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ABSTRACT 

 

Climate change affects technical Systems, Structures and Infrastructures (SSIs), changing 

the environmental context for which SSI were originally designed. In order to prevent any 

risk growth beyond acceptable levels, the climate change effects must be accounted for 

into risk assessment models. Climate models can provide future climate data, such as air 

temperature and pressure. However, the reliability of climate models is a major concern 

due to the uncertainty in the temperature and pressure future projections. In this work, 

we consider five climate change models (individually unable to accurately provide 

historical recorded temperatures and, thus, also future projections), and ensemble their 

projections for integration in a probabilistic safety assessment, conditional on climate 

projections. As case study, we consider the Passive Containment Cooling System (PCCS) 

of two AP1000 Nuclear Power Plants (NPPs). Results provided by the different ensembles 

are compared. Finally, a risk-based classification approach is performed to identify 

critical future temperatures, which may lead to PCCS risks beyond acceptable levels. 
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1. INTRODUCTION 

The Intergovernmental Panel on Climate Change (IPCC) has underlined the need of placing 

increasing emphasis on the assessment of the impact of global climate change on the reliability of 

critical Systems, Structures and Infrastructures (SSIs) [1]. Climate change must be embedded into 

risk assessment to take into account the changing environmental context, and avoid or mitigate 

unexpected and undesirable operational conditions that were not considered in the SSIs design phase. 

Current climate change seems to go beyond the bounds of the natural cyclic changes and how the 

natural, social and technical systems can tolerate this is a major issue [2]. To mention one 

phenomenon that might affect the cooling capability of risk-relevant SSIs, (like Nuclear Power Plants 

(NPPs)), a global average surface temperature increase of about 0.8°C has been recorded since 1900, 

and is expected to reach even 6.4°C by 2100 (depending on future Green House Gas (GHG) emissions 

and human activity [3; 4; 5; 6]), endangering cooling capability of SSIs.  

The large uncertainties on the impact of climate change on the operational risk of SSIs rises significant 

challenges and methods are needed that allow assessing the possible impact of climate change with a 

transparent and feasible treatment of the involved uncertainties [1]  

Risk assessment methods typically rely on probabilistic-based approaches, wherein uncertainties are 

propagated into the rise model output [7]. In this framework, the uncertainty in the climate change 

projections, i.e. the uncertainty of the future values given by a climate model [8], plays an important 

role because it may lead either to over- or to under-estimation of the risk. In this respect, a pool of 

climate change models is available, each one addressing a specific problem (for example, the cause-

effect relationship between climate change and GHG emissions), but none can be identified as the 

single best climate model [3]. The problem is, then, one of model uncertainty [9]. The difficulty in 

quantifying and managing this source of uncertainty is a challenge. Bayesian approaches have been 

proposed [9; 10; 11; 12; 13], but in the climate change modelling problem, the lack of comprehensive 

climate models, which treat all the specific issues addressed by the individual models, calls for 

aggregating the different models into an ensemble [14]. In this paper, three ensemble approaches are 

investigated to aggregate the projections of five climate models to improve the robustness and the 

accuracy of the projection of the future climate conditions [15; 16; 17; 18; 19; 20]. We aggregate the 

climate projections of five models (under one climate pathway of global future development (RCP 

6.0)) from the open-source database Climate Change Health Impact Profiles project (ClimateCHIP, 

www.climatechip.org). The ensemble approaches of aggregation differ in the way they score the 

different models with respect to the monthly Mean Absolute Error (MAE), which is computed (for 

each climate model) by assessing the difference between the recorded and computed air temperature 

http://www.climatechip.org/
http://www.climatechip.org/
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recorded (from 1981 to 2005). The following weighting strategies are considered for the aggregation 

[15; 16; 21]: i) weight proportional to the inverse of the MAE; ii) weight proportional to the logarithm 

of the inverse of the MAE; iii) weight proportional to a Borda count-based ranking [15]. We consider 

the Passive Containment Cooling System (PCCs) of AP1000 NPPs as case study [22] because: i) 

nuclear power is an energy option considered to reduce greenhouse gas emissions [23; 24]; ii) it has 

been shown that the safety and reliability of NPPs are significantly influenced by changes of air 

temperature, precipitation, river flows, sea level, shoreline erosion, coastal storms, floods, heat waves, 

etc., that affect cooling water supply [2; 8; 25; 26; 27]. 

The proposed ensemble methods are used to aggregate the forecasts of the climate change models in 

order to assess the Conditional Functional Failure Probability (CFFP) of the PCC by performing for, 

an integrated probabilistic safety assessment conditional on climate projections [22; 28] and to 

classify the temperature conditions that lead the PCCS to unexpected and dangerous scenarios [28]. 

The CFFP is the probability that the pressure of the containment exceeds a safety threshold, and it is 

computed by carrying out a Monte Carlo (MC) sampling of all input variables of the thermo-hydraulic 

model, which simulates the PCCS after a Loss Of Coolant Accident (LOCA). The results provided 

with the ensemble of temperature projections are compared with those retrieved using the individual 

climate change models. On the other hand, the great benefit of the risk-based classification approach 

consists in that once the air temperature projections of the different climate models (ensemble or not) 

are compared to the risk-relevant temperature interval, the risk assessment and the climate projections 

are simultaneously provided. 

The remaining of this paper is organized as follows: Section 2 introduces the characteristics of the PCCS, 

and its behaviour following a LOCA; the climate models and their ensemble alternative strategies are 

described in Section 3; the theoretical description of the proposed risk assessment analyses is provided in 

Section 4; results of the risk assessment are presented in Section 5; conclusion and remarks are discussed 

in Section 6.   

 

2. THE CASE STUDY  

In this work, the Passive Containment Cooling System (PCCS) of the Westinghouse AP1000 

Pressurized Water Reactor (PWR) is considered (Fig. 1) [29]. The AP1000 has been the first 

Generation III+ reactor to receive the final design certification by the Nuclear Regulatory 

Commission of the United States (U.S. NRC) in 2005, and has been built (or is planned to be built) 

worldwide. The relevance of the considered system becomes clear by looking at Fig. 2, where the 

locations of the 15 plants that are (at present time) operating in the world or planned to be constructed 

are shown [www.world-nuclear.org]. 
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Fig. 1 An AP1000 Passive Containment Cooling System. 

 

 

Fig. 2 The locations of the operating and planned AP1000. 

 

Following an accident, the PCCS cools the containment vessel in a passive way, which means that its 

operation is not triggered by electricity. The natural circulation of the air within the containment 

shield building enhanced by the evaporation of the water, which is drained by gravity from a pool 

situated on top of the containment shield building, removes heat from the containment vessel. If the 

pressure is effectively controlled within the safety limit of 0.4 MPa after 1000 seconds from the 

beginning of the accidental scenario, the removal of heat is successful and safety guaranteed [30]. 

The accident considered is a Loss of Coolant Accident (LOCA) [31] and it is modelled resorting to a 

Thermal Hydraulic (TH) model of literature [22; 29]. 
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The evolution of a LOCA is typically described by four steps [32]: (1) blowdown, from the accident 

beginning to the time at which the primary circuit pressure is equal to the containment pressure; (2) 

refill, from the end of the blowdown to the time when the vessel lower plenum is completely refilled 

by the Emergency Core Cooling System (ECCS); (3) reflood, which is the interval of time in which 

the core is flooded by water; (4) post-reflood, which starts after the core is completely quenched and 

ends when the energy is released to the Reactor Coolant System (RCS). In the post-reflood phase, the 

steam produced in the RCS is cooled at the internal layer of the steel containment vessel and, then, 

the heat is conducted by the vessel and transferred to the atmosphere in the air channels. The outside 

cooling cold air enters the channels through the three rows of air inlets and flows down to the bottom 

of the channels, where it is heated by the steel vessel up to the air diffuser to the environment, as 

shown in Fig. 1. 

The Functional Failure Probability (FFP) of the PCCS of the AP1000 due to a LOCA, which is the 

probability of the containment pressure to exceed the safety limit of 0.4 MPa, is then quantified by 

using the TH model. The TH model uses 24 input variables, such as the diffusive coefficient (𝐷𝑐𝑓) or 

the diameter of the air outlet tube (𝐷𝑜𝑡). The design input variables are listed in Table 1, together with 

their distributions chosen from expert judgment and literature review [7; 33; 34]. The last two 

variables, which describe the surrounding environmental conditions and have to be used as input of 

the TH model, are the air temperature T, and the air pressure A. The output variable is the pressure 

value of the containment pressure Y, after 1000 s from the beginning of the LOCA.  

 

Table 1 List of parameters distributions. 

Parameter Unit 

Type of  

distributio

n 

Mean value 

 µ 

Standard  

deviation 𝞼 

LOCA steam temperature °C normal 250 5 

LOCA steam pressure MPa normal 0.1 5 

Water density in primary 

circuit 
kg/m3 normal 666.7 2 

Pressure of primary circuit MPa normal 15.5 2 

Containment volume m3 normal 58333 1 

Containment wall thickness m Normal 0.04455 0.5 

Containment diameter m Normal 39.62 0.5 

Containment height m Normal 34.12 0.5 

Width of air buffle outside 

containment 
m Normal 0.92 0.5 

Height of the download in air 

buffle 
m Normal 38.11 0.5 

Height of the upload in air buffle m Normal 59.89 0.5 

Diameter of the air outlet m Normal 9.75 0.5 

Height of the air outlet m Normal 6 0.5 

Diameter of uphead m Normal 39.62 0.5 

Height of  m Normal 11.47 0.5 



6 

 

uphead 

Diffusive  

coefficient  

(water) 

m2/s Normal 2.55E-05 20 

Heat  

conduction of the wall 
W/mK Normal 54 5 

Description Unit 

Type of  

Distributio

n 

Lower value Upper value 

Air channel rugosity - Uniform 0.00285 0.00315 

Friction factor of corner - Uniform 0.475 0.525 

Friction factor of inlet - Uniform 0.9025 0.9975 

Friction factor of pipeup - Uniform 0.1425 0.1575 

Friction factor of pipeout - Uniform 0.1425 0.1575 

Friction factor of pipecold - Uniform 0.1425 0.1575 

Steady state LOCA mass flow rate kg/s Uniform 6 11 

 

3. Ensembles of climate projection data 

 

The AP1000 NPPs are design to operate for 80 to 100 years. It is, then, reasonable to investigate how 

the climate change and, in particular, the change of air temperature and pressure, might affect the 

reliability performance and the risk of these NPPs. 

To this aim, the air temperature forecast Tprojeted from the ClimateCHIP site (www.climatechip.org) 

has been taken. Five different climate models, developed within the Coupled Model Intercomparison 

Project (CMIP5) (the most relevant global project aimed at analysing the past and predict the future 

climate changes [35]), have been considered:  

 

1. the USA GFDL-esm2m (GFDL) model [36]; 

2. the UK HadG-EM2-es (HadGem) model [14];  

3. the French IPSL-CM5a-lr (IPCM) model [37]; 

4. the Japanese MIROC-esm-chem (MIROC) model [38]; 

5. the Norwegian NORESM1-m (NORES) model [39].  

 

Each model provides the monthly mean 𝑇𝑚𝑒𝑎𝑛
𝑝𝑟𝑜𝑗𝑒𝑡𝑒𝑑 

 and the maximum 𝑇𝑚𝑎𝑥
𝑝𝑟𝑜𝑗𝑒𝑡𝑒𝑑

 air temperatures for 

four intervals of years (from 1981 to 2099): 𝑡1 from 1981 to 2005, 𝑡2 from 2011 to 2040, 𝑡3 from 

2041 to 2070 and 𝑡4 from 2071 to 2099. The Representative Concentration Pathway (RCP) 6.0 

assumption, which considers an equilibrium scenario of the total radiative force after the year 2100, 

due to a reduction of the GHG emission, has been adopted to retrieve the climate data [40].  

http://www.climatechip.org/
http://www.climatechip.org/
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A weighting strategy is utilized for aggregating future air temperatures [42], which are provided in 

terms of statistical indicators like the mean value (if the forecasts of the air temperatures were 

provided in the form of probability distributions, these could be aggregated by Bayesian model 

averaging [41]). The weighting is based on the difference between the predicted air temperature 

values and the real air temperature data in the time interval 𝑡1, from 1981 to 2005. For each AP1000 

location of Fig 2, the values of the air temperature provided by each climate model in the 𝑡1 time 

interval can be compared with the real air temperatures recorded in the same location, during the same 

period of time. The historical recorded temperatures have been retrieved by two historical databases 

provided by the National Oceanic and Atmospheric Administration (NOAA) 

[https://www.ncdc.noaa.gov] and by the National Aeronautics and Space Administration (NASA) 

[43; 44]. 

At each month i, a weight 𝑤j, is associated to each j-th climate model. The weight 𝑤j of the j-th 

climate change model is calculated for each month i as to the Mean Absolute Error (MAE) of the j-

th climate model projection projected

iT  (where projected

iT  is either 𝑇𝑚𝑒𝑎𝑛

projected

  or 𝑇𝑚𝑎𝑥

projected

 of the j-th climate 

model): 

  

5...,,2,1;12...,,2,1
12

)( projected

==
−

= ji
TTabs

MAE i

real

i
ji

 (1) 

  

For example, let us consider the NPP in Samen County, Zhejiang Province, China (as shown by a pin 

in Fig. 3). The historical air temperatures are retrieved from the NOAA and NASA databases, which 

provide the temperatures of three weather stations nearby the NPP (shown with stars in Fig. 3). The 

historical values real
iT , i=1,2,…,12, are assumed as the mean air temperatures recorded by the three 

weather stations for each i-th month in the time interval from 1981 to 2005. It is worth underling that 

since air temperature is strongly correlated for weather stations that are separated by up to 1200 km 

[45], in this case, although the weather stations are not placed closely to the NPP, the real
iT  

approximation is reasonable.  

 

https://www.ncdc.noaa.gov/IPS/mcdw/mcdw.html?_finish=0.19671194165533112
https://www.ncdc.noaa.gov/IPS/mcdw/mcdw.html?_finish=0.19671194165533112
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Fig. 3 The Sanmen NPP (pin) and the correlated three weather stations (stars). 

 

Fig. 4 shows the difference between the real
iT  (solid line) and the projected

iT  (taken equal to 𝑇𝑚𝑒𝑎𝑛

projected

) 

values for each j-th climate model. It is worth noting that from April (month 4) to August (month 8) 

all the climate models underestimate real
iT . 

 

 

Fig. 4 The real recorded air temperatures (solid line) and those provided by the climate models in 

the time interval from 1981 to 2005. 
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Fig. 5 shows a more accurate representation of the difference along the period 𝑡1 between real
iT  and 

projected

iT  (again taken equal to projected

meanT ) for each model. Each bar corresponds to one month of the 

year. Again, the largest discrepancy is reached in the period April-August (i.e. the fourth, fifth, sixth, 

seventh and eighth bars of each model are the highest). The climate change models perform small 

errors during the cold months (i.e. January, February, October, November and December, that are the 

first, second and last three bars of each model, respectively, in Fig. 5). Also, as all climate change 

model commit errors, it is not easy to identify the best one. For example, even if the IPCM model 

seems to overcome the other models (almost) throughout the 12 months, in December it shows the 

largest error over all models.  

 

 

Fig. 5 Difference between the temperatures provided by each individual climate change model and 

the real air temperatures for each month in the time interval from 1981 to 2005. 

 

To improve projection accuracy, a procedure of aggregation of the climate change models into an 

ensemble is introduced. Three ensemble approaches, which differ on the definition of the considered 

weighting strategies, are defined in order to obtain a projection that relies on the strengths of each 

single climate method. Hence, each climate model is rewarded with a weight that is influenced by the 

accuracy of the considered model, and consequently the most accurate model is awarded with the 

highest weight. It should be noted that the weights do not necessarily sum to 1, but rather the larger 

the weight is assigned to each model, the better its performance in approximating the real air 
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temperature in the time interval from 1981 to 2005. The three ensemble approaches can be defined 

as follows [19]: 

 

a) weight proportional to the inverse of the MAE [42]:  

  

5...,,2,1;12...,,2,1
1

=== ji
MAE

w
ij

ij
 

(2) 

  

b) weight proportional to the logarithm of the inverse of the MAE [42]:  

  

5...,,2,1;12...,,2,1
)max(

log ==













= ji

MAE

MAE
w

ij

ij

ij
 

(3) 

  

where )max( ijMAE  is the maximum error between the temperatures predicted by the 

climate change models and the real air temperature values, for each month.  

c) For each month, a weight proportional to a Borda count-based ranking [15] is assigned 

to each model. The ranking score S  [1, 50] is equal to 1 for the (worst) model with 

the largest MAE, and 50 for the best performing climate change model with the 

smallest MAE. Consequently, the higher the rank, the higher the weight assigned to 

the climate model, allowing the best performing climate model to bring more 

information in the ensemble (more than for strategy b). 

Once the weight, ijw , is defined, the air temperatures predicted by each climate change model are 

aggregated into the predicted temperature Ti, by computing the simple average: 

  

12...,,2,1
5

1

projected

=


=
=

i
MAE

wT
T

j tot

jj

i  (3) 

  

where totMAE  is the sum of the jMAE  of each individual climate change model. Again, Eq. (3) shows 

that the aggregated air temperature Ti is expected to provide a more accurate temperature projection 
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than the individual models projections, because the better the accuracy of the individual climate 

model is, the smaller its MAE and the larger its weight in the ensemble.  

Fig. 6 shows the differences between real
iT and the ensembled air temperatures Ti using the three 

abovementioned strategies a), b), c) (where each bar corresponds to the i-th month). Although the 

ensemble strategies commit errors in the warmest months of the year (from April to September), these 

are smaller than those committed by the individual climate models of Fig. 5. Especially, the Borda 

count-based ranking (strategy c) shows the largest accuracy because the error committed in the 

temperature estimation during the cold months (from October to February) is almost negligible.  

 

 

Fig. 6 Difference between ensembled temperatures with strategies a), b) and c) and the real air 

temperature, in the time interval from 1981 to 2005. 

 

The performances of the ensemble strategies and of the individual models have been exhaustively 

calculated for all the 15 AP1000 power plants of Fig 2, and reported in Fig. 7. For each NPP, the real 

air temperature data have been retrieved from the repository of the NASA and NOAA database for 

the closest weather station to the plant. Fig. 7 summarizes the results, for each NPP site of Fig 2: the 

mean error committed along the 12 months considered is compared among the individual climate 

models and the ensemble strategies. It is worth highlighting that the ensemble strategies of the climate 

change models show better accuracy than the individual climate change models in all 15 NPP sites 

around the world, i.e., the error between the real air temperature and those obtained by applying the 

ensemble of the climate change models is lower than for the individual climate models. In particular, 
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the results for site 11 (i.e., the Duke's Lee NPP, in Gaffney, South Carolina, USA) shows that the 

ensemble strategies reduce to almost zero the error. 

 

 

Fig. 7 Annual mean error of the climate change models and their ensembles considering the time 

interval from 1981 to 2005. Site numbering based on [28]. 

 

Finally, it is worth pointing out that the ensemble strategies are expected to improve the accuracy 

with respect to the individual climate models, but not to address and quantify the epistemic 

uncertainty of the climate models used themselves. This is because, neither air temperature 

distributions nor ranges of temperature projections are available, which would allow propagating 

uncertainty, e.g. with probabilistic and possibilistic approaches [46, 47]. Therefore, in what follows, 

we limit the analysis to the probabilistic uncertainty propagation of the design input variables of the 

TH model and of the environmental pressure, A, neglecting the uncertainty on the ensembled 

temperature projections.  

 

4. Risk assessment of the NPP  

 

The air temperature projections provided by climate models and ensemble strategies for the time 

intervals t2, t3 and t4 are used as input data of two risk assessment approaches to assess the risk of the 



13 

 

NPP of Section 2 [28], namely the integrated probabilistic safety assessment and the risk-based 

classification approach. These approaches have been selected because, although, both approaches 

rely on the same assumptions and are based on the probabilistic assessment of a dynamic system 

model, they differ in how uncertainty in output is quantified and, thereby, communicated. On one 

hand, the integrated probabilistic risk assessment has been shown in [28] to be useful when the 

knowledge available is strong enough for uncertainty to be quantified as conditional probabilities 

given a future air temperature [49] (although these probabilities do not capture the uncertainty in 

climate data). On the other hand, the risk-based classification of projected temperatures 

communicates uncertainty as statements associated to a future state, as either safe or non-safe, and 

differences between different climate projections. The difference with the probabilistic risk 

assessment is that no probabilities are shown, only the projected temperatures, and it may be easier 

for a decision maker to relate to a temperature than to a probability. 

In details, the approaches can be summarized as follows: 

 

1. The integrated probabilistic safety assessment conditional on climate projections: this 

approach aims at computing the Conditional Functional Failure Probability (CFFP) (i.e., the 

probability that the pressure of the containment, Y, exceeds the safety threshold of 0.4 MPa) 

by using a Monte Carlo (MC) procedure. The MC procedure requires sampling, for each 

month i = 1, 2, …, 12, and each time interval t = 𝑡𝑚, with m =1, 2, 3, 4, N = 200 samples of 

the 24 design input variables and the air pressure A (which is correlated to the air temperature 

T, that can be provided by either the individual climate models or by their ensembles). Then, 

each sample is used as input of the TH model of the PCCS to build the parametric distribution 

of the containment pressure Y, through a Finite Mixture Model (FMM) strategy [48]. The 

FMM is adopted in order to obtain a robust reconstruction of the probability distribution of Y, 

with limited number of TH code simulations. This way, both sources of uncertainty (epistemic 

uncertainty, associated with the PCCS design input variables, and aleatory uncertainty, 

associated with the natural variability of the environmental condition variable (A)) are 

quantified by using probability distributions of the input parameters. 

2. The risk-based classification on an assessment of critical temperatures: this method aims at 

classifying the PCCS behaviour with respect to risk-relevant temperature intervals, which are 

assessed independently from climate projections (i.e., based on actual temperatures and 

pressures). Once that the risk-relevant temperatures are identified, the projections of the 

climate models and their ensembles can be embedded into the safety assessment in a 

straightforward way. The risk-relevant temperature are assessed by analysing the T-Y profile 
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(i.e., how the profile of the containment pressure Y changes by varying the air temperature T), 

which is obtained by the simulation of the TH model given all uncertainties (i.e., design input 

variables D and air pressure A) with fixed T. It is worth noticing that under these premises, 

the calculated Y depends only on T, because the sampled design variables D are fixed for all 

the simulations, and A is conditionally dependent on T. 

 

In what follows, we show that the air pressure A is correlated to T. Without loss of generality, let us 

consider the Sanmen NPP: Fig. 8 shows that real
iT  (solid line in Fig. 8) and the corresponding air 

pressure (dashed line in Fig. 8), which have also been collected in a weather station nearby the NPP, 

are negatively correlated, that is, an increase of T leads to a decrease of A. 

 

 
Fig. 8 Monthly mean of air temperatures (solid) and air pressures (dashed) based on 

observations collected by a Chinese weather station. 

 

For this reason, A is here sampled from the joint distribution of the air temperature and the air 

pressure. Regarding the Sanmen NPP, the joint distribution of air temperature and pressure is 

approximated by the monthly specific Gaussian bivariate distribution shown in Fig. 9. Fig. 10 shows 

that, in this way, samples of A at different future air temperatures projected

iT  are also negatively 

correlated to T.  
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Fig. 9 The joint distribution of temperature and pressure based on data collected by a Chinese 

weather station (circles). 

 

 

Fig. 10 Samples of air pressure for different air temperatures in the future (
projectedT ) using the 

Gaussian bivariate distribution. 

 

5. Results  

Hereafter, without loss of generality, we show and discuss the results of the application of the two 

alternative risk assessment approaches to site 1 (the NPP in Samen County, Zhejiang Province, China) 

and to site 11, (the Duke's Lee NPP, in Gaffney, South Carolina, USA). These NPPs are selected 
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because of their significance: the former has already been studied in different environmental 

conditions and climate change scenarios [22; 28], and it is interesting to investigate how risk 

assessment might be affected by the information carried by the ensembles of climate models, rather 

than by the individual models [28]; the latter, instead, is interesting to be analysed because, as shown 

in Fig. 7, it shows the best results in predicting the real historical air temperature by adopting the 

proposed ensemble strategies. 

 

5.1  Approach 1: The integrated probabilistic safety assessment conditional on 

climate projections 

 

In order to assess the CFFP of the PCCS, the MC procedure is performed for each individual climate 

change model and each ensemble strategy by sampling N = 200 times, for each month i = 1, 2, …, 

12, and each time interval t = 𝑡𝑚, with m =1, 2, 3, 4, the 24 design input variables and the air pressure, 

A, from the bivariate Gaussian distribution relative to the location of the plant. It is worth pointing 

out that the low number of simulations, N, of the TH model is allowed by the successive use of the 

FMM for robustly reconstructing the probability distribution of Y, even with a limited number of TH 

code simulations [28, 48]. The environmental parameters (air temperature and pressure) depend on 

local data, whereas the D design parameters of the NPP are sampled from the distributions presented 

in Table 2, for each NPP of Fig 2. The results of the MC simulations are, then, used as input of a 

FMM algorithm, which provides an estimation of the probability distribution of containment pressure 

Y at each of the four time intervals from 1980 to 2099. Fig. 11 shows the probability distributions 

(based on the maximum temperature projection 𝑇𝑚𝑎𝑥

projected

) for the three hottest monts (July, August 

and September) in the NPP of site 1. It can be seen that the behaviour of the PCCS is strongly 

influenced by the air temperature projections used as input of the TH model. For example, in July and 

August (of the first time interval 𝑡1) the containment pressure Y strongly depends on which climate 

model or ensemble strategy is used as input of the TH model: the FMM of the containment pressure 

obtained with the MIROC and NORES climate models (circles and squares lines, respectively, in Fig. 

11) is centred on 0.1 MPa, whereas those retrieved by adopting all the ensemble strategies and the 

GFDL, HadGem and IPCM climate models are shifted towards higher Y values. This also occurs in 

September (of the fourth time interval 𝑡4) where the GFDL, MIROC and NORES climate models 

(pointing-down triangles, circles and squares lines, respectively, in Fig. 11) lead the containment 

pressure probability distribution to be centred to 0.1 MPa, whereas, the other climate models 



17 

 

(HadGem and IPCM) and all the three ensemble strategies lead the containment pressure close to the 

safety limit of 0.4 MPa.  

 

 

Fig. 11 FMMs of containment pressure (Y) for four time intervals during 1980 to 2099 for site 1, 

based on the projections of the individual climate models and their ensemble strategies. 

 

Similarly, Fig. 12 shows the FMMs of the containment pressure of 5 months (from May to September 

during the time periods from 1981 to 2099). Although good agreement of the FFMs retrieved by using 

climate models and ensemble strategies is shown in the hottest months (June, July and August), with 

the exception of the HadGem climate model which leads to more likely high containment pressure 

(crosses line in Fig. 12), the influence of the climate models on the probability distribution of the 

containment pressure is confirmed by the FMMs of September: in particular, the CFFP of the PCCS 

largely deviates when the HadGem and NORES climate models are adopted (crosses and squares 

lines, respectively, in Fig. 12), leading the average containment pressure close to the safety limit of 

0.4 MPa. Finally, it is important to point out that differences in the probability distributions of the 

PCCS are smoothed out when the projections are provided by the three ensembles (diamonds, 

pointing-forward and pointing-backward triangle lines, for strategy a), b), and c), respectively, in Fig. 

12). 
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Fig. 12 FMMs of the containment pressure (Y) for four time intervals during 1980 to 2100 for site 

11, based on the projections of the individual climate models and their ensemble strategies. 

 

Figures 13 and 14 show, for sites 1 and 11, respectively, the CCFP (i.e., the probability that the FMMs 

exceed the safety threshold of 0.4 MPa). In general terms, the CFFPs increase as the air temperature 

projections increase. It is straightforward that also the CFFPs strongly depend on the model chosen 

to provide the temperature projections: for example, the GFDL model (pointing-up triangles line in 

Fig. 13) gives low projection of the CFFP, whereas the HadGem model (crosses line in Fig. 13) leads 

to extremely high projection of the CFFP. On the other hand, the three ensemble strategies (diamonds, 

pointing-forward and pointing-backward triangle lines, for strategy a), b), and c) in Fig. 13, 

respectively) show similar projections of the CFFPs, which are neither conservative nor optimistic 

with respect to those provided resorting to the individual models. Similar results are shown in Fig. 14 

for the NPP of site 11. 
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Fig. 13 CFFPs projections using individual climate models and their ensemble strategies, for the 

NPP of site 1. 

 

Fig. 14 CFFPs projections using individual climate models and their ensemble strategies, for the 

NPP of site 11. 

In all cases, we claim that the risk assessment performed with the ensemble strategies of the air 

temperature models can give more reliable (robust) results than that performed with the individual 

modes, because the ensemble strategies show larger accuracy than the individual climate models in 

predicting the air temperature, as described in Section 3. A more insightful uncertainty analysis of 
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the CFFPs projections would have been allowed if the uncertainty on the climate projections would 

have been provided either in terms of probabilistic or possibilistic terms, as already discussed in 

Section 3.4.  

 

5.2 Approach 2: The risk classification based on an assessment of critical temperatures 

 

The approach consists in assessing the T-Y profiles by simulating the system model given all 

uncertainties (i.e., design input variables D and air pressure A) with fixed T, where we define the 

distribution of Y conditional on temperature T (taking into account that air pressure A is conditionally 

dependent on air temperature T). The distribution of Y is derived by simulating the TH model for 

temperatures in the range 25°C to 45°C (i.e., the variability of the historical air temperatures on sites 

1 and 11), with a fixed set of randomly sampled design variables D. In this way, the differences in Y 

for different values of T should only depend on T. Figure 15 shows that the relationship between Y 

and T is monotone: the larger T, the larger the probability of exceeding the safety limit of 0.4 MPa. It 

can be seen that when T is lower than 30°C the probability of Y to be lower than 0.1 MPa (dashed 

line in Fig. 15) is approximately 1, whereas when T exceeds 32°C the distribution of Y becomes 

bimodal with the values 0.10 and 0.55 MPa as the two modes (dashed and continuous lines, 

respectively, in Fig. 15), where the upper mode is the result of a rule in the TH model that interrupts 

the calculations when the pressure exceeds 0.55 MPa. 
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Fig. 15. Profiles of  T – Y: probability distributions of Y conditional on T with the percentiles for 

two critical pressures Y ≤ 0.10 MPa (dashed white) and Y ≥ 0.4 MPa (solid white). 

 

Fig. 16 and Fig. 17 show the evolution of the 95th percentile of the distribution of Y for site 1 and site 

11, respectively. The critical temperatures are found by fixing the safe pressure threshold (Yl) at 0.1 

MPa and the failure pressure threshold (Yh) at 0.4 MPa, as shown by dotted lines in Figs. 16 and 17. 

For site 1, as soon as the air temperature T exceeds 28.5 °C, the containment pressure Y increases. On 

the other hand, the analysis of the distribution of Y for site 11 shows that the containment pressure Y 

increases as the air temperature T exceeds 30 °C (Table 2). The failure pressure threshold (Yh) of 0.4 

MPa is overcome at different temperatures depending on the site: 35.5°C is identified as the failure 

critical temperature for site 1 (Fig. 16), whereas the failure critical temperature of site 11 is 36 °C 

(Fig. 17). 

 

Table 2 Critical temperatures for risk-based classification. 

 

 

 

 

Location  SAFE CAN FAIL FAILS 

Site 1 Tprojected < 28.5°C 28.5°C <  Tprojected  < 35.5°C Tprojected  > 35.5°C 

Site 11 Tprojected < 28.5°C 28.5°C <  Tprojected  < 35.5°C Tprojected  > 36°C 
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Fig. 16 The critical temperatures leading to the 95th percentile of Y exceeding the safety limit for 

site 1. 

 

 

Fig. 17 The critical temperatures leading to the 95th percentile of Y exceeding the safety limit for 

site 11. 
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The risk classification based on the 𝑇𝑚𝑎𝑥
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 projections provided by both the climate models and 

the ensemble strategies is performed for the hottest months (for the NPPs located at sites 1 and 11). 

Fig. 18 shows the risk classification for the site 1: even if the forecasts of the air temperature are 

within the identified risk-relevant interval, the air temperature forecasts provided by the ensemble 

strategies (diamonds, backward-pointing and forward-pointing triangles in Fig. 18 for the a), b) and 

c) ensemble strategies, respectively) are very close to one another, whereas, those retrieved by using 

the individual climate models greatly differ from each other. For example, the projections of the 

HadGem and MIROC models (crosses and circles in Fig. 18, respectively) are higher than those 

provided by the NORES climate model (squares in Fig. 18). 

 

 

Fig. 18 Risk classification of the 𝑇𝑚𝑎𝑥
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 projections from the five climate models for the hottest 

month at every location for site 1. 

 

Fig. 19 shows the risk classification of forecast air temperatures of site 11: climate change might have 

a negative effect on the cooling capacity of the PCCS of site 11, because the projections of the air 

temperature retrieved by using both climate change models and ensemble strategies are very close to 

the failure critical temperature of 36 °C. Again, the ensemble strategies (diamonds, back-pointing and 

forward-pointing triangles in Fig. 19 for the a), b) and c) ensemble strategies, respectively) give very 

similar air temperature forecasts, whereas the climate models provide different projections of the air 



24 

 

temperature. For example, the HadGem model (crosses in Fig. 19) gives the highest forecasts of the 

air temperature, which are close to the failure critical temperature from the time period 𝑡2 (from 2011 

to 2040). The climate models GFDL, IPCM, MIROC and NORES (pointing-up triangles, pointing-

down triangles, circles and squares in Fig. 19, respectively) provide air temperature forecasts that are 

lower than those provided by the ensembles, and, thus, this may lead to underestimating the risk 

associated to the PCCS. For example, analyzing the time period 𝑡4 (from 2081 to 2099), it can be 

observed that the projections provided by these climate models are closer to the safety threshold of 

36 °C than those provided by the ensemble strategies.  

 

 

Fig 19 Risk classification of the 𝑇𝑚𝑎𝑥
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 projections from the five climate models for the hottest 

month at every location for site 11. 

 

Finally, it is worth highlighting the simplicity of application and the limited computational burden of 

the risk classification approach embedding climate change into the risk assessment: indeed, once that 

the air temperature projections of the different climate models (with and without the ensemble) are 

compared with the critical temperatures, the risk associated to that temperature is easily provided 

(without the need of building the CFFPs, as for approach 1). Limitations of the integrated probabilistic 

safety assessment conditional on climate projections are indeed overcome: while a probability 

distribution of the climate data is strongly required by the probabilistic safety assessment approach, 

this is not required by the risk-based classification approach. Since future climate data are pointwise 

projections, i.e., without probability distribution, the risk assessment approach might turn to be 
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challenged as the number of system variables depending on the air temperature increases, whereas 

the risk-based classification approach would not. 

 

 

6. Conclusions  

Climate change must be considered for NPPs, in particular if passive safety systems are used. To 

support this claim, we have considered as case study a PCCS of an AP100 reactor. Several challenges 

with the integration of climate change have been identified and two alternative ways to investigate 

the potential impact of changing climate have been proposed: a fully probabilistic modelling based 

on climate projections and a risk classification-based on an assessment of critical temperatures. The 

probabilistic risk assessment quantifies the failure probability of the NPP, conditioned to a future air 

temperature. Conversely, the risk classification of projected temperatures provides a risk assessment 

of the NPP under future climate scenarios, by providing the future air temperatures which may lead 

the PCCS into failure. From a decision maker point of view, we expect this latter method to be 

preferred, because temperature is a physical variable more easy to understand than the concept and 

meaning of probability.  

Three ensemble approaches, based on the aggregation of the projections of five climate models, have 

been proposed to be used within two alternatives ways of investigation. It has been demonstrated that, 

using a database of real recorded air temperatures, the three ensemble approaches give more accurate 

forecasts than the individual climate models. Results have shown that, whilst each individual climate 

model leads to a different risk assessment, the ensemble strategies lead to very similar risk assessment 

results and, consequently, the evaluation of the risk is more robust than that one obtained by using an 

individual climate model, due to the fact that the results do not depend on the particular climate 

change model. 

 

 

 

7. Acknowledgment  

Authors thank Dr. Sahlin Ullrika for her precious encouragement in initiating the research activity, 

for initially manipulating the climate change data, and for the fruitful exchanges of views that have 

greatly improved the manuscript. 

  



26 

 

 

References 

[1] Anderson, B., Borgonovo, E., Galeotti, M., et al. Uncertainty in climate change modeling: Can global 

sensitivity analysis be of help?, Risk Analysis, 2014; 34 (2), 271-293. 

[2] Rummukainen, M., Climate change: changing means and changing extremes, Climate Change, 2013;121: 

3-13. 

[3] Webster, M.D., Sokolov, A.P., A methodology for quantifying uncertainty in climate projections, Climatic 

Change, 2000; 46 (4), pp. 417-446. 

[4] Singh, R.P., Causes and consequences of the greenhouse gases, Bulletin of Pure and Applied Sciences - 

Section F Geological Sciences, 2006; 25 (1-2), pp. 13-17. 

[5] Carlsson-Kanyama, A., González, A.D., Potential contributions of food consumption patterns to climate 

change, American Journal of Clinical Nutrition, 2009; 89 (5), pp. 1704S-1709S. 

[6] Spiegelhalter, DJ., Riesch, H., Don't know, can't know: embracing deeper uncertainties when analysing 

risks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

2011; 369: 4730-50. 

[7] Zio, E., Di Maio, F., et al., Safety margins confidence estimation for a passive residual heat removal system, 

Reliability Engineering and System Safety, 2010; vol. 95, 828–836. 

[8] Asian Development Bank, Climate risk and adaptation in the electric power sector, Mandaluyong City, 

Philippines: Asian Development Bank, 2012. 

[9] Droguett, E.L., Mosleh, A., Integrated treatment of model and parameter uncertainties through a Bayesian 

approach, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 

2013, 227 (1), pp. 41-54. 

[10] López Droguett, E., Mosleh, A., Bayesian treatment of model uncertainty for partially applicable models, 

Risk Analysis, 2014, 34 (2), pp. 252-270. 

[11] Baraldi P, Zio E., A comparison between probabilistic and Dempster-Shafer theory approaches to model 

uncertainty analysis in the performance assessment of radioactive waste repositories. Risk Analysis, 2010; 

30:1139–1156. 

[12] Pourgol-Mohamad M, Mosleh A, Modarres M., A methodology for the use of experimental data to 

enhance model output uncertainty assessment in thermal hydraulics codes, Reliability Engineering and System 

Safety, 2010; 95:77–86. 

[13] Hoefer A, Dirksen G, Eyink J, Pauli EM., Uncertainty treatment for level-2 probabilistic safety analysis, 

Nuclear Science and Engineering, 2010; 166(3):202–217. 

[14] Martin, G.M., Bellouin, N., Collins, W.Jet al., The HadGEM2 family of Met Office Unified Model climate 

configurations”, Geoscientific Model Development, 2011; 4 (3), 723-757. 

[15] R. Polikar, Ensemble based systems in decision making, Circuits Syst. Mag. IEEE, 2006; vol. 6 (3), 21–

45. 

[16] F. Di Maio, J. Hu, P. Tse, et al. Ensemble-approaches for clustering health status of oil sand pumps, Expert 

Systems with Applications, 2012; 39 (5), 4847–4859, 

[17] Tebaldi, C., Knutti, R. The use of the multi-model ensemble in probabilistic climate projections, Phil. 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, (2007); 365 (1857), 

2053-2075. 

[18] S. Al-Dahidi, F. Di Maio, et al., A novel ensemble approach for clustering operational transients of a NPP 

turbine, International Journal of Prognostics and Health Management, 2015; 6 (Special Issue Nuclear Energy 

PHM), ISSN 2153-2648. 

[19] M. Hoseyni, F. Di Maio, M. Vagnoli, et al., A Bayesian ensemble of sensitivity measures for Severe 

Accident modeling, Nuclear Engineering and Design, 2015; 295, 182–191. 

[20] F. Di Maio, A. Bandini, E. Zio, et al.,, Bootstrapped Ensemble-based Sensitivity analysis of a TRACE 

thermal-hydraulic model based on a limited number of PWR large Break LOCA simulations, Reliability 

Engineering and System Safety Volume, 2016; 153, 122–134. 

[21] S. Al-Dahidi, F. Di Maio, P. Baraldi, et al., A Locally Adaptive Ensemble Approach for Data-Driven 

Prognostics of Heterogeneous Fleets, Journal of Risk and Reliability, Special issue of ESREL 2015. 



27 

 

[22] Di Maio, F., Nicola, G., Zio, E., et al., Ensemble-based sensitivity analysis of a Best Estimate Thermal 

Hydraulics model: Application to a Passive Containment Cooling System of an AP1000, Nuclear Power Plant. 

Annals of Nuclear Energy, 2014; 73, 200–210. 

[23] IAEA, Climate change and nuclear power 2015, International Atomic Energy, Vienna, 2015. 

[24] Wan, P.K., Carson, A.C., Chan, D.W., “Climate change considerations in sustainable development of 

nuclear power plants in the united states”, International Conference on Nuclear Engineering, Proceedings, 

ICONE, May 17–21, 2010, Xi’an, China, vol. 6, pp. 403-407. 

[25] Rubbelke, D. and Vogele, S., Impacts of climate change on European critical infrastructures: The case of 

the power sector, Environmental Science & Policy, 2011; 14: 53-63. 

[26] Linnerud, K., Mideksa, TK. and Eskeland, GS., The Impact of Climate Change on Nuclear Power Supply, 

Energ J., 2011; 32: 149-68. 

[27] Kopytko, N. and Perkins, J., Climate change, nuclear power, and the adaptation-mitigation dilemma, 

Energy Policy, 2011; 39: 318-33. 

[28] Sahlin, U., Di Maio, F., Vagnoli, M., et al., Evaluating the impact of climate change on the risk assessment 

of Nuclear Power Plants, Safety and Reliability of Complex Engineered Systems - Proceedings of the 25th 

European Safety and Reliability Conference, ESREL 2015, 7-10 Sept. 2015, pp. 2613-2621. 

[29] Yu Yu, Shengfei W., Fenglei N., Thermal–hydraulic performance analysis for AP1000 passive 

containment cooling system, Proceedings of the 21th International Conference on Nuclear Engineering 

ICONE21 July 29-August 2, Chengdu, Sichuan, China, 2013. 

[30] Schulz, T.L., Westinghouse AP1000 advanced passive plant, Nuclear Engineering and Design, 2006; 236. 

1547–1557. 

[31] IAEA. Defining initiating events for purposes of probabilistic safety assessment. IAEA, IAEA-TECDOC-

719, Vienna, ISSN 1011-4289, 1993. 

[32] Rahim, F.C., Rahgoshay, M., Mousavian, S.K., “A study of large break LOCA in the AP1000 reactor 

containment”, Progress in Nuclear Energy, 2012; 54 (1), 132–137. 

[33] Yu, Y., Ma, G., Hao, Z., et al., Correlation analysis for screening key parameters for passive system 

reliability analysis, Annals of Nuclear Energy, 2015; 77. 

[34] Burgazzi, L., Evaluation of uncertainties related to passive systems performance, Nuclear Engineering 

and Design, 2004; 230, 93–106. 

[35] Taylor K. E., Stouffer R. J., Meehl G. A., 2012: An overview of CMIP5 and the experiment design. 

Bulletin of the American Meteorological Society, 93, 485-498 

[36] Ng, B., Cai, W., Walsh, K. Nonlinear feedbacks associated with the Indian Ocean dipole and their 

response to glob-al warming in the GFDL-ESM2M coupled climate model”, Journal of Climate, 2014; 27 (11), 

3904-3919. 

[37] Dufresne, J.-L., Foujols, M.-A., Denvil, S., et al., Climate change projections using the IPSL-CM5 Earth 

System Model: From CMIP3 to CMIP5, Climate Dynamics, 2013; 40 (9-10), 2123-2165. 

[38] Watanabe, S., Yokohata, T. Future increase in the all-sky UV-B radiation over asia projected by an earth 

system model, Journal of the Meteorological Society of Japan, 2012; 90 (A), 295-305. 

[39] Sandø, A.B., Gao, Y., Langehaug, H.R., Poleward ocean heat transports, sea ice processes, and Arctic sea 

ice variability in NorESM1-M simulations”, Journal of Geophysical Research: Oceans, 2014; 119 (3), 2095-

2108. 

[40] Van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., The representative concentration pathways: An 

overview, Climatic Change, 2011; 109 (1), 5-31. 

[41] Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M., Using Bayesian model averaging to calibrate 

forecast ensembles, Monthly Weather Review, 2005, 133 (5), pp. 1155-1174. 

[42] P. Baraldi, A. Cammi, F. Mangili, et al., Local Fusion of an Ensemble of Models for the Reconstruction 

of Faulty Signals, Nucl. Sci. IEEE Trans., 2010; 57 (2), 793–806. 

[43] GISTEMP Team, “GISS Surface Temperature Analysis (GISTEMP)”, NASA Goddard Institute for Space 

Studies, Dataset at http://data.giss.nasa.gov/gistemp/, 2016, (accessed 2016-06-13). 

[44] Hansen, J., R. Ruedy, M. Sato, et al., Global surface temperature change, Rev. Geophys., 2010; 48, 

RG4004, doi:10.1029/2010RG000345. 

[45] Hansen, J., D. Johnson, A. Lacis, et al., Climate impact of increasing atmospheric carbon dioxide, Science, 

1981; 213, 957-966. 

[46] Pourgol-Mohammad, M., Thermal-hydraulics system codes uncertainty assessment: A review of the 

methodologies, Annals of Nuclear Energy, 2009, 36 (11-12), pp. 1774-1786. 



28 

 

[47] Baraldi, P., Zio, E., A Combined Monte Carlo and possibilistic approach to uncertainty propagation in 

event tree analysis, Risk Analysis, 2008, 28 (5), pp. 1309-1325. 

[48] McLachlan, G., Peel, D., Finite Mixture Models, New York: John Wiley & Sons Inc., 2000. 

[49] Aven, T., Baraldi, P., Flage, R., et al., Uncertainty in Risk Assessment: The Representation and Treatment 

of Uncertainties by Probabilistic and Non-Probabilistic Methods, Uncertainty in Risk Assessment: The 

Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods, Wiley, 2014; 

1-186. 


