

POLITECNICO MILANO 1863

Statistical process monitoring of Powder Bed Fusion processes via in-situ video imaging

FACAM 2018, Los Angeles (8 – 9 February 2018)

<u>Marco Grasso</u> and Bianca Maria Colosimo Department of Mechanical Engineering,

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

AddMe.Lab – Additive Manufacturing lab @ Department of Mechanical Engineering (Politecnico di Milano) *Who we are*

Laser Powder Bed Fusion

Renishaw AM250

Electron Beam Powder Bed Fusion

Direct Energy Deposition (DED) - powder

Direct Energy Deposition (DED) - wire

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Our background Statistical monitoring of *product* and *process* data

- Statistical monitoring of industrial processes for quick and reliable detection of out-of-control
- states and defects based on product and process data.

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

«The limited stability and repeatability of the process still represent a major barrier for the industrial breakthrough of metal AM systems»

(Mani et al., 2015; Tapia and Elwany, 2014; Everton et al., 2016; Spears and Gold, 2016)

AM in the I4.0 framework

MACHINE AS A SENSOR INTELLIGENT MACHINE

Current defective rates are an industrial barrier

- Expensive materials
- Long processes (e.g., < 10 cm³/h)
- Long/expensive trial-and-error inflates the time-to-market
- Stringent quality requirements (aerospace & healthcare)

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Sources of defects in laser-based powder bed fusion (LPBF)

FEEDSTOCK MATERIAL

(e.g., composition, morphology, porosity, contaminations)

Broken

Irregular

PROCESS

(e.g., parameters and scan strategy, material ejections)

EQUIPMENT

(e.g., powder recoating, chamber environment, beam deflection)

DESIGN CHOICES

(e.g., supports, part orientation)

Agglomerated

Foster et al., 2

POLITECNICO MILANO 1863

Sources of defects in laser-based powder bed fusion (LPBF)

Source: Grasso & Colosimo, Measurement Science & Technology, 2017

Sources of defects		Categories of defects						
		Porosity	Balling	Geometric defects	Surface defects	Residual stresses, cracks & delamination	Microstructural inhomog. & impurity	
Equipment	Beam scanning/ deflection	Foster et al., 2015		Moylan et al., 2014b; Foster et al., 2015				
	Build chamber environment	Ferrar et al., 2012; Spears and Gold, 2016	Li et al., 2012			Edwards et al., 2013; Chlebus et al., 2011; Buchbinder et al., 2014; Kempen et al., 2013	Spears and Gold, 2016	
	Powder handling & deposition	Foster et al., 2015		Foster et al., 2015; Kleszczynski et al., 2012	Foster et al., 2015; Kleszczynski et al., 2012		Foster et al., 2015	
	Baseplate			Prabhakar et al., 2015		Prabhakar et al., 2015		
Process	Parameters and scan strategy	Matthews et al., 2016; Yasa et al., 2009; Attar, 2011; Gong, 2013; Read et al., 2015; Kruth et al., 2004; Weingarten et al., 2015; Thijs et al., 2010; Scharowsky et al., 2015; Puebla et al., 2012; Tammas- Williams et al., 2015; Biamino et al., 2011; Zeng, 2015	Li et al., 2012; Kruth et al., 2004; Tolochko et al., 2004; Zhou et al., 2015; Attar, 2011; Gong, 2013	Yasa et al., 2009; Mousa, 2016; Kleszczynski et al., 2012; Thomas, 2009	Li et al., 2012; Kruth et al., 2004; Matthews et al., 2016; Attar, 2011; Gong, 2013; Zaeh and Kanhert, 2009; Delgado et al., 2012;	Mercelis and Kruth, 2006; Parry et al., 2016; Cheng et al., 2016; Van Belle et al., 2013; Casavola et al., 2008; Zah and Lutzmann, 2010; Zaeh and Branner, 2010; Kempen et al., 2013; Kruth et al., 2004; Carter et al., 2012 - 2014	Carter et al., 2012 - 2014; Arisoy et al., 2016; Niu and Chang, 1999; Huang et al., 2016; Thijs et al., 2010; Scharowsky et al., 2015; Puebla et al., 2012; Biamino et al., 2011	
	Byproducts and material ejections	Liu et al., 2015; Khairallah et al., 2016;					Liu et al., 2015; Khairallah et al., 2016;	
Design choices	Supports			Foster et al., 2015; Kleszczynski et al., 2012; Zeng, 2015	Foster et al., 2015; Kleszczynski et al., 2012; Zeng, 2015	Foster et al., 2015; Kleszczynski et al., 2012; Zeng, 2015		
	Orientation		Li et al., 2012; Strano et al., 2013;	Delgado et al., 2012	Delgado et al., 2012; Fox et al., 2016; Strano et al., 2013		Meier and Haberland, 2008	
Feedstock material (powder)		Liu et al., 2015; Van Elsen, 2007; Das, 2003		Das, 2003	Seyda et al., 2012		Das, 2003; Niu and Chang, 1999; Huang et al., 2016	

Process signatures and sensing methods

Source: Grasso & Colosimo, Measurement Science & Technology, 2017

			In-situ sensing (main categories)			
	Monitored signature		Burometry	Imaging	Thermal imaging	
			Fylometry	(visible to NIR)	(NIR to LWIR)	
lasor (Melt pool	Size	Clijsters et al., 2014; Craeghs et al., 2010 - 2011;	Craeghs et al., 2010 - 2012; Clijsters et al., 2014; Berumen et al., 2010; Kruth et al., 2007; Van Gestel, 2015	ing	
beam		Shape		Craeghs et al., 2011; Berumen et al., 2010; Van Gestel, 2015; Autre a., 2007	Doubenskaia et al., 2015	
		Temperature intensity	Craeghs et al., 2011; Berumen et al., 2010; Chivel, 2013; Clijsters et al., 2014; Doubenskaia et al., 2012; Pavlov et al., 2010; Thombansen et al., 2015	Berumenstral., 2010; Van Gestel, 2015; Volcoitsev et al., 2014; Chivel, 2013;		
		Temperature profile		Doubenskaia et al., 2012;	Gong et al., 2013b; Price et al., 2012	

In-situ monitoring of LPBF processes GEOMETRICAL ERRORS

In-situ detection of geometrical errors via highspatial resolution imaging

- One image per layer (<100µm/pixel)
- Difference between pre-scan and post scan images
- Image segmentation and edge detection
- Reconstruction of the actual layer geometry and comparison with the nominal one
 Edge detection

POLITECNICO MILANO 1863

In-situ monitoring of LPBF processes GEOMETRICAL ERRORS

THALES

- One image per layer (<100µm/pixel)
- Difference between pre-scan and post scan images
- Image segmentation and edge detection
- Reconstruction of the actual layer geometry and comparison with the nominal one

Example of 3D image-based reconstruction

Example of error detection

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it POLITECNICO MILANO 1863

In-situ monitoring of LPBF processes

Grasso et al., Journal of Manufacturing Science & Technology, 2016 Colosimo and Grasso, Journal of Quality Technology, 2018

Hot-spot detection and localization via spatiotemporal statistical methods

Build chamber

(off-axis) Olympus i-speed 3

POLITECNICO MILANO 1863

Substrate

10

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Image stream processing

- Principal Component Analysis (PCA) applied to image data
- No segmentation or edge detection operation needed

Geospatial statistics & atmospheric science

POLITECNICO MILANO 1863

Spatially weighted T-mode PCA (ST-PCA)

Underlying idea: incorporating pixel spatial correlation into the projection entailed by the T-mode PCA to preserve the spatial depency and enhance the identification of local defects

Weighted sample variance –covariance matrix:

$$\mathbf{S} = \frac{1}{p-1} (\mathbf{X} - 1\bar{\mathbf{x}})^T \mathbf{W} (\mathbf{X} - 1\bar{\mathbf{x}}) \qquad \mathbf{X} \in \mathbb{R}^{p \times J} \text{ is the data matrix } (\mathbf{p}=\mathbf{M}\mathbf{x}\mathbf{N} \text{ pixels by J frames})$$
$$\bar{\mathbf{x}} \in \mathbb{R}^{1 \times J} \text{ is the sample mean vector}$$
$$\mathbf{1} \text{ is a } p \times 1 \text{ vector of ones}$$

 $\mathbf{W} \in \mathbb{R}^{p \times p}$ is the spatial weight matrix

The (k, h)-th element of the matrix, $w_{k,h}$, quantifies the spatial dependency between the k-th and h-th pixels

The matrix \mathbf{S} is a quadratic form whose decomposition into orthogonal components via eigenvector analysis has a closed analytical solution, being \mathbf{W} a symmetric weighting matrix

Spatially weighted T-mode PCA (ST-PCA)

Use of Hotelling's T^2 as a synthetic index to describe the information content along the most relevant components of the video image data within *J* observed frames

 $T^{2}(m,n) = \sum_{l=1}^{q} \frac{z_{l,i}^{2}}{\lambda_{l}}, \qquad \text{where } \lambda_{j} \text{ is the } l\text{-th eigenvalue, } (m,n) \text{ are the pixel coordinates} \\ (m = 1, ..., M, n = 1, ..., N) \text{ and } q \text{ is the number of retained PCs}$

POLITECNICO MILANO 1863

Spatially weighted T-mode PCA (ST-PCA)

Alarm rule based on k-means clustering of $T^2(m, n)$

- When process is IC : k = 2 clusters are expected (background + normal melting)
- When process is OOC : additional clusters correspond to defective areas (hot-spots)

Automated selection of k based on sums of squared within-distances: $k>2 \rightarrow$ ALARM (*Zhao et al. 2009; Hastie et al. 2009*)

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

Cluster 3

Simulation analysis

Simple T-mode PCA vs ST-PCA (Average Run Length – ARL)

T-mode PCA, Small hot-spot, Tau=45

120

background

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Real case study

Example of T-mode PCA vs ST-PCA

	Time of first				
Ap	signal				
	(frame index)				
OOC Scenario 1					
Average	Recursive	No detection			
intensity	Mov. window	No detection			
T-mode	Recursive	<i>j</i> = 201			
PCA	Mov. window	<i>j</i> = 198			
ST DC A	Recursive	<i>j</i> = 40			
SI-PCA	Mov. window	<i>j</i> = 40			
OOC Scenari	o 2				
Average	Recursive	<i>j</i> = 144			
intensity	Mov. window	No detection			
T-mode	Recursive	<i>j</i> = 95			
PCA	Mov. window	No detection			
ST DC A	Recursive	<i>j</i> = 94			
SI-PCA	Mov. window	<i>j</i> = 92			
OOC Scenario 3					
Average	Recursive	No detection			
intensity	Mov. window	<i>j</i> = 173			
T-mode	Recursive	<i>j</i> = 169			
PCA	Mov. window	<i>j</i> = 168			
ST DCA	Recursive	<i>j</i> = 164			
SI-FCA	Mov. window	<i>j</i> = 153			

120

120

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

In-situ monitoring of LPBF processes Repossini et al., Additive Manufacturing, 2017

Grasso et al., Robotic and Computer-Integrated Manufacturing, 2018

- Mainstream literature on in-situ monitoring focuses on melt pool and track
- Process by-products filtererd out as nuisance factors
- But by-products may enclose relevant information about the process quality and stability

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

In-situ monitoring of LPBF processes SPATTERS

What type of spatters and why do they originate?

Example: Ti6Al4V particle dynamics Ly et al. 2017 available at http://rdcu.be/tC7W (100 KHz)

Research goals

- Characterize spatter behaviour under different energy density conditions (synthetic descriptors)
- Can spatter-related information be a suitable driver for in-situ process monitoring?
- Can spatter-related information be a suitable driver for process optimization?

Powder spatters: non-melted powder particles blown away as a result of the impact with the metallic vapour

Droplet spatters: caused by the convective transport of liquid or vapourized metal out of the melt pool

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

In-situ monitoring of LPBF processes **SPATTERS**

Repossini et al., Additive Manufacturing, 2017

Proposed approach

Off-axis high speed video acquisition

- 1000 frames per second
- Visible range
- Spatial resolution: ~250µm/pixel
- Field of view: about 120x120 mm

LHZ = Laser Heated Zone

Descriptors

- LHZ area
- average spatter area
- spatter spatial spread
- *n*° of spatters

20

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

In-situ monitoring of LPBF processes SPATTERS

Repossini et al., Additive Manufacturing, 2017

Experimentation

Build	Energy density level	t [µs]	z [µm]	$F[J/cm^3]$
Devilei 4	Lack-of-fusion	42	40	40000
$f_{z} = 40 \text{ cm}$	Normal-melted	83	40	80000
$(z = 40 \mu m)$	Over-melted	125	40	120000
Duild D	Lack-of-fusion	52	50	40000
$f_{a} = 50 \text{ mm}$	Normal-melted	104	50	80000
$z = 50 \mu m$	Over-melted	156	50	120000

Layer thickness 50um Layer thickness 40um Maraging steel specimens 99,00% (av. particle size $35 \mu m$) 98,00% 3 levels of energy density: **Density** (%) 97,00% ✓ under-melting 96,00% normal melting \checkmark ✓ over-melting 95,00% Two layer thickness levels: 94,00% $(40 \ \mu m \text{ and } 50 \ \mu m)$ 93,00% Under Normal Over Under Normal Over

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

In-situ monitoring of LPBF processes SPATTERS *Repossini et al., Additive Manufacturing, 2017*

- Comparison of logistic regression classification models (response = energy density level):
- Model A: includes only LHZ area (benchmark)
- Model B: Spatter descriptors only: n° of spatters, average area, spatial spread (convex hull)
- Model C: LHZ + spatter descriptors

> Misclassification analysis

 Percentage of wrongly classified energy density levels (estimation based on leave-oneout cross-validation)

Model	Predictors	Misclassif. error (Build 1)	Misclassif. error (Build 2)
Model A	LHZ area	66.7%	53.42%
Model B	Spatter descriptors	29.0%	20.7%
Model C	All	22.3%	20.5%

The inclusion of spatter descriptors as classifier predictors enhances the goodness-of-fit and reduces the misclassification error

In-situ monitoring of LPBF processes PLUME

Grasso, Demir, Previtali, Colosimo (2017), RCIM

Study of process by-products signatures for process monitoring and optimization

Example of plume generation during SLM of pure zinc

- Zinc and its alloys biodegradable metals (cardiovascular stents).
- Difficult to print by LPBF very low melting and vaporization points – plume (ionized gas and metallic vapor)
- Plume absorbs/reflects laser radiation possible bursts and modification of local energy density

Main idea: use the plume as process signature to detect process instability via in-situ IR video imaging

In-situ monitoring of LPBF processes PLUME Grasso, I

Grasso, Demir, Previtali, Colosimo (2017), RCIM

In-situ IR monitoring on LPBF system prototype (Powderful)

- FLIR SC3000
- Spectral range: 8-9 μm
- 320 x 240 pixels
- Temp. range: 100 500 °C

Experimental activity

- Scenario 1 stable process (optimal process parameters)
- Scenarios 2 and 3 (over-melting) unstable process conditions that yielded part disintegration

24 POLITECNICO MILANO 1863

In-situ monitoring of LPBF processes PLUME

Grasso, Demir, Previtali, Colosimo (2017), RCIM

Image processing

Analysis of the region of interest (ROI) that includes the plume and the laser heated zone

100

80

60

training

Multivariate Control chart:

- Area
- Average Intensity

Out-of-control scenarios

Scenario 2 (OOC)

Control charts

Training of first few layers (assumed in-control) Monitoring of following layers

What's next? Towards multi-sensor fusion...

Laser PBF

Prototype systems equipped with different in-situ sensors (either co-axial and off-axis)

(photodiodes and cameras)

Electron beam PBF

Multiple sources of information from embedded and external sensors

Example of log signals

26 POLITECNICO MILANO 1863

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

References

٠

- **Colosimo, B.M., Grasso, M. (2017)**, *Spatially weighted PCA for monitoring video image data with application to additive manufacturing*, Journal of Quality Technology, under review
- **Colosimo, B. M., Semeraro, Q., & Pacella, M. (2008)**. Statistical process control for geometric specifications: on the monitoring of roundness profiles. *Journal of quality technology, 40*(1), 1.
- **Colosimo, B. M., Cicorella, P., Pacella, M., & Blaco, M. (2014)**. From profile to surface monitoring: SPC for cylindrical surfaces via Gaussian Processes. *Journal of Quality Technology*, *46*(2), 95.
- Colosimo, B. M., Pacella, M., & Senin, N. (2015). Multisensor data fusion via Gaussian process models for dimensional and geometric verification. *Precision Engineering*, 40, 199-213.
- **De Ketelaere, B., Hubert, M., & Schmitt, E. (2015)**. Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318.
- Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431-445.
- Gallagher, N., Wise, B., Butler, S., White, D., and Barna, G. (1997). "Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating". Process: Impact of Measurement Selection and Data Treatment on Sensitivity, Safe process 97, pp. 26–27.
- Grasso, M., & Colosimo, B. M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: a review. Measurement Science and Technology, 28(4), 044005.
- Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis. Journal of Manufacturing Science and Engineering, 139(5), 051001.
- Grasso, M., Demir, A.G., Previtali, B., Colosimo, B.M. (2017), In-situ Monitoring of Selective Laser Melting of Zinc Powder via Infrared Imaging of the Process Plume, under review in Robotics and Computer-Integrated Manufacturing
 - **Grasso M., Menafoglio A., Colosimo B. M., Secchi P. (2016),** Using Curve Registration Information to Enhance Profile Monitoring of Signal Data, Journal of Quality Technology, 48(2), 99-127

- Grasso M., Chatterton S., Pennacchi P., Colosimo B.M., (2016), A Data-Driven Method to Enhance Vibration Signal Decomposition for Rolling Bearing Fault Analysis, Mechanical Systems and Signal Processing, 81, 126-147
- Grasso M., Colosimo B.M., Pacella M. (2014), Profile Monitoring via Sensor Fusion: the use of PCA Methods for Multi-Channel Data, International Journal of Production Research, 52 (20), 6110 – 6135
- Hastie et al. 2009. Unsupervised learning. In The elements of statistical learning (485-585). Springer New York.
- Li, W., Yue, H. H., Valle-Cervantes, S., & Qin, S. J. (2000). Recursive PCA for adaptive process monitoring. Journal of process control, 10(5), 471-486.
- Liu et al. 2015. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Materials & Design, 87, 797-806.
- Mani, M., Lane, B., Donmez, A., Feng, S., Moylan, S., & Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. National Institute of Standards and Technology, Gaithersburg, MD, NIST Interagency/Internal Report (NISTIR), 8036.
- **Repossini G., Laguzza V., Grasso M., Colosimo B.M., (2017),** On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion, Additive Manufacturing,
- Spears, T. G., & Gold, S. A. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Tapia, G., & Elwany, A. (2014). A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science and Engineering, 136(6), 060801.
- Wang, X., Kruger, U., & Irwin, G. W. (2005). Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research, 44(15), 5691-5702.
- Wold, S. (1994). "Exponentially Weighted Moving Principal Components Analysis and Projections to Latent Structures". Chemometrics and Intelligent Laboratory Systems, 23(1), pp. 149– 161.
- **Zhao, Q., Xu, M., Fränti, P., 2009**, Sum-of-squares based cluster validity index and significance analysis. Adaptive and Natural Computing Algorithms, 5495, 313-322