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Abstract
Purpose Surgical workflow recognition and context-aware systems could al-
low better decision making and surgical planning by providing the focused
information, which may eventually enhance surgical outcomes. While current
developments in computer-assisted surgical systems are mostly focused on rec-
ognizing surgical phases, they lack recognition of surgical workflow sequence
and other contextual element, e.g. “Instruments”. Our study proposes a hybrid
approach i.e. using deep learning and knowledge representation, to facilitate
recognition of the surgical workflow.
Methods We implemented “Deep-Onto” network, which is an ensemble of
deep learning models and knowledge management tools, ontology and pro-
duction rules. As a prototypical scenario, we chose Robot-Assisted Partial
Nephrectomy (RAPN). We annotated RAPN videos with surgical entities,
e.g. “Step” and so forth. We performed different experiments, including the
inter-subject variability, to recognize surgical steps. The corresponding sub-
sequent steps along with other surgical contexts, i.e. “Actions”, “Phase” and
“Instruments” were also recognized.
Results The system was able to recognize 10 RAPN steps with the prevalence-
weighted macro-average (PWMA) recall of 0.83, PWMA precision of 0.74,
PWMA F1 score of 0.76, and the accuracy of 74.29% on 9 videos of RAPN.
Conclusion We found that the combined use of deep learning and knowledge
representation techniques is a promising approach for the multi-level recogni-
tion of RAPN surgical workflow.
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1 Introduction

In the last decade, a lot of emphasis has been given on the development of
surgical assistance systems, by enhancing functionalities of the current regime
in Robot-Assisted Surgery (RAS), which could help performing monotonous
and simple tasks robustly [1]. Novice surgeons are especially vulnerable to
detrimental effects of cognitive overload, due to information overload, causing
the preventable adverse events [2]. Besides, because of experience and saved
mental models of surgeries, expert surgeons may have gradually developed
strategies to cope with the information overload by focusing on the informa-
tion they need [3]. To automatically recognize a surgical task in progress, i.e.
operational steps and sequences, video data processing is an essential step
towards context-awareness but a very challenging problem.

As a prototypical scenario, we chose Robotic-Assisted Partial Nephrectomy
(RAPN). RAPN regards the removal of a renal tumor. In 2012, estimated
prevalence of renal cancer was around 338,000 cases (2% of total cancer cases)
in Europe [4]. Surgery is considered as a de-facto treatment for kidney tumor,
with 5-year cancer free rates around 95% in large-scale cohorts [5]. However,
RAPN has been reported with overall complications ranging from 12.3% to
33% with different surgical approaches, as demonstrated by [6]. RAPN-related
adverse events have also been reported [7] such as liver injury, spleen injury,
bowel injury, bleeding after vascular clamp removal, renal artery injury, epi-
gastric artery, and renal vein injury, where automatic recognition of workflow
would be helpful.

In RAPN, tool-based recognition of surgical workflow, which was widely
used e.g. [8] for other surgeries, may not be a practical solution as only three
robotic tools are used, i.e. “monopolar curved scissors”, “fenestrated bipolar”
and “robotic large needle driver”, to perform surgical manoeuvres, where ad-
ditional semantic information, e.g. between tool and actions might be helpful.
An ontology provides an explicit specification of concepts within a domain of
interest, which could be used to represent “Surgical Process Model” (SPM).
In the past, ontologies were used for “phase” recognition in laparoscopic surg-
eries [9] and context-aware training in percutaneous surgeries [10]. However,
perceptual object, e.g. surgical tools in videos, is difficult to be recognized
with knowledge-based techniques. Recently, a Convolutional Neural Network
(CNN), consisting of 9 layers, was used to extract discriminative feature from
the images representing cholecystectomy phases [11]. However, the authors
were only focused on recognizing surgical phases without considering the sur-
gical sequence and other semantic information. Current researches [12-13] in
the surgical workflow analysis are moving towards recognition of sequences of
surgical phases using deep learning. For the workflow recognition, a Convolu-
tional Recurrent Neural Network (“CRNN”) and CNN with Hidden Markov
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Models (CNN-HMM) were employed on the annotated video data of laparo-
scopic cholecystectomy. However, due to computational and data limitations,
previous researches lack recognition of surgical workflow at multiple levels, i.e.
steps, anatomy, instruments and so on.

In this manuscript, we present a pipeline, “Deep-Onto” network, which
recognized surgical workflow entities at different granularities, by combining a
bottom-up approach, i.e. deep learning, with a top-down approach, i.e. ontolo-
gies, thanks to higher expressiveness and semantic relations between surgical
entities. The “Deep-Onto” network is an ensemble of two components: 1) a
“CRNN” and a “Sequence” model to recognize the surgical step and a subse-
quent step from RAPN videos; and 2) a “Knowledge” model, which contains
an ontology-based SPM on RAPN and logical rules to recognize other surgi-
cal context, e.g. instruments. The aim is to automatically understand RAPN
workflow, which could be used in a context-aware system framework [10] and
eventually assist novice surgeons during surgical training by presenting the
contextual information, e.g. the next step during the intervention. As far as
our knowledge allows, this is a first implementation of a combined use of deep
learning, and knowledge representation and reasoning techniques for the au-
tomatic surgical workflow analysis on robot-assisted urological surgery.

2 Methods

Fig. 1: Proposed “Deep-Onto” Network: schematic diagram, consisting of
“CRNN”, “Sequence” and “Knowledge” models

The “Deep-Onto” network is shown in Fig. 1. The “CRNN” (subsection
2.1) is used to recognize ongoing surgical step. Thereafter, “Sequence” model
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(subsection 2.2) is used to predict the next step based on the current step
recognized by “CRNN”. The next step predicted by the “Sequence” model
is also used as a binary predicate (along with current step) representing step
sequence inside the “Knowledge” model. The “Knowledge” model (subsection
2.3) takes input of the predictions of the “CRNN” model i.e. current step, the
“Sequence” model i.e. subsequent step, and anatomical information, which is
explicitly grounded for each step, to derive other contextual information of
the current step i.e. “Phase”, “Instrument”, and “Actions”. The represented
pipeline is yet not trained end-to-end.

2.1 “CRNN” model

A combination of CNN and Long Short Term Memory (LSTM) units, a “LRCN”
or “CRNN” model [14], has provided excellent results on the video classifica-
tion tasks e.g. actions. In our modified “CRNN” model, we used Inception
V3 [15] as a CNN model, pre-trained on the ImageNet dataset [16]. As shown
in Fig. 2, first, Inception V3 is fine-tuned on 10 classes of RAPN steps, i.e.
“mobilization”, and so on. The final classification layer was removed and 2048-
dimensional feature vectors were extracted from Inception V3’s global average
pooling layer (GAP).

Fig. 2: “CRNN” model configuration during the network training(“I” repre-
sents input tensor and “O” represents output tensor. “None” represents the
batch size, which was 32)

For “CRNN” training, “Training-1”, we used every 40th frame in the se-
quence of frames, i.e. videos for each surgical step, which is chosen empiri-
cally based on the best accuracy on the validation set. Then, the extracted



“Deep-Onto” network for surgical workflow and context recognition 5

feature vectors, representing videos of 10 steps, is passed to a separate one-
layer LSTM network (LSTM1) with 1024 hidden nodes, followed by “Fully-
connected” layer (FC1) with 512 hidden nodes. We then used a “Flatten” layer
(FL) to map input shape to the 1-dimensional tensor, followed by a “dropout”
layer (DROPOUT) of the same output shape and a “Fully-connected” layer
with softmax activation function for classification of 10 steps (FC2S).

We implemented the adaptive learning rate, which was reduced to 50% if
the accuracy of validation set stopped improving at every three epochs. We
used a low initial learning rate, i.e. 1×e−4, to update the network parameters.
As regularization methods, i.e. to minimize over-fitting, we used dropout units
with the value of 0.5, i.e. DROPOUT in Fig. 2, and early stopping of the
training, if the loss function was not improved for 20 epochs.

The network was trained using Adam [17] optimizer with categorical cross-
entropy (log loss), H, as a loss function as shown in Eq. 1, where p is a set
of true labels, representing surgical steps, and q is a set of predicted labels,
which contains probabilities obtained from the softmax classification layer. i
represents the class index.

H(p, q) = −
∑
i

pi log qi (1)

2.2 “Sequence” model

The “Sequence” model was used to predict surgical step sequences. First, as a
training set, we generated 1000 random input-output pairs of words represent-
ing step sequences. As shown in Fig. 4, these pairs were fed into stacked LSTM,
consisting in layers with 32 (LSTM2) and 16 hidden nodes (LSTM3), followed
by a “Fully-connected” layer (FC3S) with the softmax activation function for
the classification of 10 step sequences. To constraint model’s predictive capa-
bility to only one consecutive step, size of the sequence length was kept 1 in
the training set. The “Sequence” model was trained (“Training-2”) using the
same methodology, i.e. using Adam optimizer with categorical cross-entropy
as a loss function, as explained in subsection 2.1. A predicted step sequence is
also used as instances of an ontological relation “hasNextStep”, which specifies
a step in the progress and a consecutive step (see subsection 2.3).

As shown in Fig. 3, we built a Discrete-Time Markov Chain (DTMC),
as a model to obtain the most probable RAPN step sequences, from a step
transition matrix obtained by analyzing transitions between and within the
steps in 9 video annotations. However, in this manuscript, we only considered
the step sequences with highest transition probabilities to form a hierarchical
RAPN workflow. Because of the hierarchical step sequences, the LSTM units
in “Deep-Onto” network could be replaced by a simple look-up table (see
subsections 3.2 and 4.2). However, we considered LSTM units into the pipeline
because it does not deteriorate the results and helps in order to prepare for
future experiments with more complex transition data.
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(a) Model obtained with video annotations

(b) Presented model in our work

Fig. 3: Figure (a) shows the state transition diagram, where each state rep-
resents steps of RAPN as in video annotations, starting from “Mobilization”.
Figure (b) shows the considered step transition model in our work. The color
of edges represents transition probabilities between one step to one or more
steps.
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Fig. 4: “Sequence” model configuration during the network training (“I” rep-
resents input tensor and “O” represents output tensor. “None” represents the
batch size, which was 1)

2.3 “Knowledge” model

A “RAPN ontology” was built using a top-down approach, where the most
general concepts of the domain, such as phases (e.g. “hilumDissection”) were
first analyzed and then specialized concepts, such as actions (e.g. “cut”), were
implemented. The needed information about RAPN was obtained from a jour-
nal article [18], video annotations and in close collaboration with a urologist
(“RB”).

Logical sentences were divided into triplets in the format of “Step (In-
strument, Action, Anatomy)”, specified for each surgical step, similarly as
mentioned in [19]. The developed ontology is based on the OntoSPM ontology
[20], an emerging common ontology for SPM, which is modeled by making it
compatible with a foundational ontology called BFO (Basic Formal Ontology)
[21], which is a top-level ontology and provides abstract classes to represent
the real-world entities and imported ontologies as shown in Table 1. OntoFox
tool was used to extract upper ontological entities [25]. Ontology was built
using Protégé (version 5.0.0) [26].

Table 1: Main imported modules of the RAPN ontology

FMA Foundational Model of Anatomy[22]
Domain of human anatomy. Entities
representing anatomy of kidney and
surrounding tissue for RAPN workflow.

IAO Information Artifact Ontology[23]
Information entities in the biomedical
domain.

OWL-Time W3C Time Ontology[24]
Temporal concepts for representing
relationships between the surgical
entities.



8 Hirenkumar Nakawala et al.

We implemented production rules, with the “IF” and “THEN” statements,
to build the reasoning mechanism, which helped to recognize surgical con-
text from the ontology. As shown in Fig. 5, “Step” represents an ontology
class, while “hasNextStep”, “involvesAnatomicalPart”, “hasAction”, “hasIn-
strumentInStep”, and “isInPhase” represent semantic relations with “Step”.
Variables “?x” and “?y” represent real-world instances. Production rules, in
total 22, involving RAPN instances, were used for the recognition of the sur-
gical context, e.g. “Actions”, “Instruments” and “Phases”, based on the un-
known step instance (“?x”) retrieved from both the prediction of step from the
“CRNN” model and the step sequence recognized by the “Sequence” model. As
a pre-condition, an ontological relation “hasNextStep” is checked and anatomy
was used explicitly specified for each step. The production rules were imple-
mented in Semantic Web Rule Sequence (SWRL) [27].

Fig. 5: An exemplary SWRL rule format

“Deep-Onto” network was implemented in Keras (version 2.0.2) with Ten-
sorFlow backend (version 1.3.0) [28], OWL (version 3.5.0) [29] and Pellet (ver-
sion 2.3.3) [30] API to perform reasoning on the ontology.

2.4 Data acquisition, video annotations and data preparation

The videos on RAPN were acquired with the da Vinci Xi surgical system
(Intuitive Surgical Inc., CA, USA) at European Institute of Oncology (IEO,
Milan, Italy) from September 2016 to June 2017. We recorded 9 videos of
RAPN, at 24 FPS with a length of 82.49 ± 37.54 minutes and the 578x720-
pixel HD quality from the da Vinci Xi endoscope with a camera of 8 mm size
and 30◦ angle. The procedures were performed by 4 senior Urologists (“ODC”,
“GM”, “VM”, “DB”).

Recorded videos are annotated using Anvil annotation tool [31] with work-
flow entities i.e. the “Ontology class” as shown in Table 2. Each track spec-
ifies different surgical workflow entities, in synchrony. Videos are annotated
frame-by-frame representing each entity as an individual instance, e.g. “mo-
bilization”, as a controlled vocabulary for the ontological class “Step”. The
definition of workflow entities for annotations was obtained from a journal
article [18] and suggestions from the expert Urologist (“RB”), who annotated
the videos.

To develop “Nephrec9” dataset1, first, we split the 9 full RAPN videos into
small videos of 30 seconds or 720 frames, processed at 24 FPS. We extracted

1 available at https://doi.org/10.5281/zenodo.1066831
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a total of 1262 videos (996,373 frames). We manually removed 254,800 frames
with heavy motion blur, e.g. quick change in the camera position, specular
reflections for instruments and tissue surfaces, and frames occluded with heavy
smoke. As shown in Table 3, we developed two dataset, “D1” and “D2”. “D2”
was used to exploit inter-subject variability.

Table 2: Ontology class definitions and video annotations

Ontology class Definitions

Phase Major objectives to accomplish the procedure as per standard
procedural workflow e.g. after “Tumor Resection” phase, where
the tumor is removed, “Renorraphy” phase is performed, which
consists of suturing the remaining tissues.

Step Steps are required to complete phases of the surgical procedure.
Each step consists of a specific action, anatomy, and instrument
at a specific instance. For example, during “Tumor Exposure”
phase, the surgeon makes the “marking” (Step) of the “kidney
capsule” (Anatomy) by “marking” (Actions) through the “fen-
estrated bipolar” (Instrument-Left).

Instrument Instruments are annotated based on its usage during a step of
the surgery and its appearance in surgical videos. We consid-
ered robotic instruments, Left and Right robot arm e.g. “fenes-
trated bipolar” and “monopolar curved scissors”. We also con-
sidered “laparoscopic Bulldog”, which comprises many frames of
the recorded videos.

Anatomy Anatomy is annotated based on a surgical step and its ap-
pearance in the videos e.g. “resection” (Step) has “tumor” as
“Anatomy”.

Actions Actions are annotated based on a surgical step and actions car-
ried out by specific instruments. For example, “cortical suturing
is a “Step” performed by the “large Needle Driver” (Instrument)
to “suture” (Actions) the “kidney” (Anatomy) during the kidney
repair, i.e. “Renorraphy” (Phase).

Assistant-
Instrument1
& Instrument2

These annotations represent the usage of laparoscopic instru-
ments, e.g. “aspirator”, by assistant surgeons during RAPN

3 Experimental protocols

We performed off-line testing of “Deep-Onto” components, i.e. “CRNN”, “Se-
quence” and “Knowledge” model.

3.1 Experimental protocols for CRNN model

Four experimental protocols have been designed to check the “CRNN” model
as shown in Table. 4.
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Table 3: Training, validation and test datasets (Number of frames)

No. Step Exemplary
image

Training
set(D1)

Training
set(D2)

Validation
set(D1)

validation
set(D2)

Testing
set(D1)

Testing
set(D2)

1 Mobilization 42,469 30,268 17,516 14,162 7,237 22,790

2 Dissection 111,560 111,559 47,228 31,710 18,911 34,428

3 Ultrasound 2,243 1,193 2,265 949 262 2,617

4 Marking 20,433 29,304 10,221 4,143 3,870 1,075

5 Clamping 9,743 10,876 4,991 4,334 1,634 1,115

Unclamping
(represented as
“clamping”)

2,614 2,613 1,117 1,116 443 443

6 Resection 60,657 74,986 31,194 11,420 9,209 14,652

7 Cortical suturing
(represented as
“suturing”)

23,422 21,208 10,587 11,464 4,576 5,911

Midollar suturing
(represented as
“suturing”)

31,400 38,237 21,155 10,858 5,965 9,423

8 Removal 2,392 1,435 2,833 2,326 493 1,955

9 Reconstruction 13,960 8,968 14,014 12,423 2,564 9,145

10 Drainage 4,080 2,888 3,702 2,081 1,425 4,236

(1) Experimental protocol-1 (EP1): “CRNN” model was trained on 10 steps,
as shown in Table 3, out of 14 annotated steps. In this work, two steps i.e.
“Identification” step, which is a subsequent step of “Dissection” in the ac-
tual annotations, involves indeed dissection of Gerotas Fascia (anatomy) for
assessing the tumor location, and “Inspection” step, a subsequent step of “Su-
turing”, involves checking the implemented sutures, were not considered to
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be recognized, since it represents the similar actions, also same anatomical
structures without change in the background in the images of the “Dissec-
tion” and “Suturing” steps. Due to these reasons, as expected these steps i.e.
“Identification” and “Inspection” created more false positives. Considering the
similar background, actions and instruments, we also combined the frames of
“Clamping” and “Unclamping” steps, and “Midollar suturing” and “Cortical
Suturing” steps into two separate classes of “Clamping” and “Suturing” re-
spectively. The “Suturing” class would not have created any impact on the
context-awareness since these involves consequent steps involving suturing ac-
tions. Conversely, “Clamp” step instructs one to deal with the “laparoscopic
bulldog clamp” insertion or removal, which is handled by assistant surgeons.
The ground truth information, i.e. steps, in annotations, has been used to
verify the predictions of the “CRNN”. We measured accuracy and compiled a
confusion matrix to obtain prevalence-weighted macro-average (PWMA) pre-
cision, recall, and F1 score as evaluation metric for step recognition.
(2) EP2: EP2 was used to recognize ongoing surgical steps, considering the
inter-subject variability. We used dataset “D2”, where out of 9 videos, videos
1 to 5 used as a training set, 6 and 7 as a validation set, and 8 and 9 as a test
set.
(3) EP3: 8-fold LOOCV (Leave one-out cross-validation) was done to check
inter-subject variability, 1 video’s samples, from “D1”, was used as a test set
and rest as train set during each iteration of 8 folds.
(4) EP4: EP4 was designed, as “Baseline” experiments, to do the compari-
son of “CRNN” prediction of the current steps with the fine-tuned CNN-only
network i.e. Inception V3.

Table 4: Experimental protocols for “CRNN” model. The “Experimental Pro-
tocol (EP)” shows the implemented protocols i.e. “Hold-out 1” (EP1) (Dataset
“D1” was used), “Hold-out 2” (EP2) (Dataset “D2” was used) and “LOOCV”
(EP3) were used to check inter-subject variability,

and “Baseline” (EP4) shows the step recognition with Inception V3.

No.
Experimental
Protocol (EP)

Dataset (Total number of frames)
Samples (Total number of
extracted feature vectors)

1.
“Hold out-1” &
“D1” dataset

Training
set

Validation
set

Test
set

Training
set

Validation
set

Test
set

324, 973
(59.26%)

166,823
(30.42%)

56,589
(10.32%)

555 260 70

2.
“Hold out-2” &
“D2” dataset

Training
set (videos
no. 1-5)

Validation
set (videos
no. 6,7)

Test
set (video
no. 8, 9)

Training
set

Validation
set

Test
set

461,498
(62.25%)

172,096
(23.22%)

107,790
(14.53%)

560 172 154

3. “LOOCV” -
Leave 1 video’s samples out
one by one (videos 1-8)

4. “Baseline”
Training set Test set

-
633,594
(85%)

107,790
(15%)
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3.2 “Sequence” model

The experiments were carried out to check the prediction of next step based on
the predicted current step by “CRNN” during EP1. Furthermore, prediction’s
accuracy and algorithm execution time were compared with another sequence
prediction method [32] i.e. look-up tables.

3.3 “Knowledge” model

To evaluate “Knowledge” model, recognized step sequences and surgical con-
text are verified with the ground truth video annotations by measuring the
relative frequency, fi, as shown in Eq. (2).

fi =
ni

N
(2)

In Eq. (2), ni represents the frequency of occurrence of truly recognized sur-
gical context and N represents the total number of actual surgical context
presented in video annotation. The surgical context was considered True Pos-
itive (TP) if the same context were represented for a specific step in video
annotations as ground truth. Otherwise, it was considered as False Positive
(FP). We chose 70 samples from the test set, of “D1”, to evaluate “Knowl-
edge” model on surgical context recognition i.e. “Instrument”, “Phase”, and
“Actions”. “Anatomy” was explicitly grounded in the assertion box (ABOX),
so it could be easily retrieved.

4 Results and discussions

We present the results of the individual models of the pipeline which follow
the experiment protocols as mentioned in the section 3.

4.1 “CRNN” model

During EP1, the“CRNN” model was tested on the 70 samples of “D1” dataset.
As shown in Fig. 6 and Table 5, the pipeline was able to recognize 10 RAPN
steps with 0.83 PWMA recall, 0.74 PWMA precision and 0.76 PWMA F1
score and an accuracy of 74.29%. As shown in Fig. 7, discriminative feature
of these steps are clustered with minimum relative entropy. “removal” and
“ultrasound” steps were not recognized due to the less videos in the test set.
“unclamping” step was wrongly recognized as “suturing” and frames with
a similar background as “dissection” step. Many frames of the “marking”
were wrongly recognized as “dissection” and “suturing”, which is confirmed
by overlapping clusters in Fig. 7. EP1 shows that frames of the preceding
and subsequent steps affect step recognition accuracy due to homogeneous
background.



“Deep-Onto” network for surgical workflow and context recognition 13

Fig. 6: Normalized confusion matrix (the diagonal values represent individual
step recalls for recognition of each step) (EP1)

Table 5: Results on step recognition

Recognized steps Precision Recall F1 score No. of
True
Positives

test sam-
ples

Mobilization 0.67 0.80 0.73 4 5
Dissection 0.92 0.88 0.88 23 26
Ultrasound 0.00 0.00 0.00 0 1
Marking 0.43 0.60 0.50 3 5
Clamping 1.00 0.33 0.50 1 3
Resection 1.00 0.38 0.55 3 8
Suturing 0.88 0.93 0.90 14 15
Removal 0.00 0.00 0.00 0 1
Reconstruction 1.00 0.75 0.86 3 4
Drainage 0.50 1.00 0.67 2 2
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During EP2, the network’s recognition accuracy was 67.44% on the valida-
tion set and 36.28%±0.1% on the test set. The network was able to recognize
5 steps of the surgery (accuracy in %), “clamping”(100%), “dissection”(83%),
“Suturing”(87%), “drainage”(100%) and “ultrasound”(43%). EP2 shows that
the dataset is not large enough to learn the variabilities between the subjects.
Moreover, the network recognized “ultrasound” step, which have more test
samples in “D2”. As shown in Table 6, 8-fold LOOCV (EP3) shows the accu-
racy of 65.58%±6.8%. The cross-validation shows that the network could be
able to efficiently recognize inter-subject variability with the increased num-
ber of data in the training set. Both the “Hold-out 1” and “LOOCV” results
are better than “baseline experiments”, which has approximate accuracy of
43.75%±11.2%, that demonstrates CRNN’s capacity to provide better recog-
nition of RAPN steps than the CNN-only network.

Fig. 7: Extracted feature vectors into two-dimensional space, projected using
t-distributed stochastic neighbor embedding (T-SNE) [33] to check the perfor-
mance of feature extraction. The points were colored according to their true
step class labels.

Table 6: RAPN step recognition accuracy scores (in %) for different
tests(“Nephrec9” dataset)

Experimental protocols Accuracy (%)

“Hold-out 1”(EP1) 74.28%
“Hold-out 2” (EP2) 36.3±0.1%
“LOOCV” (EP3) 65.6±6.8%
“Baseline” (EP4) 43.8±11.2%



“Deep-Onto” network for surgical workflow and context recognition 15

4.2 “Sequence” model

The“Sequence” model and look-up table were 75.7% accurate (true sequence
prediction with 53 samples out of 70) in recognizing next steps based on the
predicted current steps by the “CRNN” during EP1. “Sequence” model pre-
dicted next steps with the larger execution time i.e. 3.41 ± 1.91 seconds as
compared to predictions with the look-up table i.e. 1.28×e−5±5.43×e−6 sec-
onds. However, considering the choice of the network design as well as further
exploitation of the network considering multiple step sequences recognition,
and end-to-end training, in this pipeline, RNN is an ideal choice for the se-
quence prediction task.

4.3 “Knowledge” model

Table 7: Results on surgical context recognition

Recognised context Relative frequency

Instruments
Robotic large needle driver 100%
Monopolar curved scissors 50%
Fenestrated bipolar 100%
Laparoscopic bulldog clamp 67%
Actions
Suture 100%
Dissect 80%
Put 100%
Resect 80%
Clamp 67%
Mark 100%
Phase
Renorraphy 100%
Hilum dissection 43%
Tumor resection 80%
Tumor exposure 100%
Closure 100%

As shown in Table 7, actions, instruments and phases are recognized with
lower relative frequency, i.e. less than 80%, due to wrong recognition of the
current step. Steps representing similar anatomy and inverse step relation
“hasPreviousStep” was responsible for the classification errors and incorrect
recognition of context with the knowledge model.

As shown in Fig. 8, intra-class variations are high, which makes the step
recognition task challenging. The large intra-subject variations, which reflects
subjectiveness in carrying out surgical steps, affect especially the features
extraction process, e.g. a length of frame sequences representing individual
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classes are variable. The latter could also be confirmed with the features plot-
ted in Fig. 7, which shows many overlapping clusters. The similar features
demonstrate that surgeons do not move the camera much, background tex-
tures are similar, and procedures are performed in the narrower region. A
large amount of data would also be needed to get the better results. Moreover,
understanding of the context including patients, states of devices, anesthesia,
team members, etc. could be extended as a future development of an operat-
ing room integrated system by including Internet of Things (IoT) approach
among all the instruments, room control etc.

Fig. 8: Intra-class variability of the acquired data, i.e. in 9 videos for 10 RAPN
steps, including mean±standard deviation (S.D.), in seconds)

5 Conclusion

We developed a novel “Deep-Onto” network which could allow one to recognize
surgical step and its successor step along with the surgical context to some
extent, e.g. instruments, actions and phases efficiently. We also developed a
new dataset on images of steps of RAPN. We found that the hybrid approach
could be useful to do multi-level recognition of the surgical workflow.

Major study limitation was the limited computational memory, i.e. we did
not be able to train the network end-to-end with the physical memory of 32
GB. In this work, surgical workflow recognition relies on the correct recognition
of ongoing step. However, this study is an essential step towards automatic
analysis of surgical workflow. The “Deep-Onto” network is also a modular
architecture where other sensor’s data, e.g. robot kinematic data could be
used more efficiently. The approach could also be extended to other RAS e.g.
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robotic cholecystectomy, where the learned network weights could be used for
the transfer learning. The ontology could also be extended with the relevant
entities of the robotics domain.

As a future work, we will include the temporal information, e.g. optical
flows to extract more discriminative features of frame sequences. Moreover,
“anatomy” which was currently grounded explicitly in the production rules, if
recognized could be used as a pre-condition as a real-time context recognition.
As it is hypothesized that a context for the recognition of surgical workflow
would be different at each step of the surgery, automatic generation of produc-
tion rules, e.g. with inductive learning [34], could provide extended capability
for adaptive learning on real-world instances.
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