air), which is strong assumption if swirling cavitation in the injector nozzle is
studied.

12. Conclusions

The development and validation of a two-phase dynamic VOF solver for the simulation of internal nozzle flows
has been presented. The derivation of the dynamic formulation of the transport term has been combined with
the low-mach formulation of the transport equation of the liquid fraction. While the results presented in this
paper use mesh handling based on topological changes developed by the authors, the proposed mathematical
formulation is valid for any kind of dynamic mesh handling. Effects of the interface curvature have also been
included in the developed solver, to improve the ability of the solver to predict sharp interfaces. Validation of the
experiments carried out on an injector specifically designed for gasoline direct injection (GDI) engines, provided
by Continental Automotive SAS, shows that there is very good agreement in the description of the temporal
evolution of the spray plume and of the primary atomization, demonstrating that the temporal evolution of
the liquid-phase nozzle flow and the near-field spray breakup structures are properly captured. The dynamic
solver presented is second-order accurate in space and time, which is not trivial when dynamic topologically
changing grids are present. The implementation of a robust domain decomposition methodology enabled very
good balanced decomposition, leading to excellent strong scalability of the code on large supercomputers: a full
LES simulation of the injector opening could run in less than two days on the new Intel Xeon Phi 7230 KNL
(Knights Landing) nodes. The approach can be considered to be reliable for investigations of the internal-nozzle
flows during transient operation, to drive the early design stage of high-pressure GDI injectors. On the other
hand, as discussed in the paper, tracking only two void fractions may be an oversimplifying assumption when
condensation of the fuel vapor plays an important role in the physics of the problem, as it happens with some
injector nozzle geometries and at needle closure. Extensions to the solver to track three void fractions and two
interfaces, together with an ad-hoc cavitation model represent current authors’ work.
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