

Presentation Outline

- Introduction
- B-Plane
- Definition
- Effect of resonances
- Deflection of a Near-Earth Object
- Geometrical deviation formulation
- Extension to deviation on the b-plane
- Results
- Optimal deviation technique
- Asteroid deflection preliminary mission design
- Conclusions

Introduction

Background - Near-Earth Objects (NEOs)

- Celestial bodies
- Asteroids
- Comets
- Close to or intersecting the Earth's orbit
- Atiras: $a<1 \mathrm{AU}, r_{a}<0.983 \mathrm{AU}$
- Atens: $a<1 \mathrm{AU}, r_{a}>0.983 \mathrm{AU}$
- Apollos: $a>1 \mathrm{AU}, r_{p}<1.017 \mathrm{AU}$
- Amors: $a>1 \mathrm{AU}, 1.017 \mathrm{AU}<r_{p}<1.3 \mathrm{AU}$
- Over 16.000 NEOs are present in the Solar System
- Relatively low catastrophic impact probability

- Catastrophic ($d>1 \mathrm{~km}$): 1 over millions of years
- Severe $(d>40 \mathrm{~m})$: 1 every 100 years or less

Introduction

Background - Deflection of Near-Earth Objects

- To avoid a possible impact
- Several techniques are possible
- Kinetic impactor
- Deflect a NEO by hitting it with a spacecraft at high relative speed
- Most mature technology
- Resonances
- Possibility of the fly-by to insert the NEO on a return orbit to the Earth

Image credits: NASA Planetary Defense - DART

Introduction

Aims of the Project

- Describe resonant returns by means of the b-plane
- Obtain a convenient analytical formulation correlating the deflection to the deviation on the b-plane
- Determine the optimal deflection direction to maximise the displacement on the b-plane
- Detail an optimal deflection strategy aimed at avoiding resonant returns of asteroids

B-PLANE

B-Plane

Definition

- Reference frame centred in the Earth
- η-axis identified by the planetocentric velocity vector \boldsymbol{U} of the NEO
- ζ-axis points in the opposite direction as the projection of the planet's velocity vector on the b plane
- ξ-axis completes the right-handed reference frame
- Impact parameter $b=\sqrt{\xi^{2}+\zeta^{2}}$

B-Plane

Definition

- ξ-axis represents the geometric distance between the two bodies' orbits at the encounter
- Minimum Orbit Intersection Distance (MOID)
- ζ-axis represents a shift in the time of arrival of the object at the planet
- Very convenient description of an encounter
- ξ-axis represents the geometric distance between the two bodies' orbits at the encounter
- Minimum Orbit Intersection Distance (MOID)
- ζ-axis represents a shift in the time of arrival of the object at the planet
- Very convenient description of an encounter

B-Plane

Resonances - Resonant Circles

- Resonant circles are regions of the b-plane corresponding to returns to Earth
- $k \mathrm{~T}_{P}=h \mathrm{~T}^{\prime} \rightarrow a^{\prime}$
- A circle can be drawn on the b-plane for each couple of integers (h, k)
- Hypotheses
- 2-Body Problem (2BP)
- Circular Earth orbit
- Coincident heliocentric positions of the Earth and the NEO

> Valsecchi et al., "Resonant returns to close approaches: Analytical theory", 2003

B-Plane

Resonances - Keyholes

- Keyholes are the regions of the bplane leading to a subsequent encounter
- Hit: pre-image of the Earth's cross-section
- Return: pre-image of the Sphere of Influence (SOI)'s cross-section
- Close to the resonant circles

B-Plane

Resonances - Numerical Keyhole Determination

- Hypotheses are removed
- Circular Earth orbit
- Coincident heliocentric positions of the NEO and the Earth
- Numerical computation technique
- Recording of the nominal encounter
- Exploration of the post-fly-by conditions of a synthetic set of ζ values
- If the resulting semi-major axis corresponds the period required to obtain a return after $h \cdot \mathrm{~T}_{N E O}$ and $k \cdot \mathrm{~T}_{\text {Earth }}$, the point is part of the (h, k) keyhole

- Extension to the ξ-axis

C㷋MPASS

DEFLECTION OF A NEAR-EARTH OBJECT

Deflection

Introduction

- Deflection mission
- Departure from Earth
- Asteroid hit
- Deflected NEO fly-by of the Earth
- Modeling
- Deflection a certain amount of time before the close approach
- Modeled through Gauss planetary equations
- Study the effect at the close approach
- Modeled through proximal motion equations

Earth orbit
NEO original orbit
Impactor
NEO modified
> Vasile and Colombo, "Optimal Impact Strategies for Asteroid Deflection", 2008

Deflection

Gauss Planetary Equations

- The deflection can be modeled as a change in the orbital parameters in function of an instantaneous perturbation of the NEO's velocity vector
- The Gauss planetary equations can be written in matrix form

$$
\boldsymbol{\delta} \boldsymbol{\alpha}_{d}=\boldsymbol{G}_{d} \boldsymbol{\delta} v_{d}
$$

- The variation in the asteroid's orbital parameters is obtained in function of the deflection velocity vector components

Deflection

Proximal Motion Equations

- The perturbed orbit of the NEO following the deflection can be considered as being proximal to the nominal one
- The proximal motion equations can be written in matrix form

$$
\boldsymbol{\delta} \boldsymbol{r}_{\text {MOID }}=\boldsymbol{A}_{\text {MOID }} \boldsymbol{\delta} \boldsymbol{\alpha}_{d}
$$

- The deviation at the encounter is expressed in function of the variation of the NEO's orbital parameters at the time of the deviation

Deflection

Compact Formulation

- Combining the proximal motion and Gauss planetary equations
- Analytical correlation between the deflection action and the geometric deviation

$$
\begin{gathered}
\left\{\begin{array}{c}
\boldsymbol{\delta} r_{M O I D}=\boldsymbol{A}_{M O I D} \boldsymbol{\delta} \alpha_{d} \\
\boldsymbol{\delta} \alpha_{d}=\boldsymbol{G}_{d} \boldsymbol{\delta} \boldsymbol{v}_{d}
\end{array} \Rightarrow \boldsymbol{\delta} \boldsymbol{r}_{M O I D}=\boldsymbol{A}_{M O I D} \boldsymbol{G}_{d} \boldsymbol{\delta} \boldsymbol{v}_{d}\right. \\
\boldsymbol{\delta} \boldsymbol{r}_{M O I D}=\boldsymbol{T} \boldsymbol{\delta} \boldsymbol{v}_{d}
\end{gathered}
$$

- Easy optimisation with the eigenvector method
- Maximising $\left\|\boldsymbol{\delta} \boldsymbol{r}_{\text {MOID }}\right\|$ is equivalent to maximising the quadratic form $\boldsymbol{T}^{\boldsymbol{T}} \boldsymbol{T}$
- Achieved by choosing $\boldsymbol{\delta} \boldsymbol{v}_{d}$ parallel to the direction of the eigenvector of the matrix $\boldsymbol{T}^{\boldsymbol{T}} \boldsymbol{T}$ conjugated to its maximum eigenvalue
- The direction is constrained
- The sign can be chosen to in order to increase the distance of the encounter
> M. Vasile and C. Colombo, "Optimal Impact Strategies for Asteroid Deflection", 2008

Deflection

Extension to the B-Plane

- The previously obtained analytical formulation can be extended to the deviation on the b-plane
- Impact parameter δb
- Variation along the ξ-axis $\delta \xi$
- Variation along the ζ-axis $\delta \zeta$
- The analytical nature is retained
- Matrix formulation
- The same eigenvector-based maximisation can be applied

Deflection

Optimal Deflection Direction - b

$$
\begin{gathered}
\boldsymbol{\delta} \boldsymbol{b}_{M O I D}=\boldsymbol{\delta} \boldsymbol{r}_{M O I D}-\left(\boldsymbol{\delta} \boldsymbol{r}_{M O I D} \cdot \boldsymbol{e}_{\boldsymbol{\eta}}\right) \boldsymbol{e}_{\boldsymbol{\eta}} \\
=\boldsymbol{e}_{\boldsymbol{\eta}} \times\left(\boldsymbol{\delta} \boldsymbol{r}_{M O I D} \times \boldsymbol{e}_{\boldsymbol{\eta}}\right)=\boldsymbol{M}_{\boldsymbol{\delta} \boldsymbol{b}} \boldsymbol{\delta} \boldsymbol{r}_{M O I D} \\
\boldsymbol{M}_{\boldsymbol{\delta} \boldsymbol{b}}=\left[\begin{array}{ccc}
e_{\eta_{2}}{ }^{2}+e_{\eta_{3}}{ }^{2} & -e_{\eta_{1}} e_{\eta_{2}} & -e_{\eta_{1}} e_{\eta_{3}} \\
-e_{\eta_{1}} e_{\eta_{2}} & e_{\eta_{1}}{ }^{2}+e_{\eta_{3}}{ }^{2} & -e_{\eta_{2}} e_{\eta_{3}} \\
-e_{\eta_{1}} e_{\eta_{3}} & -e_{\eta_{2}} e_{\eta_{3}} & e_{\eta_{1}}{ }^{2}+e_{\eta_{2}}{ }^{2}
\end{array}\right] \\
\boldsymbol{\delta} \boldsymbol{b}_{M O I D}=\boldsymbol{M}_{\boldsymbol{\delta} \boldsymbol{b}} \boldsymbol{T} \boldsymbol{\delta} \boldsymbol{v}_{d}=\boldsymbol{T}_{\boldsymbol{\delta} \boldsymbol{b}} \boldsymbol{\delta} \boldsymbol{v}_{d}
\end{gathered}
$$

- The maximisation of $\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }}$ is achieved by choosing $\boldsymbol{\delta} v_{d}$ parallel to the eigenvector conjugated to the maximum eigenvalue of $\boldsymbol{T}_{\boldsymbol{\delta} \boldsymbol{b}}{ }^{T} \boldsymbol{T}_{\boldsymbol{\delta} \boldsymbol{b}}$

Deflection

Optimal Deflection Direction - ξ
$\boldsymbol{\delta} \boldsymbol{\xi}_{\text {MOID }}=\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }}-\left(\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }} \cdot \boldsymbol{e}_{\zeta}\right) \boldsymbol{e}_{\zeta}$
$=\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }} \times \boldsymbol{e}_{\zeta}\right)=\boldsymbol{M}_{\boldsymbol{\delta \xi}} \boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }}$
$\boldsymbol{M}_{\boldsymbol{\delta \xi}}=\left[\begin{array}{ccc}e_{\zeta_{2}}{ }^{2}+e_{\zeta_{3}}{ }^{2} & -e_{\zeta_{1}} e_{\zeta_{2}} & -e_{\zeta_{1}} e_{\zeta_{3}} \\ -e_{\zeta_{1}} e_{\zeta_{2}} & e_{\zeta_{1}}{ }^{2}+e_{\zeta_{3}}{ }^{2} & -e_{\zeta_{2}} e_{\zeta_{3}} \\ -e_{\zeta_{1}} e_{\zeta_{3}} & -e_{\zeta_{2}} e_{\zeta_{3}} & e_{\zeta_{1}}{ }^{2}+e_{\zeta_{2}}{ }^{2}\end{array}\right]$
$\boldsymbol{\delta \xi _ { \text { MOID } } = \boldsymbol { M } _ { \boldsymbol { \delta \xi } } \boldsymbol { T } _ { \boldsymbol { \delta } \boldsymbol { b } } \boldsymbol { \delta } \boldsymbol { v } _ { d } = \boldsymbol { T } _ { \boldsymbol { \delta \xi } } \boldsymbol { \delta } \boldsymbol { v } _ { d }}$

- The maximisation of $\boldsymbol{\delta} \boldsymbol{\xi}_{\text {MOID }}$ is achieved by choosing $\boldsymbol{\delta} \boldsymbol{v}_{d}$ parallel to the eigenvector conjugated to the maximum eigenvalue of $\boldsymbol{T}_{\boldsymbol{\delta}}{ }^{T} \boldsymbol{T}_{\boldsymbol{\delta}}$

Deflection

Optimal Deflection Direction - ζ

$$
\begin{aligned}
& \boldsymbol{\delta} \zeta_{\text {MOID }}=\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }}-\left(\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }} \cdot \boldsymbol{e}_{\xi}\right) \boldsymbol{e}_{\xi} \\
& =\boldsymbol{e}_{\xi} \times\left(\boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }} \times \boldsymbol{e}_{\xi}\right)=\boldsymbol{M}_{\delta \zeta} \boldsymbol{\delta} \boldsymbol{b}_{\text {MOID }} \\
& \boldsymbol{M}_{\boldsymbol{\delta} \zeta}=\left[\begin{array}{ccc}
e_{\xi_{2}}{ }^{2}+e_{\xi_{3}}{ }^{2} & -e_{\xi_{1}} e_{\xi_{2}} & -e_{\xi_{1}} e_{\xi_{3}} \\
-e_{\xi_{1}} e_{\xi_{2}} & e_{\xi_{1}}{ }^{2}+e_{\xi_{3}}{ }^{2} & -e_{\xi_{2}} e_{\xi_{3}} \\
-e_{\xi_{1}} e_{\xi_{3}} & -e_{\xi_{2}} e_{\xi_{3}} & e_{\xi_{1}}{ }^{2}+e_{\xi_{2}}{ }^{2}
\end{array}\right] \\
& \delta \boldsymbol{\zeta}_{\text {MOID }}=\boldsymbol{M}_{\delta \zeta} \boldsymbol{T}_{\delta b} \delta v_{d}=\boldsymbol{T}_{\delta \zeta} \delta v_{d} \\
& \text { - The maximisation of } \boldsymbol{\delta} \zeta_{\text {MOID }} \text { is achieved by choosing } \\
& \boldsymbol{\delta} \boldsymbol{v}_{d} \text { parallel to the eigenvector conjugated to the } \\
& \text { maximum eigenvalue of } \boldsymbol{T}_{\delta \zeta}{ }^{T} \boldsymbol{T}_{\boldsymbol{\delta} \zeta}
\end{aligned}
$$

Deflection

Optimal Deflection Strategy

- Aimed at avoiding the keyholes
- A deviation along ζ is considered
- Most convenient for early deflections
- Target ζ value
- Nominal encounter within a keyhole
- The middle point between the keyhole and the closest one
- Nominal encounter between keyholes
- The middle point between the considered keyholes

Deflection

Optimal Deflection Strategy

- $\boldsymbol{\delta} \boldsymbol{v}$ vector determination
- Direction of maximum $\delta \zeta$ variation through the eigenvector method
- Modulus ${ }^{\delta \zeta} / \delta \zeta_{\text {eig }}$
$-\delta \zeta_{\text {eig }}$ is the displacement obtained with a unitary $\boldsymbol{\delta} \boldsymbol{v}$ vector
- Not a pure maximisation when trying to avoid a keyhole

Results

Optimal Deflection Strategy

- 2095 encounter of 2010 RF $_{12}$-like with the Earth
- 2-Body Problem (2BP)
- Modified to take place in the $(6,5)$ keyhole
- Deflection mission
- Optimal deflection strategy to maximise the distance from the keyholes
- Target ζ value between keyholes $(6,5)$ and $(7,6)$

Results

Preliminary Deflection Mission Design

- 2095 encounter of $2010 \mathrm{RF}_{12}$ with the Earth
- 2BP
- Assumed structure
- Escape from Earth
- Deep-Space Manoeuvre
- Impact
- Assumed data
- Warning time of 9 y
- Maximum Time Of Flight (TOF) of $1 \cdot \mathrm{~T}_{\text {NEO }}$
- Multi-objective optimisation
- Maximisation of the distance from the closest keyholes

- Minimising the S/C initial mass

Results

Preliminary Deflection Mission Design

- Most effective strategy corresponding to a deviation along the ζ-axis away from the closest keyhole
- In this case, the deviation does not overcome the middle point between the keyholes
- Equivalent results to maximising the distance from the closest keyhole

$$
\boldsymbol{\delta} v_{t n h}=\left\{\begin{array}{l}
-1.4581 \\
-1.3736 \\
-0.0637
\end{array}\right\} \cdot 10^{-3 \mathrm{~m} / \mathrm{s}}
$$

- The deviation features a very significant normal component
- The more realistic strategy cannot guarantee the ideal deflection direction

Conclusions

Main Contributions

- An analytical correlation between the deflection and the displacement on the b-plane has been obtained
- The eigenvector maximisation technique has been applied to each case in order to define the optimal deflection direction
- An optimal deflection technique has been devised to avoid the keyholes
- Based on the knowledge that the deflection is most effective in the phasing (ζ-axis)
- Aimed ad avoiding resonant returns (i.e. the keyholes)
- A preliminary mission design supports the viability of the technique

Conclusions

Future Developments

- Consider a more refined propagation method (n-body)
- Define the keyholes
- Obtain more accurate propagation results
- Consider a set of initial conditions for the asteroid position
- Consider a more complex model for the deflection of the NEO
- Define alternative optimal deflection strategies
- Account for the return time associated with each keyhole
- Account for manoeuvre cost

B-Plane

Resonances

- Reachability of resonances
- Circles with $R<\xi_{\text {encounter }}$ are considered as unreachable, as $\xi_{\text {encounter }}$ is the minimum value that the impact parameter can reach in the case that the two orbits are perfectly phased (i.e. the MOID)
- As the b-plane is built on the hypothesis of a two-body propagation, the circles corresponding to returns that would be very distant in time cannot be considered as representative of the real conditions
- A limit of $h=k=10$ can be considered as reasonable

Deflection

Gauss Planetary Equations

- $\delta a=\frac{2 a^{2} v_{d}}{\mu} \delta v_{t}$
- $\delta e=\frac{1}{v_{d}}\left[2\left(e+\cos \theta_{d}\right) \delta v_{t}-\frac{r_{d}}{a} \sin \theta_{d} \delta v_{n}\right]$
- $\delta i=\frac{r_{d} \cos \theta^{*} d}{h} \delta v_{h}$
- $\delta \Omega=\frac{r_{d} \sin { }^{*} d}{h \sin i} \delta v_{h}$
- $\delta \omega=\frac{1}{e v_{d}}\left[2 \sin \theta_{d} \delta v_{t}+\left(2 e+\frac{r_{d}}{a} \cos \theta_{d}\right) \delta v_{n}\right]-\frac{r_{d} \operatorname{si} \quad{ }^{*}{ }_{d} \mathrm{co}}{h \sin i} \delta v_{h}$
- $\delta M_{t_{d}}=-\frac{b}{e a v_{d}}\left[2\left(1+\frac{e^{2} r_{d}}{p}\right) \sin \theta_{d} \delta v_{t}+\frac{r_{d}}{a} \cos \theta_{d} \delta v_{n}\right]$
- $\delta M_{n}=\delta n \Delta t=\left(\sqrt{\frac{\mu}{a^{3}}}-\sqrt{\frac{\mu}{(a+\delta a)^{3}}}\right)\left(t_{\text {MOID }}-t_{n}\right)=-\frac{3}{2} \frac{\sqrt{\mu}}{a^{5} / 2} \Delta t \delta a$
- $\delta M=\delta M_{t_{d}}+\delta M_{n}=-\frac{b}{e a v}\left[2\left(1+\frac{e^{2} r}{p}\right) \sin \theta_{d} \delta v_{t}+\frac{r}{a} \cos \theta_{d} \delta v_{n}\right]-\frac{3}{2} \frac{\sqrt{\mu}}{a^{5} / 2} \Delta t \delta a$

11/12/2018

Deflection

Proximal Motion Equations

- $\delta s_{r} \cong \frac{r_{\text {MOID }}}{a} \delta a+\frac{a e \text { si } \quad \text { MOID }}{\eta} \delta M-a \cos \theta_{\text {MOID }} \delta e$
- $\delta s_{\theta} \cong \frac{r_{\text {MOID }}}{\eta^{3}}\left(1+e \cos \theta_{\text {MOID }}\right)^{2} \delta M+r_{\text {MOID }} \delta \omega+\frac{r_{\text {MOID }} \sin \theta_{\text {MOID }}}{\eta^{2}}(2+$ $\left.e \cos \theta_{\text {MOID }}\right) \delta e+r_{\text {MOID }} \cos i \delta \Omega$
- $\delta s_{h} \cong r_{\text {MOID }}\left(\sin \theta^{*}{ }_{\text {MOID }} \delta i-\cos \theta_{\text {MOID }} \sin i \delta \Omega\right)$

Deflection

Matrix Formulation

- $\left\{\begin{array}{c}\boldsymbol{\delta} \boldsymbol{r}_{M O I D}=\boldsymbol{A}_{\text {MOID }} \boldsymbol{\delta} \boldsymbol{\alpha}_{d} \\ \boldsymbol{\delta} \boldsymbol{\alpha}_{d}=\boldsymbol{G}_{d} \boldsymbol{\delta} \boldsymbol{v}_{d}\end{array} \Rightarrow \boldsymbol{\delta} \boldsymbol{r}_{\text {MOID }}=\boldsymbol{A}_{\text {MOID }} \boldsymbol{G}_{d} \boldsymbol{\delta} \boldsymbol{v}_{d}=\boldsymbol{T} \boldsymbol{\delta} \boldsymbol{v}_{d}\right.$

Deflection

Validation of the Eigenvector Method and Deflection Profile

- Apophis
- Comparison with numerical method
- Equivalent results
- Non-convergence of the numerical method
- Cumulative effect when maximising the δb
- No cumulative effect when maximising $\delta \xi$
- Cumulative effect when maximising $\delta \zeta$

Results

Optimal Deflection Strategy

- The cost of the deflection decreases when performing the manoeuvre in advance
- A fixed-magnitude deflection yields a different effect in function of the deflection time
- The magnitude of the deflection must be controlled to avoid other keyholes

