

POLITECNICO

MILANO 1863

Established by the European Commise

Image credits: ESA Space in Images – 2015 – Hera in orbit

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

Lorenzo Bolsi, Camilla Colombo Politecnico di Milano

Agenzia Spaziale Italiana, Space Mission Planning Advisory Group December 11th 2018

Introduction

Background

- Minor bodies in Solar System:
 - Asteroids
 - Comets
- NEOs: Near Earth Objects
 - *r_p* < 1.3 AU
 - Over 18,000 present in our Solar system
- PHAs: potentially hazardous asteroids
 - *MOID* < 0.05 *AU* & *H* < 22
 - Not null probability of impact with Earth
- Impact probability:
 - Airburst (few meters diameter)
 - Severe $(40 \ m < d < 200 \ m)$: 1 every around 100 years
 - Catastrophic (d > 1 km): 1 over millions of years

Image credits: Cheliabinsk, Fayerwayer.com; Tunguska, Space.com; Yucatan, noao.edu

Introduction

Deflection methods

- To prevent a possible impact several strategies have been studied
- Kinetic impactor
 - Consists of hitting the NEO with a spacecraft at high relative velocity to deflect it
 - Highest TRL
 - Simplest technology
- Missions:
 - AIM + DART AIDA [1], [2]

Image credits: ESA Space in Images – 2015 – AIDA concept logo

[1] "NASA - DART," [Online]. Available: https://www.nasa.gov/planetarydefense/dart. [Accessed 16 August 2018].
 [2] "ESA - Space Dart," [Online]. Available: https://m.esa.int/Our_Activities/Space_Engineering_Technology/Hera/Highlights / Space_DART. [Accessed 15 August 2018].

11/12/2018

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

3 POLITECNICO MILANO 1863

Introduction

Project aims

- Create a method in order to include the gravity assist of Earth, Mars and Venus in the design of a deflection mission (following [3] and [4]):
 - Kinetic impactor
 - Maximise achievable deflection
- Improve the method introducing further techniques aimed to increase the maximum achievable deflection
- Apply the method to a single real NEO and to a synthetic population of NEOs spread through all the spectrum of orbital parameters and analyse the global qualitative results

[3] A. Rathke and D. Izzo, "Keplerian consequences of an impact on an asteroid and their relevance for a deflection demonstration mission," Proceedeings of the International Astronomical Union, vol. 2, pp. 417-426, 2006.
 [4] M. Vasile and C. Colombo, "Optimal Impact Strategies for Asteroid Deflection," Journal of Guidance, Control and Dynamics, vol. 31, no. 4, 2008.

Presentation outline

Model formulation

- Deflection
- Mission design
- Optimisation
- Transfer stages
- Multi-revolution Lambert model

Results on a single test case

- Direct Hit
- Gravity assist
- Multi-revolution Lambert model
- Powered gravity assist

Deflection efficiency against a synthetic population of NEOs

- Model
- Results
- Conclusions

MODEL FORMULATION

11/12/2018

Mission stages

Mission design

- Launch from Earth
- Interplanetary transfers
- Deep space manoeuvres
- Gravity assist

Deflection of the NEO

- Collision before MOID
- Variation of orbital parameters (Gauss' planetary equations)
- Deflection achieved (Proximal motion equations)

Deflection of the NEO

The impact is modelled as a completely inelastic collision, the variation of velocity imparted to the asteroid is:

$$\delta \boldsymbol{v}_d = \beta \; \frac{m_{SC}}{(m_{SC} + m_{NEO})} \; \Delta \boldsymbol{v}$$

 The variation of orbital parameters of the NEO is computed through the Gauss' planetary equations [5]:

$$\delta \boldsymbol{\alpha}_d = \boldsymbol{G}_d \delta \boldsymbol{\nu}_d$$

Finally the deflection is computed through the use of the proximal motion equations [6]:

$$\delta \boldsymbol{r}_{MOID} = \boldsymbol{A}_{MOID} \delta \boldsymbol{\alpha}_d$$

[5] H. Schaub and J. L. Junkins, in Analytical Mechanics of Space Systems, Reston, American Institute of Aeronautics and Astronautics, 2003, pp. 592-623
 [6] R. H. Battin and R. H., An Introduction to the Mathematics and Methods of Astrodynamics, Ohio: American Institute of Aeronautic and Astronautic, 1999, pp. 484-490.

11/12/2018

Mission design – Direct Hit

Design variable:

$$\boldsymbol{x} = \{ \alpha_0 \quad \alpha_1 \quad ToF_1 \quad \| \Delta \boldsymbol{v}_0 \| \quad \alpha_{\Delta \boldsymbol{v}_0} \quad \delta_{\Delta \boldsymbol{v}_0} \quad m_{SC0} \}$$

•
$$t_0 = t_{init} + (t_{MOID} - t_{init} - \sum_{i=1}^2 ToF_i) \cdot \alpha_0$$

•
$$t_{init} = t_{MOID} - warningTime$$

• $t_{DSM1} = t_0 + \alpha_1 \cdot ToF_1$

Image credits: J. C. C. Sanchez, "Impact Hazard Protection Efficiency by a small Kinetic Impactor," Journal of Spacecraft and Rockets, vol. 50, no. 2, 2013.

Mission design – Gravity assist scenario

Design variable:

 $\boldsymbol{x} = \left\{ \alpha_0 \quad \alpha_1 \quad ToF_1 \quad \gamma_2 \quad r_{p2} \quad \alpha_2 \quad ToF_2 \quad \| \Delta \boldsymbol{v}_0 \| \quad \alpha_{\Delta \boldsymbol{v}_0} \quad \delta_{\Delta \boldsymbol{v}_0} \quad m_{SC0} \right\}$

- γ_2 : angle to identify the plane for the gravity assist
- r_{p2} : pericentre of the hyperbola for the gravity assist

Optimisation

Definition of a function to optimise:

$$\boldsymbol{J} = \{-(r_p - r_{p0}) \ m_{SC0}\}$$

- Multi-objective function
- r_p : distance of the NEO from Earth after deflection
- r_{p0} : distance of the NEO from Earth before deflection
- Optimisation using a Global Evolutionary algorithm [7]
- To achieve the convergence:
 - **Define the bounds** for the design variable
 - Work on optimisation parameters, in particular on the Number of individuals and Function Evaluations

^[7] M. Vasile, "Robust Mission Design Through Evidence Theory and Multi-Agent Collaborative Search," Annals of the New York Academy of Sciences, vol. 1065, no. 1, pp. 152-173, 2005.

Transfer stages – Interplanetary transfer

Two branches:

- 1) From first planet to the DSM
- 2) From DSM to second planet/NEO
- 1) Modelled through the Keplerian orbit propagation with Restricted 2 body problem assumption, knowing initial velocity
- 2) Modelled solving the Lambert problem, knowing the starting point, the arrival point and the time of flight

Transfer stages – Gravity assist

Not-powered gravity assist

•
$$v_{\infty 2} = v_{\infty 1}$$

• $\delta = 2 \theta_{\infty} - \pi$

Powered gravity assist

•
$$v_{\infty 2} \neq v_{\infty 1}$$

• $\delta = \theta_{\infty 1} + \theta_{\infty 2} - \pi$

In this case the design variable becomes:

Image credits: M. Petit, Optimal deflection of Resonant Near-Earth Objects using the b-plane, Master thesis, Milano: Milano Theses service, 2018.

Multi-Revolution Lambert model

- Lambert problem have also multi-revolution solution
- For a fixed Time of flight, we can define a number $N_{max} \ge 0$ of complete revolutions that the spacecraft can perform in the given Time of flight to go from starting point to arrival point
- All the solution having a number $N \leq N_{max}$ of complete revolutions are also possible
- For $N \ge 1$, we can have **2** solutions solving the Lambert problem
 - Low e and high energy orbit
 - High *e* and low energy orbit
- Present work limited to the case N = 1, that in the gravity assist scenario implies 9 different solutions (3 for each interplanetary transfer)

RESULTS ON A SINGLE TEST CASE

11/12/2018

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

15 **POLITECNICO** MILANO 1863

Selection of the test case and definition of parameters

2010RF12 NEO selected for its probability of an impact in the end of 2095

Semi-major axis	Eccentricity	Inclination	Right ascension of ascending node	Argument of the periapsis
$1.58 \cdot 10^8 km$	0.187	0.911 <i>deg</i>	162 <i>deg</i>	267 deg
		· •		

Launcher and NEO properties

warningTime	10 years
Δv_{launch}	1 <i>km/s</i>
I _{sp}	300 <i>s</i>
D _{NEO}	100 m
$ ho_{NEO}$	2600 kg/m^3
β	1

Direct Hit

Variable	α ₀	α ₁	ToF ₁	$\ \Delta v_0 \ $	$lpha_{arDelta u_0}$	$\delta_{arDelta u_0}$	m _{SC0}
Lower bound	0	0	0.01 <i>P_{max}</i>	0 km/s	$-\pi$ rad	$-\pi/2$ rad	300 kg
Upper bound	0.99	1	4 P _{max}	$3\Delta v_{launch}$	$+\pi$ rad	$+\pi/2$ rad	8000 kg

Bounds for the design variables – Direct hit scenario [8]

Case	Function	Number of	
	evaluations	individuals	
Colombo	100,000	100	
Present work	500,000	200	

Optimisation parameters [8]

[8] C. Colombo, M. Albano, R. Bertacin, M. M. Castronuovo, A. Gabrielli, E. Perozzi, G. Valsecchi and E. Vellutini, "Mission analysis for two potential asteroids threat scenarios: optimal impact strategies and technology evaluation," 2017.

11/12/2018

Gravity assist

Variable	γ_2	r _{p2}	α2	ToF ₂
Lower bound	$-\pi$ rad	1.1	0	$0.01 P_{max}$
Upper bound	$+\pi rad$	66.0	1	$4 P_{max}$

Bounds for the design variables – Gravity assist scenario

- Same set of optimisation parameters as direct hit scenario
- Simulation repeated for each one of the three planets

11/12/2018

Improved solutions – Multi-revolution Lambert model

For the multi-revolution case a single round of optimisation is not enough to converge to the optimal solutions

Black	Standard case			
Blue	Multi-revolution Lambert, 2 round of optimisation			
Red	Multi-revolution Lambert, 1 round of optimisation			
Referred to Mars gravity assist				

Improved – Powered gravity assist

Upper bound	0 km/s
Lower bound	3 km/s

Definition of bounds for the impulse of the powered manoeuvre

Earth Gravity Assist

11/12/2018

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

POLITECNICO MILANO 1863 21

Qualitative results – Variation of warning time

Polar plot for variation of velocity imparted to asteroids

Pareto fronts

11/12/2018

Qualitative results – Relations

- Linear dependence between achievable deflection and initial mass, inverse proportionality between achievable deflection and NEO mass
- Linear relation visible in all the Pareto fronts showed
- Analytically explained:
 - Assumption: $m_{SC} \ll m_{NEO}$
 - Assumption: only the tangential component of the deflection velocity is relevant

$$\delta \boldsymbol{v}_{d} = \beta \frac{m_{SC}}{(m_{SC} + m_{NEO})} \Delta \boldsymbol{v}$$
$$\delta \boldsymbol{\alpha}_{d} = \boldsymbol{G}_{d} \delta \boldsymbol{v}_{d}$$
$$\delta \boldsymbol{r}_{MOID} = \boldsymbol{A}_{MOID} \delta \boldsymbol{\alpha}_{d}$$

• This implies:

$$r_p = K \cdot \frac{m_{SC0}}{m_{NEO}} \cdot \delta v_t$$

Qualitative results - Relations

Inverse proportionality between NEO mass and achievable deflection

Qualitative results - Relations

This results allow to reduce the objective function to a single-objective function

$$J = -(r_p - r_{p0})$$

- It is possible to fix the spacecraft initial mass and recover solutions for different initial masses exploiting the linearity
- It is possible to fix the NEO mass and recover solutions for different masses exploiting the inverse proportionality

DEFLECTION EFFICIENCY ON A SYNTHETIC POPULATION OF NEOS

11/12/2018

Model – Population generation

- In order to analyse the optimal way to deflect a population of asteroid, first it is necessary to generate the population
- NEOPOP software from ESA [9] generates a real set of orbital parameters defining every possible NEO
- Filter activation to reduce the population:
 - 40 $m < d < 200 m \rightarrow$ severe event
 - Pericentre radius smaller than 1AU & Apocentre radius larger than 1 AU, so that orbit intersection with that of Earth is possible
- This model allows to define the NEO density distribution

[9] M. Granvik, J. Vaubaillon and R. Jedicke, "The population of natural Earth satellites," *Icarus*, vol. 218, no. 1, 2012.

Model – Population generation

Image credits: NEOPOP software

11/12/2018

Model – Population generation

- Following the model in [10], a synthetic population of asteroid is created
- Defined by a grid of homogeneously distributed points in a 3dimensional space, formed by { a , e , i } orbital parameters
- Discarded all the points with pericentre larger than 1 AU or apocentre smaller than 1 AU
- Assumptions:
 - Earth and asteroid are **both at MOID** at a fixed time t_{MOID}
 - Earth orbit is **circular** $\rightarrow \Omega_{impact}$ and ω_{impact} are easily computed
- This model allows to find also the collision probability of each one of the synthetic NEO generated
- Multiplying collision probability with NEO density distribution to have the relative frequency of each impactor

[10] P. Sanchez, C. Colombo, V. Vasile and G. Radice, "Multicriteria Comparison Among Several Mitigation Strategies for Dangerous Near-Earth Objects," *Journal of Guidance, Control, and Dynamics*, vol. 32, no. 1, pp. 121-142, 2009.

Results – Parameters setting

- Looking at the figure from NEOPOP software we can bound the orbital parameters in this way:
 - *a* is bound between 0.05 AU and 3 AU
 - *e* is bound between 0 and 1
 - *i* is bound between 0 deg and 90 deg
- Simulation repeated 4 times (1 for direct hit scenario, 3 for the gravity assist scenarios)
- Set of parameters for simulation:

m_{NEO}	$1.36 * 10^9 \ kg$
m_{SC0}	1000 kg
warningTime	10 years

Results – Parameters setting

Design variable

 $\boldsymbol{x} = \left\{ \alpha_0 \quad \alpha_1 \quad ToF_1 \quad \gamma_2 \quad r_{p2} \quad \Delta v_{POW} \quad \alpha_2 \quad ToF_2 \quad \|\Delta v_0\| \quad \alpha_{\Delta v_0} \quad \delta_{\Delta v_0} \right\}$

Bounds definition

Variable	α ₀	α ₁	ToF ₁	γ_2	r_{p2}	Δv_{MAN}
Lower	0	0	$0.01 P_{max}$	$-\pi$ rad	1.1	0 km/s
Dound Upper	0.99	1	2 P _{max}	$+\pi$ rad	66.0	3 km/s
bound						
Variable	α2	ToF ₂	$\ \Delta v_0\ $	$lpha_{arDelta u_0}$	$\delta_{\!arDelta u_{ m o}}$	
Lower	0	0.01 <i>P_{max}</i>	0 km/s	$-\pi$ rad	$-\pi/2$ rad	
bound						
Upper	1	$2 P_{max}$	$3\Delta v_{launch}$	$+\pi$ rad	$+\pi/2 rad$	
hound						

Optimisation parameters

Case	Function evaluations	Number of	individuals
Multiple asteroids	500,000	200	
11/12/2018	Optimal Deflection of Near-Earth Objects Th	nrough a Kinetic 31	POLITECNICO MILANO 1863

Results

Comparison between simulations

Results

Earth gravity assist – Qualitative characteristics

Deflection

Delta-v given to asteroid

Results

Earth gravity assist – Qualitative characteristics

CONCLUSIONS

11/12/2018

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

35 POLITECNICO MILANO 1863

Conclusions

Conclusions and future works

- **Best solution** in most of the case analysed is Earth's gravity assist:
 - Larger achievable deflections with the same initial mass of the spacecraft
 - Smaller initial mass required to have the same deflection (meaning a lower cost)
- Venus and Mars gravity assist don't seem to be good choices. Changing the time of close approach can boost their performances, due to phasing effect
- Technique further improvable by including more revolutions in the Lambert arc or more gravity assists to the mission concept
- Algorithm able to analyse rendez-vous mission by changing optimisation function

ank you for your attention

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS)

Optimal Deflection of Near-Earth Objects Through a Kinetic Impactor Performing Gravity Assist

Lorenzo Bolsi, Camilla Colombo Politecnico di Milano

Agenzia Spaziale Italiana, Space Mission Planning Advisory Group December 11th 2018