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▪ Minor bodies in Solar System:
• Asteroids
• Comets

▪ NEOs: Near Earth Objects

• 𝑟𝑝 < 1.3 AU
• Over 18,000 present in our Solar system

▪ PHAs: potentially hazardous asteroids
• 𝑀𝑂𝐼𝐷 < 0.05 𝐴𝑈& 𝐻 < 22
• Not null probability of impact with Earth

▪ Impact probability:
• Airburst (few meters diameter)
• Severe (40 𝑚 < 𝑑 < 200 𝑚): 1 every around 

100 years
• Catastrophic (𝑑 > 1 𝑘𝑚): 1 over millions of 

years
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Introduction
Background

Image credits: Cheliabinsk, Fayerwayer.com; Tunguska, Space.com; Yucatan, noao.edu 



▪ To prevent a possible impact
several strategies have been 
studied

▪ Kinetic impactor

• Consists of hitting the NEO 
with a spacecraft at high 
relative velocity to deflect it

• Highest TRL

• Simplest technology

▪ Missions:

• AIM + DART – AIDA [1], [2]
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Introduction
Deflection methods

[1] “NASA - DART,” [Online]. Available: https://www.nasa.gov/planetarydefense/dart. [Accessed 16 August 2018 ].
[2] “ESA - Space Dart,” [Online]. Available: https://m.esa.int/Our_Activities/Space_Engineering_Technology/Hera/Highlights / Space_DART. [Accessed 15 
August 2018].

Image credits: ESA Space in Images – 2015 – AIDA concept logo



▪ Create a method in order to include the gravity assist of Earth, Mars and 
Venus in the design of a deflection mission (following [3] and [4]):

• Kinetic impactor

• Maximise achievable deflection

▪ Improve the method introducing further techniques aimed to increase 
the maximum achievable deflection

▪ Apply the method to a single real NEO and to a synthetic population of 
NEOs spread through all the spectrum of orbital parameters and analyse 
the global qualitative results
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Introduction
Project aims

[3] A. Rathke and D. Izzo, “Keplerian consequences of an impact on an asteroid and their relevance for a deflection demonstration mission,” Proceedeings of the 
International Astronomical Union, vol. 2, pp. 417-426, 2006. 
[4] M. Vasile and C. Colombo, “Optimal Impact Strategies for Asteroid Deflection,” Journal of Guidance, Control and Dynamics, vol. 31, no. 4, 2008. 



▪ Model formulation
• Deflection
• Mission design
• Optimisation
• Transfer stages
• Multi-revolution Lambert model

▪ Results on a single test case
• Direct Hit
• Gravity assist
• Multi-revolution Lambert model
• Powered gravity assist

▪ Deflection efficiency against a synthetic population of NEOs
• Model
• Results

▪ Conclusions
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Presentation outline



MODEL FORMULATION
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▪ Mission design

• Launch from Earth

• Interplanetary transfers

• Deep space manoeuvres

• Gravity assist

▪ Deflection of the NEO

• Collision before MOID

• Variation of orbital parameters (Gauss’ planetary equations)

• Deflection achieved (Proximal motion equations)
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Model formulation
Mission stages



▪ The impact is modelled as a completely inelastic collision, the variation 
of velocity imparted to the asteroid is:

𝛿𝒗𝑑 = 𝛽
𝑚𝑆𝐶

𝑚𝑆𝐶 + 𝑚𝑁𝐸𝑂
𝛥𝒗

▪ The variation of orbital parameters of the NEO is computed through the 
Gauss’ planetary equations [5]:

𝛿𝜶𝑑 = 𝑮𝑑𝛿𝒗𝑑

▪ Finally the deflection is computed through the use of the proximal 
motion equations [6]:

𝛿𝒓𝑀𝑂𝐼𝐷 = 𝑨𝑀𝑂𝐼𝐷𝛿𝜶𝑑
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Model formulation
Deflection of the NEO

[5] H. Schaub and J. L. Junkins, in Analytical Mechanics of Space Systems, Reston, American Institute of Aeronautics and Astronautics, 2003, pp. 592-623
[6] R. H. Battin and R. H., An Introduction to the Mathematics and Methods of Astrodynamics, Ohio: American Institute of Aeronautic and Astron autic, 1999, pp. 484-
490.



▪ Design variable: 

• 𝑡0 = 𝑡𝑖𝑛𝑖𝑡 + 𝑡𝑀𝑂𝐼𝐷 – 𝑡𝑖𝑛𝑖𝑡 − σ𝑖=1
2 𝑇𝑜𝐹𝑖 · 𝛼0

• 𝑡𝑖𝑛𝑖𝑡 = 𝑡𝑀𝑂𝐼𝐷 − 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒

• 𝑡𝐷𝑆𝑀1 = 𝑡0 + 𝛼1 · 𝑇𝑜𝐹1
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Model formulation
Mission design – Direct Hit

Image credits: J. C. C. Sanchez, “Impact Hazard Protection Efficiency by a small Kinetic Impactor,” Journal of Spacecraft and Rockets, vol. 5 0, no. 2, 2013. 

Launch from Earth

DSM (Deep Space Manoeuvre)
Impact at Asteroid

Sun

𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0



▪ Design variable:
𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛾2 𝑟𝑝2 𝛼2 𝑇𝑜𝐹2 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0

• 𝛾2: angle to identify the plane for the gravity assist
• 𝑟𝑝2: pericentre of the hyperbola for the gravity assist
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Model formulation
Mission design – Gravity assist scenario

Sun

DSM

DSMImpact at Asteroid

Gravity assist



▪ Definition of a function to optimise:
𝑱 = − 𝑟𝑝 − 𝑟𝑝0 𝑚𝑆𝐶0

• Multi-objective function

• 𝑟𝑝: distance of the NEO from Earth after deflection

• 𝑟𝑝0: distance of the NEO from Earth before deflection

▪ Optimisation using a Global Evolutionary algorithm [7]

▪ To achieve the convergence:

• Define the bounds for the design variable

• Work on optimisation parameters, in particular on the Number of 
individuals and Function Evaluations
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Model formulation
Optimisation

[7] M. Vasile, “Robust Mission Design Through Evidence Theory and Multi -Agent Collaborative Search,” Annals of the New York Academy of Sciences, vol. 1065, no. 1, 
pp. 152-173, 2005. 



▪ Two branches:

• 1) From first planet to the DSM 

• 2) From DSM to second planet/NEO

▪ 1) Modelled through the Keplerian orbit propagation with Restricted 2 
body problem assumption, knowing initial velocity

▪ 2) Modelled solving the Lambert problem, knowing the starting point, 
the arrival point and the time of flight

11/12/2018
Optimal Deflection of Near-Earth Objects Through a Kinetic 

Impactor Performing Gravity Assist
12

Model formulation
Transfer stages – Interplanetary transfer



▪ Not-powered gravity assist

• 𝑣∞2 = 𝑣∞1

• δ = 2 𝜃∞ − π
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Model formulation
Transfer stages – Gravity assist

Image credits: M. Petit, Optimal deflection of Resonant Near-Earth Objects using the b-plane, Master thesis, Milano: Milano Theses service, 2018. 

▪ Powered gravity assist
• 𝑣∞2 ≠ 𝑣∞1

• δ = 𝜃∞1 + 𝜃∞2 − π

▪ In this case the design variable 
becomes:

𝒙 =
𝛼0 𝛼1 𝑇𝑜𝐹1 𝛾2 𝑟𝑝2 𝛥𝑣𝑃𝑂𝑊

𝛼2 𝑇𝑜𝐹2 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0



▪ Lambert problem have also multi-revolution solution

▪ For a fixed Time of flight, we can define a number 𝑁𝑚𝑎𝑥 ≥ 0 of complete 
revolutions that the spacecraft can perform in the given Time of flight to 
go from starting point to arrival point

▪ All the solution having a number 𝑁 ≤ 𝑁𝑚𝑎𝑥 of complete revolutions are 
also possible

▪ For 𝑁 ≥ 1, we can have 2 solutions solving the Lambert problem

• Low 𝑒 and high energy orbit

• High 𝑒 and low energy orbit

▪ Present work limited to the case 𝑵 = 𝟏, that in the gravity assist 
scenario implies 9 different solutions (3 for each interplanetary transfer)
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Model formulation
Multi-Revolution Lambert model



RESULTS ON A SINGLE TEST CASE
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▪ 2010RF12 NEO selected for its probability of an impact in the end of 2095

▪ Launcher and NEO properties
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Results on a test case
Selection of the test case and definition of parameters

Semi-major axis Eccentricity Inclination Right ascension of

ascending node

Argument of the

periapsis
1.58 · 108𝑘𝑚 0.187 0.911 𝑑𝑒𝑔 162 𝑑𝑒𝑔 267 𝑑𝑒𝑔

𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 10 𝑦𝑒𝑎𝑟𝑠

𝛥𝑣𝑙𝑎𝑢𝑛𝑐ℎ 1 𝑘𝑚/𝑠

𝐼𝑠𝑝 300 𝑠

𝐷𝑁𝐸𝑂 100 𝑚

𝜌𝑁𝐸𝑂 2600 𝑘𝑔/𝑚3

𝛽 1



Variable 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0 𝑚𝑆𝐶0

Lower 

bound

0 0 0.01 𝑃𝑚𝑎𝑥 0 𝑘𝑚/𝑠 −𝜋 𝑟𝑎𝑑 −𝜋/2 𝑟𝑎𝑑 300 𝑘𝑔

Upper 

bound

0.99 1 4 𝑃𝑚𝑎𝑥 3 𝛥𝑣𝑙𝑎𝑢𝑛𝑐ℎ +𝜋 𝑟𝑎𝑑 +𝜋/2 𝑟𝑎𝑑 8000 𝑘𝑔

11/12/2018
Optimal Deflection of Near-Earth Objects Through a Kinetic 

Impactor Performing Gravity Assist
17

Results on a test case
Direct Hit

Bounds for the design variables – Direct hit scenario [8]

Case Function 

evaluations

Number of 

individuals
Colombo 100,000 100

Present work 500,000 200

Optimisation parameters [8]

[8] C. Colombo, M. Albano, R. Bertacin, M. M. Castronuovo, A. Gabriell i, E. Perozzi, G. Valsecchi and E. Vellutini , “Mission analysis for two potential asteroids threat 
scenarios: optimal impact strategies and technology evaluation,” 2017.



▪ Same set of optimisation parameters as direct hit scenario

▪ Simulation repeated for each one of the three planets
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Results on a test case
Gravity assist

Variable 𝛾2 𝑟𝑝2 𝛼2 𝑇𝑜𝐹2

Lower bound −𝜋 𝑟𝑎𝑑 1.1 0 0.01 𝑃𝑚𝑎𝑥

Upper bound +𝜋 𝑟𝑎𝑑 66.0 1 4 𝑃𝑚𝑎𝑥

Bounds for the design variables – Gravity assist scenario
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Results on a test case
Comparison between the results Black Direct hit

Blue Earth gravity assist

Green Venus gravity assist

Red Mars gravity assist
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Results on a test case 
Improved solutions – Multi-revolution Lambert model

For the multi-revolution case a single round of optimisation is not enough 
to converge to the optimal solutions

Black Standard case

Blue Multi-revolution 
Lambert, 2 round of 
optimisation

Red Multi-revolution 
Lambert, 1 round of 
optimisation

Referred to Mars gravity assist



Upper bound 0 𝑘𝑚/𝑠

Lower bound 3 𝑘𝑚/𝑠
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Results on a test case 
Improved – Powered gravity assist

Definition of bounds for the impulse of the powered manoeuvre 

Earth Gravity Assist

Not powered Powered
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Results on a test case
Qualitative results – Variation of warning time

Polar plot for variation of 
velocity imparted to asteroids

Pareto fronts



11/12/2018
Optimal Deflection of Near-Earth Objects Through a Kinetic 

Impactor Performing Gravity Assist
23

Results on a test case 
Qualitative results – Relations

▪ Linear dependence between achievable deflection and initial mass, 
inverse proportionality between achievable deflection and NEO mass

▪ Linear relation visible in all the Pareto fronts showed

▪ Analytically explained:

• Assumption: 𝑚𝑆𝐶 ≪ 𝑚𝑁𝐸𝑂

• Assumption: only the tangential component of the deflection velocity 
is relevant

𝛿𝒗𝑑 = 𝛽
𝑚𝑆𝐶

𝑚𝑆𝐶 + 𝑚𝑁𝐸𝑂
𝛥𝒗

𝛿𝜶𝑑 = 𝑮𝑑𝛿𝒗𝑑
𝛿𝒓𝑀𝑂𝐼𝐷 = 𝑨𝑀𝑂𝐼𝐷𝛿𝜶𝑑

▪ This implies: 

𝑟𝑝 = 𝐾 ·
𝑚𝑆𝐶0

𝑚𝑁𝐸𝑂
· 𝛿𝑣𝑡
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Results on a test case
Qualitative results - Relations

Inverse proportionality between NEO mass and achievable deflection
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Results on a test case
Qualitative results - Relations

▪ This results allow to reduce the objective function to a single-objective 
function

𝐽 = − 𝑟𝑝 − 𝑟𝑝0

▪ It is possible to fix the spacecraft initial mass and recover solutions for 
different initial masses exploiting the linearity

▪ It is possible to fix the NEO mass and recover solutions for different 
masses exploiting the inverse proportionality



DEFLECTION EFFICIENCY ON A 
SYNTHETIC POPULATION OF NEOS
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▪ In order to analyse the optimal way to deflect a population of asteroid, 
first it is necessary to generate the population

▪ NEOPOP software from ESA [9] generates a real set of orbital parameters 
defining every possible NEO

▪ Filter activation to reduce the population:

• 40 𝑚 < 𝑑 < 200 𝑚→ severe event

• Pericentre radius smaller than 1AU & Apocentre radius larger than 1 
AU, so that orbit intersection with that of Earth is possible

▪ This model allows to define the NEO density distribution
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Deflection efficiency against a population of NEOs
Model – Population generation

[9] M. Granvik, J. Vaubaillon and R. Jedicke, “The population of natural Earth satellites,” Icarus, vol. 218, no. 1, 2012.
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Deflection efficiency against a population of NEOs
Model – Population generation

Image credits: NEOPOP software



▪ Following the model in [10], a synthetic population of asteroid is created

▪ Defined by a grid of homogeneously distributed points in a 3-
dimensional space, formed by { 𝑎 , 𝑒 , 𝑖 } orbital parameters

▪ Discarded all the points with pericentre larger than 1 AU or apocentre 
smaller than 1 AU

▪ Assumptions:

• Earth and asteroid are both at MOID at a fixed time 𝑡𝑀𝑂𝐼𝐷
• Earth orbit is circular → Ω𝑖𝑚𝑝𝑎𝑐𝑡 and ω𝑖𝑚𝑝𝑎𝑐𝑡 are easily computed 

▪ This model allows to find also the collision probability of each one of the 
synthetic NEO generated

▪ Multiplying collision probability with NEO density distribution to have the 
relative frequency of each impactor
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Deflection efficiency against a population of NEOs
Model – Population generation

[10] P. Sanchez, C. Colombo, V. Vasile and G. Radice, “Multicriteria Comparison Among Several Mitigation Strategies for Dangerous Near -Earth Objects,” Journal of 
Guidance, Control, and Dynamics, vol. 32, no. 1, pp. 121-142, 2009. 



▪ Looking at the figure from NEOPOP software we can bound the orbital 
parameters in this way:

• 𝑎 is bound between 0.05 AU and 3 AU

• 𝑒 is bound between 0 and 1

• 𝑖 is bound between 0 deg and 90 deg

▪ Simulation repeated 4 times (1 for direct hit scenario, 3 for the gravity 
assist scenarios)

▪ Set of parameters for simulation:
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Deflection efficiency against a population of NEOs
Results – Parameters setting

𝑚𝑁𝐸𝑂 1.36 ∗ 109 𝑘𝑔

𝑚𝑆𝐶0 1000 𝑘𝑔

𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 10 𝑦𝑒𝑎𝑟𝑠



▪ Design variable
𝒙 = 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛾2 𝑟𝑝2 𝛥𝑣𝑃𝑂𝑊 𝛼2 𝑇𝑜𝐹2 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0

▪ Bounds definition

▪ Optimisation parameters
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Deflection efficiency against a population of NEOs
Results – Parameters setting

Variable 𝛼0 𝛼1 𝑇𝑜𝐹1 𝛾2 𝑟𝑝2 𝛥𝑣𝑀𝐴𝑁

Lower 

bound

0 0 0.01 𝑃𝑚𝑎𝑥 −𝜋 𝑟𝑎𝑑 1.1 0 𝑘𝑚/𝑠

Upper 

bound

0.99 1 2 𝑃𝑚𝑎𝑥 +𝜋 𝑟𝑎𝑑 66.0 3 𝑘𝑚/𝑠

Variable 𝛼2 𝑇𝑜𝐹2 𝛥𝑣0 𝛼𝛥𝑣0 𝛿𝛥𝑣0

Lower 

bound

0 0.01 𝑃𝑚𝑎𝑥 0 𝑘𝑚/𝑠 −𝜋 𝑟𝑎𝑑 −𝜋/2 𝑟𝑎𝑑

Upper 

bound

1 2 𝑃𝑚𝑎𝑥 3 𝛥𝑣𝑙𝑎𝑢𝑛𝑐ℎ +𝜋 𝑟𝑎𝑑 +𝜋/2 𝑟𝑎𝑑

Case Function evaluations Number of individuals
Multiple asteroids 500,000 200



▪ Comparison between simulations
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Deflection efficiency against a population of NEOs
Results

Black Direct hit

Blue Earth gravity assist

Green Venus gravity assist

Red Mars gravity assist



▪ Earth gravity assist – Qualitative characteristics
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Deflection efficiency against a population of NEOs
Results

Deflection Delta-v given to asteroid



▪ Earth gravity assist – Qualitative characteristics
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Deflection efficiency against a population of NEOs
Results

Distance from perigee at
deflection

In-plane angle of deflection



CONCLUSIONS
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▪ Best solution in most of the case analysed is Earth’s gravity assist:

• Larger achievable deflections with the same initial mass of the 
spacecraft

• Smaller initial mass required to have the same deflection (meaning a 
lower cost)

▪ Venus and Mars gravity assist don’t seem to be good choices. Changing 
the time of close approach can boost their performances, due to phasing 
effect

▪ Technique further improvable by including more revolutions in the 
Lambert arc or more gravity assists to the mission concept

▪ Algorithm able to analyse rendez-vous mission by changing optimisation 
function
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Conclusions
Conclusions and future works
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