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 Introduction
 B-Plane

• Definition
• Effect of resonances

 Deflection of a Near-Earth Object
• Geometrical deviation formulation
• Extension to deviation on the b-plane

 Results
• Optimal deviation technique
• Asteroid deflection preliminary mission design

 Conclusions
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 Celestial bodies
• Asteroids
• Comets

 Close to or intersecting the Earth’s orbit
• Atiras: 𝑎 < 1 AU, 𝑟 < 0.983 AU

• Atens: 𝑎 < 1 AU, 𝑟 > 0.983 AU

• Apollos: 𝑎 > 1 AU, 𝑟 < 1.017 AU

• Amors: 𝑎 > 1 AU, 1.017 AU < 𝑟 < 1.3 AU

 Over 16˙000 NEOs are present in the Solar 
System

 Relatively low catastrophic impact probability
• Catastrophic (𝑑 > 1 km): 1 over millions of 

years
• Severe (𝑑 > 40 m): 1 every 100 years or 

less
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Introduction
Background - Near-Earth Objects (NEOs) 

Image credits: NASA apod 14/11/2007 – Leonid Kulik Expedition
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 To avoid a possible impact
 Several techniques are possible
 Kinetic impactor

• Deflect a NEO by hitting it 
with a spacecraft at high 
relative speed

• Most mature technology
 Resonances

• Possibility of the fly-by to 
insert the NEO on a return 
orbit to the Earth
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Introduction
Background - Deflection of Near-Earth Objects

Image credits: NASA Planetary Defense - DART 
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 Describe resonant returns by means of the b-plane
 Obtain a convenient analytical formulation correlating the deflection to 

the deviation on the b-plane

 Determine the optimal deflection direction to maximise the displacement 
on the b-plane

 Detail an optimal deflection strategy aimed at avoiding resonant returns 
of asteroids
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Introduction
Aims of the Project
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B-PLANE
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 Reference frame centred in the 
Earth

 𝜂-axis identified by the 
planetocentric velocity vector 𝑼
of the NEO

 𝜁-axis points in the opposite 
direction as the projection of the 
planet’s velocity vector on the b-
plane

 𝜉-axis completes the right-handed 
reference frame

 Impact parameter 𝑏 = 𝜉 + 𝜁
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B-Plane
Definition

Image credits: F. Letizia, J. Van den Eynde and C. Colombo, "SNAPPshot ESA 
planetary protection compliance verification software, Final report," 2016 
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 Valsecchi et al., “Resonant returns to close approaches: Analytical theory”, 2003
 Öpik, “Interplanetary Encounters”, 1976

 𝜉-axis represents the geometric 
distance between the two bodies’ 
orbits at the encounter

• Minimum Orbit Intersection 
Distance (MOID)

 𝜁-axis represents a shift in the 
time of arrival of the object at the 
planet

 Very convenient description of an 
encounter
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B-Plane
Definition
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Image credits: F. Letizia, J. Van den Eynde and C. Colombo, "SNAPPshot ESA 
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 Resonant circles are regions of the 
b-plane corresponding to returns 
to Earth

• 𝑘Τ = ℎΤ′ ⟶ 𝑎′

• A circle can be drawn on the 
b-plane for each couple of 
integers ℎ, 𝑘

 Hypotheses
• 2-Body Problem (2BP)
• Circular Earth orbit
• Coincident heliocentric 

positions of the Earth and the 
NEO
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B-Plane
Resonances – Resonant Circles

 Valsecchi et al., “Resonant returns to close approaches: Analytical theory”, 2003
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 Keyholes are the regions of the b-
plane leading to a subsequent 
encounter

• Hit: pre-image of the Earth’s 
cross-section

• Return: pre-image of the 
Sphere of Influence (SOI)’s 
cross-section

 Close to the resonant circles
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B-Plane
Resonances - Keyholes
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 Hypotheses are removed
• Circular Earth orbit
• Coincident heliocentric positions 

of the NEO and the Earth
 Numerical computation technique

• Recording of the nominal 
encounter

• Exploration of the post-fly-by 
conditions of a synthetic set of 𝜁
values

• If the resulting semi-major axis 
corresponds the period required 
to obtain a return after ℎ Τ ′
and 𝑘 Τ , the point is part 
of the ℎ, 𝑘 keyhole

• Extension to the 𝜉-axis
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B-Plane
Resonances – Numerical Keyhole Determination
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DEFLECTION OF A NEAR-EARTH 
OBJECT
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 Deflection mission
• Departure from Earth
• Asteroid hit
• Deflected NEO fly-by of the Earth

 Modeling
• Deflection a certain amount of 

time before the close approach
‒ Modeled through Gauss 

planetary equations
• Study the effect at the close 

approach
‒ Modeled through proximal 

motion equations
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Deflection
Introduction

Earth orbit
NEO original orbit
Impactor
NEO modified
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 Vasile and Colombo, “Optimal Impact Strategies for Asteroid Deflection”, 2008

 The deflection can be modeled as a change in the orbital parameters in 
function of an instantaneous perturbation of the NEO’s velocity vector

 The Gauss planetary equations can be written in matrix form

𝜹𝜶 = 𝑮 𝜹𝒗

 The variation in the asteroid’s orbital parameters is obtained in function 
of the deflection velocity vector components

Optimal Deflection of Near-Earth Objects Using the B-Plane 14

Deflection
Gauss Planetary Equations

Impactor

Nominal trajectory

Deflected trajectory
NEO
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 The perturbed orbit of the NEO following the deflection can be 
considered as being proximal to the nominal one

 The proximal motion equations can be written in matrix form

𝜹𝒓 = 𝑨 𝜹𝜶

 The deviation at the encounter is expressed in function of the variation of 
the NEO’s orbital parameters at the time of the deviation
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Deflection
Proximal Motion Equations

𝜹𝒓

Nominal trajectory
Deflected trajectory

Earth
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 Combining the proximal motion and Gauss planetary equations
 Analytical correlation between the deflection action and the geometric deviation

𝜹𝒓 = 𝑨 𝜹𝜶
𝜹𝜶 = 𝑮 𝜹𝒗

⟹ 𝜹𝒓 = 𝑨 𝑮 𝜹𝒗

𝜹𝒓 = 𝑻𝜹𝒗

 Easy optimisation with the eigenvector method
• Maximising 𝜹𝒓 is equivalent to maximising the quadratic form 𝑻𝑻𝑻
• Achieved by choosing 𝜹𝒗 parallel to the direction of the eigenvector of the 

matrix 𝑻𝑻𝑻 conjugated to its maximum eigenvalue
‒ The direction is constrained
‒ The sign can be chosen to in order to increase the distance of the 

encounter
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Deflection
Compact Formulation

 M. Vasile and C. Colombo, “Optimal Impact Strategies for Asteroid Deflection”, 2008
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 The previously obtained analytical 
formulation can be extended to 
the deviation on the b-plane

• Impact parameter 𝛿𝑏

• Variation along the 𝜉-axis 𝛿𝜉

• Variation along the 𝜁-axis 𝛿𝜁

 The analytical nature is retained
• Matrix formulation
• The same eigenvector-based 

maximisation can be applied
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Deflection
Extension to the B-Plane
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𝜹𝒃 = 𝜹𝒓 − 𝜹𝒓  𝒆𝜼 𝒆𝜼

= 𝒆𝜼 × 𝜹𝒓 × 𝒆𝜼 = 𝑴𝜹𝒃𝜹𝒓

𝑴𝜹𝒃 =

𝑒 + 𝑒 −𝑒 𝑒 −𝑒 𝑒

−𝑒 𝑒 𝑒 + 𝑒 −𝑒 𝑒

−𝑒 𝑒 −𝑒 𝑒 𝑒 + 𝑒

𝜹𝒃 = 𝑴𝜹𝒃𝑻𝜹𝒗 = 𝑻𝜹𝒃𝜹𝒗

 The maximisation of 𝜹𝒃 is achieved by choosing 
𝜹𝒗 parallel to the eigenvector conjugated to the 
maximum eigenvalue of 𝑻𝜹𝒃 𝑻𝜹𝒃
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Deflection
Optimal Deflection Direction - 𝑏
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𝜹𝝃 = 𝜹𝒃 − 𝜹𝒃  𝒆𝜻 𝒆𝜻

= 𝒆𝜻 × 𝜹𝒃 × 𝒆𝜻 = 𝑴𝜹𝝃𝜹𝒃

𝑴𝜹𝝃 =

𝑒 + 𝑒 −𝑒 𝑒 −𝑒 𝑒

−𝑒 𝑒 𝑒 + 𝑒 −𝑒 𝑒

−𝑒 𝑒 −𝑒 𝑒 𝑒 + 𝑒

𝜹𝝃 = 𝑴𝜹𝝃𝑻𝜹𝒃𝜹𝒗 = 𝑻𝜹𝝃𝜹𝒗

 The maximisation of 𝜹𝝃 is achieved by choosing 
𝜹𝒗 parallel to the eigenvector conjugated to the 
maximum eigenvalue of 𝑻𝜹𝝃 𝑻𝜹𝝃
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Deflection
Optimal Deflection Direction - 𝜉

C
o

m
p

o
n

en
t 

va
lu

e
 [

km
/s

]

11/12/2018

2010 RF12

𝜹𝜻 = 𝜹𝒃 − 𝜹𝒃  𝒆𝝃 𝒆𝝃

= 𝒆𝝃 × 𝜹𝒃 × 𝒆𝝃 = 𝑴𝜹𝜻𝜹𝒃

𝑴𝜹𝜻 =

𝑒 + 𝑒 −𝑒 𝑒 −𝑒 𝑒

−𝑒 𝑒 𝑒 + 𝑒 −𝑒 𝑒

−𝑒 𝑒 −𝑒 𝑒 𝑒 + 𝑒

𝜹𝜻 = 𝑴𝜹𝜻𝑻𝜹𝒃𝜹𝒗 = 𝑻𝜹𝜻𝜹𝒗

 The maximisation of 𝜹𝜻 is achieved by choosing 
𝜹𝒗 parallel to the eigenvector conjugated to the 
maximum eigenvalue of 𝑻𝜹𝜻 𝑻𝜹𝜻
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Deflection
Optimal Deflection Direction - 𝜁
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ζ

ξ

 Aimed at avoiding the keyholes
 A deviation along 𝜁 is considered

• Most convenient for early 
deflections

 Target 𝜁 value
• Nominal encounter within a 

keyhole
‒ The middle point 

between the keyhole and 
the closest one

• Nominal encounter between 
keyholes

‒ The middle point 
between the considered 
keyholes
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Deflection
Optimal Deflection Strategy

ζ

ξ
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 𝜹𝒗 vector determination
• Direction of maximum 𝛿𝜁

variation through the 
eigenvector method

• Modulus 

‒ 𝛿𝜁 is the displacement 
obtained with a unitary 
𝜹𝒗 vector

 Not a pure maximisation when 
trying to avoid a keyhole
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Deflection
Optimal Deflection Strategy

ζ
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RESULTS
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 2095 encounter of 2010 RF12-like 
with the Earth

• 2-Body Problem (2BP)
• Modified to take place in the 

6,5 keyhole
 Deflection mission

• Optimal deflection strategy to 
maximise the distance from 
the keyholes

• Target 𝜁 value between 
keyholes 6,5 and 7,6
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Results
Optimal Deflection Strategy

2101
2095
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 2095 encounter of 2010 RF12 with 
the Earth

 2BP
 Assumed structure

• Escape from Earth
• Deep-Space Manoeuvre
• Impact

 Assumed data
• Warning time of 9 y
• Maximum Time Of Flight 

(TOF) of 1 Τ

 Multi-objective optimisation
• Maximisation of the distance 

from the closest keyholes
• Minimising the S/C initial 

mass
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Results
Preliminary Deflection Mission Design
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 Most effective strategy 
corresponding to a deviation along 
the 𝜁-axis away from the closest 
keyhole

 In this case, the deviation does not 
overcome the middle point between 
the keyholes

• Equivalent results to maximising
the distance from the closest 
keyhole

𝜹𝒗𝒕𝒏𝒉 =
−1.4581
−1.3736
−0.0637

10  m s⁄

 The deviation features a very 
significant normal component

• The more realistic strategy 
cannot guarantee the ideal 
deflection direction 
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Results
Preliminary Deflection Mission Design
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 An analytical correlation between the deflection and the displacement on 
the b-plane has been obtained

• The eigenvector maximisation technique has been applied to each 
case in order to define the optimal deflection direction

 An optimal deflection technique has been devised to avoid the keyholes
• Based on the knowledge that the deflection is most effective in the 

phasing (𝜁-axis)
• Aimed ad avoiding resonant returns (i.e. the keyholes)
• A preliminary mission design supports the viability of the technique

Conclusions
Main Contributions
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 Consider a more refined propagation method (𝑛-body)
• Define the keyholes
• Obtain more accurate propagation results

 Consider a set of initial conditions for the asteroid position

 Consider a more complex model for the deflection of the NEO
 Define alternative optimal deflection strategies

• Account for the return time associated with each keyhole
• Account for manoeuvre cost

Conclusions
Future Developments
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 Reachability of resonances
• Circles with 𝑅 < 𝜉 are considered as unreachable, as 

𝜉 is the minimum value that the impact parameter can 
reach in the case that the two orbits are perfectly phased (i.e. the 
MOID)

• As the b-plane is built on the hypothesis of a two-body propagation, 
the circles corresponding to returns that would be very distant in 
time cannot be considered as representative of the real conditions

‒ A limit of ℎ = 𝑘 = 10 can be considered as reasonable
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B-Plane
Resonances
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 𝛿𝑎 = 𝛿𝑣

 𝛿𝑒 = 2 𝑒 + cos 𝜃 𝛿𝑣 − sin 𝜃 𝛿𝑣

 𝛿𝑖 =
∗

𝛿𝑣

 𝛿Ω =
∗

𝛿𝑣

 𝛿𝜔 = 2 sin 𝜃 𝛿𝑣 + 2𝑒 + cos 𝜃 𝛿𝑣 −
∗

𝛿𝑣

 𝛿𝑀 = − 2 1 + sin 𝜃 𝛿𝑣 + cos 𝜃 𝛿𝑣

 𝛿𝑀 = 𝛿𝑛Δ𝑡 =
 

−
 

𝑡 − 𝑡 = −
 

Δ𝑡𝛿𝑎

 𝛿𝑀 = 𝛿𝑀 + 𝛿𝑀 = − 2 1 + sin 𝜃 𝛿𝑣 + cos 𝜃 𝛿𝑣 −
 

Δ𝑡𝛿𝑎
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Deflection
Gauss Planetary Equations

 𝛿𝑠 ≅ 𝛿𝑎 + 𝛿𝑀 − 𝑎 cos 𝜃 𝛿𝑒

 𝛿𝑠 ≅ 1 + 𝑒 cos 𝜃 𝛿𝑀 + 𝑟 𝛿𝜔 + (2 +

𝑒 cos 𝜃 )𝛿𝑒 + 𝑟 cos 𝑖 𝛿Ω

 𝛿𝑠 ≅ 𝑟 sin 𝜃∗ 𝛿𝑖 − cos 𝜃∗ sin 𝑖 𝛿Ω

11/12/2018 Optimal Deflection of Near-Earth Objects Using the B-Plane 32

Deflection
Proximal Motion Equations
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𝜹𝒓 = 𝑨 𝜹𝜶

𝜹𝜶 = 𝑮 𝜹𝒗
⟹ 𝜹𝒓 = 𝑨 𝑮 𝜹𝒗 = 𝑻𝜹𝒗

 𝑨 =

−
 

Δ𝑡 − 1 + 𝑒 cos 𝜃
 

Δ𝑡 0

−𝑎 cos 𝜃 2 + 𝑒 cos 𝜃 0

0 0      𝑟 sin 𝜃∗       
0 𝑟 cos 𝑖 −𝑟 cos 𝜃∗ sin 𝑖
0 𝑟 0

                                           1 + 𝑒 cos 𝜃           0

 𝑮 =

0 0

        𝑒 + cos 𝜃               − sin 𝜃       0

0 0     
∗

    

0 0
∗

−
∗

− 1 + sin 𝜃 − cos 𝜃 0

11/12/2018 Optimal Deflection of Near-Earth Objects Using the B-Plane 33

Deflection
Matrix Formulation

 Apophis
 Comparison with numerical 

method

 Equivalent results
• Non-convergence of the 

numerical method

 Cumulative effect when 
maximising the 𝛿𝑏

 No cumulative effect when 
maximising 𝛿𝜉

 Cumulative effect when 
maximising 𝛿𝜁
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Deflection
Validation of the Eigenvector Method and Deflection Profile
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 The cost of the deflection 
decreases when performing the 
manoeuvre in advance

 A fixed-magnitude deflection 
yields a different effect in function 
of the deflection time

 The magnitude of the deflection 
must be controlled to avoid other 
keyholes
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Results
Optimal Deflection Strategy
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