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Dynamic mesh handling previously implemented in OpenFOAM® by the authors has been extended to combine the use
of topological changes with the capability to handle arbitrary moving non-conformal mesh interfaces, where face fluxes
are interpolated at run-time without recomputing the mesh at each time-step. The presented strategy has been used in
combination with a PIMPLE-based compressible transient solver, where a novel formulation for the reconstruction of cell
centered quantities from cell face fluxes is applied as the grid changes. The proposed enhancements enable the removal
of several constraints that are typical in the dynamic decomposition of multi-block grids over multiple processors, thus
increasing scalability and convergence. The proposed methodology has been used in the study of in-cylinder flows in IC
engines.

INTRODUCTION

This paper discusses extensions and enhancement to the
methodology discussed in [1, 2, 3], about time-resolved tur-
bulence modeling of unsteady compressible flows in dy-
namic grids with topological changes in OpenFOAM®. In
particular, most of the modeling and development authors’
work was aimed to try to limit the stringent requirements
on the computational resources (hardware and computa-
tional time) placed by LES simulation, where the mesh
spacing is reduced to predict more and more of the turbu-
lent scales. Traditional LES of turbulent unsteady flows
of IC engines is not always feasible and will not be in
the foreseeable future even on large computers unless CFD
algorithm developments are made which allow significant
timestep acceleration or time parallelization (spatial de-
composition is the only option currently for CFD paral-
lelization). The timestep limit is due to the fact that both
the compressible transient dynamic solver and the time-
resolved turbulence modeling are limited by Courant num-
ber; even if the transient solver is potentially able to work
with higher Courant numbers, time resolution is crucial to
maintain phase coherence for LES, so [3]:

Co =
∆x

|~u| ·∆t
< 5 (1)

where ~u is the flow velocity. From Eq. (1), it is apparent
how the timestep ∆t is directly proportional to the mesh
spacing ∆x; reducing the grid resolution while maintain-
ing the ability to resolve most of the influential turbulence
dynamics would reduce the computational time for LES
simulations. This can be accomplished by using a two-
pronged approach:

- improvements in physical models for turbulence, which
would provide an accurate estimate of the subgrid vis-

cosity even with coarse grids;

- improvements in the efficiency of the numerical solver
and dynamic mesh handling.

With this in mind, an application to IC engine geometries
will be presented to further validate recent authors’ devel-
opment:

- the Dynamic Length Resolution Model (DLRM), a
novel hybrid RANS/LES turbulence model for the sim-
ulation of in-cylinder turbulent flows with coarse grids,
whose theory is described in [3];

- an improved, fast and reliable dynamic compressible
solver to handle dynamic non-conformal interfaces; this
includes a novel formulation for the correction and ini-
tialization of face fluxes through topological changes, to
reduce the decoupling between primary variables and
velocity flux in the pressure-velocity coupling algorithm
and enhanced flux correction for critical (choked) flow
conditions at the valve closure;

- an extension of the dynamic mesh handling procedure
presented in [1, 2], to allow topological changes to
work in combination with the so called AMI (Arbitrary
Mesh Interpolation) technique, already available in the
standard distribution of OpenFOAM®, released by the
OpenFOAM® Foundation [4].

The developed code has been validated on two different IC
engine geometries of increasing complexity, whose exper-
imental data were available from the literature: a simple
piston-cylinder assembly with a stationary open valve and
harmonically moving flat piston [5, 6] and a laboratory
single-cylinder Transparent Combustion Chamber (TCC)
engine, with moving intake and exhaust valves [7]. Fur-
thermore, scalability tests and performance analysis on the



code have been carried out at the Argonne National Lab
to identify performance bottlenecks and impediments to
good load balancing.

COMPRESSIBLE DYNAMIC SOLVER IMPLE-
MENTATION

A newly developed compressible dynamic solver used for
the simulation is topoEngineFoam, which is an extension of
the already existing transient solver for compressible flows
on dynamic meshes, with some modifications to improve
convergence with multiple attaching/detaching regions and
choked flows. The fundamental equations governing com-
pressible flow inside a moving domain [8] are written as:

∂

∂t

∫
V (t)

ρdV +

∫
S(t)

ρ (u− ub) · n dS = 0 (2)

∂

∂t

∫
V (t)

ρudV +

∫
S(t)

ρu (u− ub) · n dS =

∫
V (t)

f dV

(3)

∂

∂t

∫
V (t)

ρ(h+K) dV +

∫
S(t)

ρ(h+K) (u− ub) · n dS

(4)

−
∫
V (t)

∂p

∂t
−
∫
S(t)

α∇h · n dS =

∫
V (t)

q dV

where u and ρ are the fluid velocity and density, h is the
sensible enthalpy, K is the kinetic energy and ub is the
velocity of the boundaries of the control volume. Despite
the formulation with moving boundaries looks very similar
to the formulation for a static domain, solution of Eq. (2),
(3) and (4) requires particular care because of the term
including the relative advection velocity u − ub. In fact,
advection velocities are substituted by cell face fluxes φ,
when discretized in a FV framework; similarly, boundary
velocities ub are replaced by cell face fluxes originated by
points motion, φM . Next paragraphs will focus on meth-
ods for calculating φM in case of motion with or without
topological changes, and on a revised version of the solver
algorithm for the computation of compressible flows with
topological changes.

Enforcement of continuity without topological
changes

As shown in [8], a cell mass source can appear in the
mass conservation equation as cell faces move, even if mesh
fluxes are inserted in the discretized equations:

∆ṁ =
ρ∆V

∆t
(5)

To avoid this spurious source term (5), one must guarantee
that the Space Conservation Law (SCL) is fulfilled [9, 10].
SCL can be regarded as a continuity equation in case of a
zero fluid velocity:

d

dt

∫
V

dV −
∫
S

ub · ndS = 0 (6)

Discretization of Eq. (6) depends on the chosen temporal
integration scheme and it allows for calculating the mesh

motion flux (φM ) on the basis of the swept volume V̇b; in
the simplest case of Euler implicit integration, the mesh
motion flux can be calculated as:

φM = (ub · n)fSf = V̇f (7)

where V̇f = δV /∆t is the volume swept by a cell face
in a single time step. In case of a higher order scheme,
a different discrete equation for φM must be used. In
OpenFOAM®, the calculation of φM is done according to
the selected time discretization scheme. For a cell face with
a generic shape, the swept volume is calculated as follows:
first, the face is decomposed into several triangles, one for
each edge, that have as common vertex the face centroid;
then, the swept volume is calculated for each triangle, as
the difference between its new point coordinates T and the
old ones T o:

V̇f = f(T − T o) (8)

Since a face in OpenFOAM® is stored as a list of point IDs,
and not as a list of point coordinates, Eq. (8) does hold as
long as every point maintains its own ID during the mesh
change (i.e., in the case of point motion without topological
changes). When topological changes are triggered, points
are renumbered and there is no correspondence between
old and new point IDs, so the correlation between T and
T o is no longer valid. In this case, a different procedure
has to be applied, as outlined in the following paragraph.
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Figure 1: Different cases of topological changes. a) Face inser-
tion; b) Face removal; c) Face does not topologically change,
but its vertices get renumbered; d) Face is transformed and a
new vertex is inserted.

Enforcement of continuity with topological changes

Handling of mesh fluxes in case of topological changes is
done in different ways, depending on whether a cell face is
directly affected by a topology change (i.e. it is added or
deleted), or it is modified by point addition/removal, or it
simply changes its shape and not its definition. In the first
case, if a face is added during a topology modification (Fig.
1-a), its mesh flux must be zero. This is easily ensured by
explicitly setting the value of φM on newly created faces.

2



On the other hand, if a face is removed (Fig. 1-b), its mesh
flux does no longer exists. Continuity is thus enforced by
solving a modified Poisson equation for pressure correction
to apply to face fluxes, as it will be further discussed.

new face

old face

new point

ghost point

Figure 2: Handling of faces with inserted points. The new point
is projected onto the counterpart edge originating a ‘ghost’
point, and the edge is split. Now both faces can be decom-
posed in the same number of triangles. In case the new face
has less point than the old one, the ghost point is added on the
new face instead.

If points are renumbered as a consequence of a topologi-
cal change, but the owning faces do not show any substan-
tial modification (Fig. 1-c), Eq. (8) can still be applied.
However, face triangle decomposition T o must be rewritten
using the new point IDs, that are deduced using a point-
to-point map generated during the topological change. If
a face maintains its definition (i.e. it still exists after the
topological change), but points are added or removed (as
in Fig. 1-d), it is necessary to ensure the new face to be
decomposed in the same number of triangles as the old
one. This is achieved by adding vertexes on either the new
or the old face, depending on whether the new face has
less or more points than the original one (Fig. 2). ‘Ghost’
points are inserted by splitting an existing edge, so that
the global shape of the face remains unchanged. The co-
ordinates of the ghost point is the result of a projection of
the corresponding vertex on the old (or new) face.

Finally, before solving the governing equations (2) and
(3) on the updated mesh, old values of u, p and ρ must
still satisfy continuity when they are remapped onto the
new grid [11, 12]: the old velocity field un

n = u(xn, tn)
might not be compliant with the continuity equation (Eq.
(2)), when it is re-sampled onto the new mesh. Therefore,
a modified form of Poisson equation (Eq. (9)) need to be
solved for a pressure corrector pcorr:

∇2 pcorr +
1

∆t
∇ ·
[
ρ
(
xn+1, tn

)
u
(
xn+1, tn

)]
= 0 (9)

where u
(
xn+1, tn

)
and ρ

(
xn+1, tn

)
denote the velocity

and density fields computed at the previous timestep but
remapped onto the new mesh. The differential equation
(9) must be completed with appropriate boundary condi-
tions. On solid walls they have to be of Neumann type
(∂pcorr/∂n = 0), whereas on permeable walls a Dirichlet
boundary condition is applied (pcorr = 0). The pressure
correction problem assumes therefore the following form:


∇2 pcorr +

1

∆t
∇ ·
[
ρ
(
xn+1, tn

)
u
(
xn+1, tn

)]
= 0

∂pcorr
∂n

= 0 on solid boundaries

(10)

During intake and exhaust strokes there is at least one
open boundary, thus Eq. (10) usually poses no concerns
upon the existence and uniqueness of its solution. On the
other hand, a difficulty arises when both valves are closed:
in this case, Eq. (10) is solved separately for each sub-
domain (cylinder, intake, exhaust). The cylinder region,
however, is delimited exclusively by solid walls, thus no
Dirichlet-type boundary conditions are applied and the el-
liptic problem has no unique solution. To overcome this
intrinsic difficulty, a reference value of pcorr is imposed at
an arbitrary location of the domain:


∇2 pcorr +

1

∆t
∇ ·
[
ρ
(
xn+1, tn

)
u
(
xn+1, tn

)]
= 0

∂pcorr
∂n

= 0 on solid walls

pcorr(x0) = 0

(11)

Once solved for pcorr, its gradient is then used to update
the velocity:

un
n+1 = un

n −
∑ 1

Ap
∇pcorr (12)

Eqs. (9) and (12) are solved iteratively any time the
mesh changes, until convergence on pressure is reached.
Tests made on a simplified geometry have shown that
the (relative) continuity error can be kept below 10−8

[1]. Pressure correction applied after topological changes
(either layerAdditionRemoval, or slidingInterface or
attachDetach) leads to an improvement in the solver per-
formance, as it is discussed in the following paragraph.

Numerical considerations for pressure-energy cou-
pling

In OpenFOAM®, the base transient solver for compress-
ible viscous flows is based on a merged PISO-SIMPLE
algorithm (PIMPLE), which is represented in Fig. 3-a.
The outer loop is analogous to the pressure-correction al-
gorithm of the steady SIMPLE solver, whereas the inner
loop solves iteratively the equation of pressure. At the be-
ginning of each timestep, the mesh is updated according
to the piston and valve motion. As the mesh is updated,
face fluxes are recalculated including the effect of the mesh
motion, as described in the previous paragraph; finally, a
remapping of the newly calculated quantities is performed,
the velocity correction equation (9) is solved and the iter-
ation for the solution of the governing equations can start.

According to the original formulation of the PIMPLE
algorithm (Fig. 3-a), the inner loop is rarely executed
more than once (in transient-SIMPLE mode), since the
outer loop is deemed sufficient to achieve pressure-velocity
coupling. The user can however choose to perform only
one outer iteration: in this case two inner iterations are
mandatory. This is the PISO algorithm, which is lim-
ited by the Courant-Friedrichs-Lewy criterion (CFL ≤ 1)
[13]. Under-relaxation must be applied on solved quanti-
ties to avoid numerical overshoots during the outer itera-
tion. Values of relaxation factors range usually from 0.7
(for velocity) to 0.3 (for pressure). As a topological change
in the mesh occur, the energy equation is now solved to-
gether with mass conservation into the inner loop (Fig.
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start
advance
in time

solve for u solve for h

solve for p solve for k, ε
outer loop
(iterate until
converged)

inner loop

correct u

update mesh
compute ϕM

correct u w/ ᐁpcorr

(a) Standard PIMPLE algorithm

start
advance
in time

update mesh
compute ϕM

correct u w/ ᐁpcorr

solve for u solve for h

solve for p 

solve for k, ε

outer loop
(iterate until
converged)

correct u

inner loop

(b) Modified PIMPLE algorithm

Figure 3: Original formulation (a) and the novel implementa-
tion (b) of the formulation of the PIMPLE algorithm. The
compressible solver dynamically switches between the two for-
mulations as topological changes in the mesh occur. Flux cor-
rection is calculated accordingly to the theory described in this
paper.

3-b), to help global convergence (pressure and tempera-
ture are strongly linked in compressible flows); moreover,
the solution of turbulence-related quantities (k and ε, k
and ω, etc.) is done every outer iteration, to account for
strong changes in the velocity field that might occur inside
the outer loop, especially during the initial timesteps or
during the attach/detach of multiple mesh regions (open-
ing and closure of the valves, for instance). Despite solving
the two additional equations of turbulence for each outer
loop increases the computational effort of the single outer
iteration, it favors for a faster convergence of the solution.
In Fig. 4 a sample convergence history within a single
timestep at 90◦ CA is reported for the three-dimensional
simulation of the TCC engine. The graph shows the ini-
tial values of the normalized residual on pressure equation
versus the number of outer iterations for a single timestep.
The new algorithm reaches a specified tolerance (say 10−4)
in nearly half the number of outer iterations with respect
to the previous scheme. As a consequence, the wallclock
time for the timestep results to be significantly lower. It
is important to note that the walltime saving is not linear
with the number of outer iterations: the outer iteration of
the new solver is more expensive, since it includes at least
two inner iterations. For the timestep studied in Fig. 4,
the speedup is about 40%. Thanks to the stronger coupling
between energy and pressure, high under-relaxation factors
(up to 0.9) can be set, thus limiting the apparent overhead
due to an increased number of inner iterations. Despite
the modified solver is presented together with a specified
mesh motion strategy, its formulation is fully general and
compatible with any mesh motion strategy adopted.

Solution procedure for the dynamic solver

The general solution procedure for the solver is as follows:
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Figure 4: Numerical convergence of different implementations
of the pimple loop: comparison of pressure residuals between
the old (- - -) and the new (—) algorithm versus the number
of outer iterations within a single timestep.

1. update timestep according to Courant number limit

2. calculate mesh motion

3. if topological changes (or remapping on different grids)
occurs, construct equation for pressure correction and
solve for preliminary values of the velocity fluxes;

4. calculate lagrangian transport of particles and update
wall film calculation, if present;

5 solve pressure-velocity coupling according to Pressure
Implicit with Splitting of Operators (PISO) algorithm:

a) compute mass fluxes at cell faces;

b) define and solve pressure equation (repeat multiple
times for non-orthogonal mesh corrector steps);

c) correct fluxes;

d) correct velocities and apply BCs;

e) repeat for number of PISO corrector steps;

6. compute turbulence and correct velocities;

7. repeat from 1 for next timestep.

RESULTS: EXAMPLE CASES

The following example cases demonstrate the capability
of the simulation methods to capture the features of inter-
est in the turbulence flow fields in IC engine simulations;
it is also important to note that the implementation of the
mesh motion is absolutely general and it can be applied to
a wide variety of cases.
The first case studied is a piston-cylinder assembly with
a stationary open valve [5], where a moving mesh strat-
egy based on dynamic layer addition/removal is applied.
In the other case (Transparent Combustion Chamber en-
gine), both valves and piston are moving. In both cases,
fluid dynamics has been solved by the novel compress-
ible solver presented in the paper, while hybrid turbu-
lence RANS/LES modeling has been applied. Visualiza-
tions have been done using ParaView version 4.1.0.
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Figure 5: Comparison between predictions (solid line, blue) and experiments (dark squares) for mean axial velocity and RMS
fluctuations at selected axial locations at 36◦ (first column, from left), 90◦ (second column), 144◦ (third column), 270◦ (fourth
column) ATDCE.

Piston-cylinder assembly with a stationary open
valve

The 3-D geometry of the valve/piston assembly (Fig. 6),
which was investigated experimentally by Morse et al. [5]
using Laser Doppler Anemometry has a diameter of D =75
mm, a stroke of S =60 mm and the piston moves with
a turning speed of n =200 rpm. A large plenum (not
shown) upstream of the valve is employed to avoid speci-
fying boundary conditions at the valve gap.

h

Figure 6: Geometry of the valve/piston assembly. The large
upstream plenum connected to the intake section is not shown.

The valve is coaxial with respect to the cylinder and
remains fixed throughout the whole engine cycle, that has
a period of 360◦ Crank Angle (CA). The piston motion is
purely sinusoidal. Due to the low piston velocity, the flow
regime in the valve seat during the intake stroke is laminar.
A circular jet is expected to form in the cylinder during this
phase, together with primary and secondary vortex rings
as a consequence of the interaction of the incoming flow
with the fluid inside the cylinder. LES of the engine was
carried out in [6, 14]: the WALE sgs model was used on a
mesh changing dynamically by a motion strategy based on
a point-stretching concept; results from LES were validated
with simulations from a spectral element solver [15, 16,
17]. Thanks to the hybrid RANS/LES turbulence model
applied, a very coarse mesh, whose resolution was ranging
from 700K cells at the BDC to 150K cells at the TDC has
been used for simulations (in [6, 14], the grid had about 4
million cells).

In Fig.5, mean and RMS fluctuations of the axial ve-
locity are compared at selected axial distances z from the
cylinder head. Similarly to what has been found in [14]
and [6], even with an hybrid RANS/LES model jet pene-
tration at 90◦ CA ATDCE looks quite difficult to capture.
On the other hand, results at all angles are satisfying and
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are extremely similar to the results obtained by LES, with
a computational effort has been reduced of over one order
of magnitude.

Figure 7: Valve/piston assembly, angle=30◦ CA deg ATDCE;
a) contour plot of the flow velocity b) contour plot of the g2

function (see [3] for more detail). Where g2 = 1, DLRM applies
pure RANS to solve turbulence. With g2 = 0 implicit LES
is used. The large upstream plenum connected to the intake
section is not shown.

The Transparent Combustion Chamber Engine
Case

The Transparent Combustion Chamber (TCC) engine is
an optical engine that was set up at the University of
Michigan [7] in order to gather a database of experimental
data to be used to validate CFD models. The test con-
figuration is characterized by a single-cylinder setup with
a pancake-shaped head and two vertical valves, operated
by a camshaft. The engine is operating at motored con-
ditions and intake and exhaust ducts are connected with
plenums in order to damp pressure oscillations. All rele-
vant engine data are reported in Tab. 1 [18]. The TCC
engine has been adopted as a test case in [1, 2, 19] to
test authors’ developments for dynamic mesh handling in
OpenFOAM®: the slidingInterface algorithm has been
used in [2] both to stitch the spark-plug and the in-cylinder

Bore 92 mm
Stroke 86 mm
Connecting rod length 234.95 mm
TDC clearance height 9.50 mm
Geometric compression ratio 10
Engine speed 1300 rpm

Table 1: Geometrical features of the TCC engine [7].

region through cylindrical non-conformal interfaces and to
dynamically employ valve motion through the in-cylinder
region.

Extension of the dynamic mesh class

With respect to previous authors’ work, a further devel-
opment of the dynamic mesh handling has been adopted
to simulate the TCC engine. As described in [1, 2], the
slidingInterface coupling procedure generates a seam-
less joint between two non-conformal surfaces, by taking
advantage of the capability of OpenFOAM® to handle
polyhedral cells in the mesh: a significant advantage of
slidingInterface is that no particular numerical tech-
nique is required to solve the equations across the interface;
at the same time, as in any key-grid or target-mesh ap-
proach with local changes in topology, it requires a global
transfer of solution variables prior to a solution restart and,
most of all, mesh connectivity must be updated anytime
the sliding interface operates, with a consequent lack of
performance. The standard release of OpenFOAM® comes
along with an interesting feature called AMI (Arbitrary
Mesh Interface) interpolation: it consists of a calculation
of a vertex-based solution using a bounded Galerkin pro-
jection approach [20] to interpolate fluid-dynamic quanti-
ties over a “supermesh”, a virtual surface mesh made by
triangles, whose vertices are the points coming from the
intersection of the two sides of the non-conformal mesh in-
terface. This method is slightly slower if compared to a
target-mesh approach, requires a more complicated imple-
mentation procedure and a more expensive interpolation
algorithm, so it does not represent the optimal solution
to handle non-conformal interfaces in static mesh regions.
On the other hand, the computational cost of the interpo-
lation of the fluid-dynamic quantities over the supermesh is
less expensive than updating the mesh topology anytime
the slidingInterface operates (i.e. anytime the valve
moves, for instance).

To summarize, AMI is very performing to handle dy-
namic full overlapping non-conformal interfaces (as it will
be further shown for the valve motion of the TCC en-
gine), since the computational overhead of topological
changes of the sliding interface would be order of mag-
nitude higher than AMI interpolation. On the other hand,
slidingInterface looks convenient with:

- static non-conformal interfaces: the more complicated
interpolation algorithm of AMI might represent an ad-
ditional cost on the total simulation time, whereas the
sliding interface has no overhead since it uses stan-
dard cell-to-cell interpolation. A validation work is
underway to assess the numerical properties of both
strategies (AMI vs. sliding interface) when applied to
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static meshes.

- dynamic interface with partial overlap, when there is
not full overlap between non-conformal interfaces (as
in the simulation of two-stroke engines [21]). In this
case, a sliding interface approach is preferred; at the
time the paper is written, a stable numerical strat-
egy to apply a fictitious wall boundary over “non-
overlapping” faces and to block outgoing fluxes is not
available; this aspect is particularly challenging by a
numerical point of view since it might cause instabili-
ties and it is the topic of the ongoing research.

Figure 8: The 1M cell mesh used to simulate the TCC engine [2,
19], including the plenums connected to the intake and exhaust
ducts.

In the TCC engine mesh presented here, AMI interpolation
has been applied in place of slidingInterface to model
the curtain area of the valves and the cylindrical surface
between the cylinder and the volume below the valve (see
Fig. 8), while slidingInterface has been used to cou-
ple the cylindrical surface between the spark plug and the
in-cylinder region [2]. Authors’ extensions to the dynamic
mesh class allows for full flexibility in selecting the pre-
ferred strategy on a per-case basis, by simply modifying
case dictionaries.

TCC Engine: validation

Code and model validation has been carried out on the
basis of two main quantities:

- the instantaneous volume, to verify that dynamic ad-
dition and removal of cell layers was consistent;

- the instantaneous in-cylinder pressure trace, to verify
the operation of the numerical solver and of the sub-
models used.

Experimental pressure and in-cylinder temperature have
been set as initial conditions at the intake valve closure.
In the simulation, layerAdditionRemoval has been ap-
plied to the third layer of cells above the piston; these cells
were removed during compression when their thickness was
lower than a threshold value defined by the user (0.5 mm in
the example); conversely, single layers of cells were added
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Figure 9: a) experimental in-cylinder volume during the com-
pression and expansion phase with closed valves (calculated vs
predicted); 2) instantaneous absolute error.

during expansion, as the cell thickness was higher than 1
mm.

In-cylinder volume of the simulated domain was com-
pared with the theoretical value:

V = Vc + sp(θ) ·Ac (13)

where Vc is the volume of the combustion chamber, Ac

is the piston face area and sp is the instantaneous piston
displacement as a function of the crank angle θ. The cycle
fraction simulated was between the IVC and EVO: the
rationale for this choice was to verify possible errors on
one single source only (addition and removal of cell layers
on the piston surface).
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Figure 10: Average in-cylinder pressure of the motored engine
from IVC (≈ 100◦ BTDC) to EVO (≈ 108◦ ATDC)

However, the generality of results on volume consistency
is not lost: if no significant error on the volume computa-
tion is introduced by layer addition/removal on the piston
during pure compression (IVC to EVO), it should happen
the same with respect to layer addition/removal near the
valves. As shown in Fig. 9, the volume history of the
in-cylinder volume is perfectly replicated and the error in
volume calculation is of the order of 0.01%. This small
error is due to the round-off error in the calculation of the
cell volume of hexahedral cells, rather than to the dynamic
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addition/removal of cell layers. As expected, also the cylin-
der pressure trace (Fig. 10) has been correctly predicted,
both during the compression and the expansion phase.

SOLVER PERFORMANCE

To be of industrial interest, a CFD solver must be scal-
able, in order to enable large-scale simulations in a rel-
atively short time. Studies about the scalability of the
standard solvers available in OpenFOAM® on traditional
Linux clusters has been extensively proven for static grids
[22]; in most of the studies, it has been shown that inter-
processor communications represent a bottleneck for scal-
ability only under a certain amount of cells per proces-
sor (CPP): for a standard PISO solver the current limit is
about 104 CPP.

The performance of the dynamic mesh solver proposed
in this paper has been analyzed by carrying out scalabil-
ity tests on the TCC engine, that has been used as refer-
ence case. The computational mesh setup previously pre-
sented has been decomposed over different numbers of sub-
domains using the automatic graph partitioning library
scotch, constrained by all decomposition restrictions im-
posed by topological changes [2]. Two main tests have
been carried out at Argonne National Lab:

- a scalability test for the mesh motion only. A com-
plete engine cycle (720 CA degrees) has been simu-
lated, starting from the TDC;

- a scalability of the complete solver (mesh motion +
fluid dynamics) on 1 CA degree, starting from the
BDC, when the total amount of cells is the highest.

Along with traditional scalability metrics, the overhead in-
troduced by the topology solver has been evaluated, and
cell quality indexes (skewness and non-orthogonality) have
been monitored throughout the complete engine cycle.
Test were operated on the Linux HPC cluster “Blues”,
consisting of 310 nodes; each node was featured by two
Sandy Bridge 2.6 GHz Pentium Xeon processors (16 cores
per node) and 64 GB of memory. Nodes are interconnected
by Infiniband Qlogic QDR. Inter-processor communication
was handled by openmpi-1.6.5 compiled with gnu gcc 4.7.2.
Walltime, as well as load balancing and mesh quality, has
been monitored for each test.

In Fig. 11 scalability of the solver topoEngineFoam,
including the solution of the flow field, is reported. Find-
ings are consistent with the general scalability properties of
OpenFOAM®: the highest reduction in wall-time is found
for 9000 CPP; after that, then the walltime increases be-
cause of increased communications among domains.

The same scalability test has been carried out for the
mesh motion algorithm only and results are displayed in
Fig. 12. The point motion solver exhibits a linear re-
duction of walltime with a monotone trend up to 2000
CPP, that is well beyond the scalability limit found when
the fluid dynamic solution is calculated; the reason is that
topological changes are local to a subdomain, so no infor-
mation exchange is in theory needed between neighboring
sub-domains. However, it can be observed that the slope of
the curve in Fig. 12 is definitely lower than the theoretical
slope required for a linear scaling. This can be explained
by observing that some point synchronization is anyway

0 5000 10000 15000 20000
cells per core

1000

1500

2000

2500

3000

3500

4000

w
al

l t
im

e 
[s

]

Mesh motion + Fluid dynamics  1 CA deg

Figure 11: a) Scalability tests on the TCC engine geometry
for the complete solver (mesh motion + fluid dynamics). The
engine time simulated was 1 CA deg.

needed when mesh motion is operated in parallel, there-
fore some degree of inter-processor communication cannot
be avoided. However, the amount of data exchanged be-
tween neighboring subdomains is not going to represent a
bottleneck.
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Figure 12: Scalability test for point motion solver only. Simu-
lation time is 720 CA degrees.

Also, Fig. 12 would lead to the conclusion that the
mesh motion algorithm is not scalable; on the other hand,
a deeper look at the results evidences that the overall wall-
time for the mesh motion during an engine cycle (720 CA
degrees) takes about the same time required by the fluid-
dynamic solver to compute the fluid solution of 1 CA de-
gree: the overhead introduced by the mesh motion on the
simulation load is absolutely negligible if compared to the
fluid mechanics solver, so its performance is almost the
best that can be achieved; the limit to the overall duration
of the simulation is therefore given by the constraints on
the time-step.

Load balancing between processors can be estimated by
considering the number of cells owned by each processor
and how they vary as the mesh motion is calculated. Raw
data representing the number of CPP versus crank angle
is reported in Fig. 13. As it can be expected, the num-
ber of cells increases while the piston moves from the TDC
towards the BDC, because of the dynamic addition of cell
layers on the piston surface. Moving from the TDC to
the BDC, the number of cells decreases again, because of
the removal of cells on the piston (mainly) and on the
valves. Processor load imbalance has been estimated by
the ratio between the number of cells of the largest sub-
domain and the smallest one. This ratio is displayed in
Fig. 13-b. It can be noted that the maximum imbalance
decreases as the piston approaches BDC, as a consequence
of the cell layer insertion into the cylinder region. A more
balanced decomposition near the BDC, when the overall
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Figure 13: a)Number of cells per each subdomain as a func-
tion of crank angle; b) Maximum decomposition imbalance as
a function of crank angle.

cell count is higher is a favorable circumstance because the
computing effort is supposed to be highest. Finally, max-
imum skewness and average non-orthogonality have been
reported in Fig. 14; all values have been normalized by
their average value calculated over the thermodynamic cy-
cle. As evidenced by the results, the mesh motion strategy
adopted allows to maintain almost constant skewness and
non-orthogonality at every crank angle position. Observed
oscillations in the values (about 10%) are related to the
deformation of the cell layers during the timesteps before
the addition/removal of cell layers is applied.

CONCLUSIONS

The mesh motion technique described in [1, 2] based
on moving non-conformal interfaces has been extended to
allow for a combined use of topology modifiers (namely
slidingInterface, attach/detach of boundaries and
layerAdditionRemoval) and of the Arbitrary Mesh In-
terface algorithm, in order to improve the performance of
the mesh motion solver. Together with an improved imple-
mentation of an unsteady solver for compressible flows and
the use of a novel hybrid URANS/LES model [3], the de-
veloped framework seems able to capture the main features
of turbulent in-cylinder flows and to be accurate to predict
the fluid dynamic quantities. Scalability test carried out
at the Argonne National Lab show a good performance of
the code when used on HPC clusters on a wide number
of cores. Two engine geometries have been used as an ex-
ample of operation. When applied to LES of compressible
flows with moving mesh, the method looks particularly in-
teresting, since it allows SGS filter operation to be fully
independent by the mesh changes [2]: as a consequence,
it will be possible to study the effectiveness of the turbu-
lence model when applied to moving grids. There is a wide
range of applications for this methodology: the simulation
of two-stroke engines and four stroke engines with canted
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Figure 14: a) Maximum skewness vs crank angle; b) average
non-orthogonality vs. crank angle. Values have been normal-
ized by their mean value calculated over the thermodynamic
cycle.

valves, as well for the simulation of injector nozzles, the
non-uniform corrosion of solid propellants for aerospace
applications and rotating machines. The present imple-
mentation is completely based on the mesh definition of
the OpenFOAM® versions released by the OpenFOAM®

Foundation, where the information about the mesh topol-
ogy is stored only for the current timestep of calculation
and additional information about the topological changes
need to be stored separately.
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