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ABSTRACT 48 
 49 

The paper represents "a state of the art" on sustainability in construction materials. In Part 50 

1 of the paper, issues related to production, microstructures, chemical nature, engineering 51 

properties and durability of mixtures based on binders alternative to Portland cement were 52 

presented. This second part of the paper concerns use of traditional and innovative Portland-53 

free lime-based mortars in conservation of cultural heritage and recycling and management 54 

of wastes to reduce consumption of natural resources in production of construction 55 

materials. The latter is one of the main concern in terms of sustainability since nowadays 56 

more the 75% of wastes are disposed in landfills.  57 

58 
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1. Introduction 59 

In Part 1 of the paper, issues related to production, microstructures, chemical nature, 60 

engineering properties and durability of mixtures based on binders alternative to Portland 61 

cement were presented. This second part of the paper concerns use of traditional and 62 

innovative Portland-free lime-based mortars in conservation of cultural heritage and 63 

recycling and management of wastes to reduce consumption of natural resources in 64 

production of construction materials. The latter is one of the main concern in terms of 65 

sustainability since nowadays more the 75% of wastes are disposed in landfills.  66 

2. Traditional and innovative Portland-free lime based mortar for conservation of 67 

historical heritage 68 

2.1. Traditional historic mortars 69 

Addition of natural or artificial pozzolans to lime mortars was practiced since the dawn of 70 

civilization. Volcanic eruptions occurred worldwide provided ancient populations with natural 71 

pozzolanic materials (1). In the absence of volcanic materials, man learned to use crushed 72 

bricks or pottery fragments (cocciopesto when mixed with lime). Earlier use of pozzolans 73 

has been proven for Galilean archaeological sites dating back to the Neolithic period (2). 74 

Further evidence has been found in Crete and in Greece (2–5). Nevertheless, only in Ancient 75 

Rome pozzolanic materials have undergone systematic exploitation. It is probably during 76 

the century II BC that Romans discover the hydraulic properties of the volcanic ash in the 77 

area near Puteoli (6). Hence, the name of pulvis puteolanus given to the material, from which 78 

the modern term pozzolan derives. Use of such natural aggregate as pozzolanic agent 79 

became constant and rational during the Roman Empire, (7–12). The number of ancient 80 

buildings survived to time and nature injuries well testifies the extraordinary properties of 81 

such Roman mortars (13). Since ancient times, knowledge and expertise have been 82 

summarized by various authors. Vitruvius points out the ability of harena fossicia (14,15) of 83 
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imparting solidity to structures even in water(16,17). Pliny the Elder (Naturalis Historia) 84 

confirms the extraordinary property of pozzolanic materials in consolidating marine 85 

structures (18).  86 

Natural pozzolans were also a main component of opus caementicium, regarded as the 87 

precursor of modern concrete (7,10,19–24). The opus caementicium was used both to fill 88 

the void between outer brick or stone wall edges and for hydraulic structures (7,19,21,25–89 

27). During the Imperial Age, it became the construction material for most of public works 90 

(28–32). 91 

Starting from E. B. van Deman (33) pioneering work published in 1917, ancient Roman 92 

mortars have been attracting increasing interest from the scientific community. Despite this, 93 

the complex physical and chemical transformations involved in mortars hardening have not 94 

yet been fully understood. Significant progress, based on microscopic analysis, has been 95 

recently made (34–40). Specifically, the study demonstrates that the monuments built in 96 

Rome throughout the first four centuries AD (29) contain Pozzolane Rosse,  scoriae erupted 97 

by the Alban Hills volcano during the mid-Pleistocene pyroclastic flow (30). Studies carried 98 

out on mortars manufactured using the same materials as in Trajan Markets in Rome have 99 

shown (34) a crystalline phase, strätlingite, growing at interfacial regions as a consequence 100 

of the pozzolanic reaction, thus providing significant mechanical improvement (34). The 101 

capability of strätlingite of distributing at interfaces positively influences the mechanical 102 

properties of mortar, contributing to block the propagation of cracks and microfractures 103 

(34,41). The observed behavior opens up new perspectives not only for a deeper 104 

understanding of the relationship between structure and properties in ancient Roman 105 

mortars, but also for designing new materials solutions for restoration and formulation of 106 

novel Portland-free sustainable mortars with superior performances in terms of durability 107 

and toughness.  108 
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2.2. Nanolime in conservation of cultural heritage 109 

European cultural heritage (ECH) is of paramount importance. For this reason, ECH has to 110 

be protected following the main "Restoration Principles", outlined in international Charts 111 

(compatibility, recognition and little invasive).  Materials deterioration can be prevented or 112 

slow down by conservative repairs, consisting in restoration and preventive treatments. So 113 

far, conservation science focused on polymer-based conservation materials. However, 114 

organic protectives are generally physically/chemically incompatible with the inorganic 115 

substrate. For this reason, nowadays, the application of inorganic nanomaterials such as 116 

calcium hydroxide nanoparticles in hydro-alcoholic dispersion (nanolime) are successfully 117 

introduced in CH for the consolidation of calcareous substrates, in order to reach a 118 

compromise between compatibility and efficacy of the intervention (42). Actually, nanolime 119 

presents the ability to penetrate deep into damaged zones, high reactivity and fast reactions 120 

in the carbonation process.  121 

Procedure adopted to prepare nanolime particles mainly consists of chemical methods, 122 

carried out at high temperature and/or at high pressure, in aqueous, alcoholic or organic 123 

solvents (42–46). Recently, an innovative single-step process, based on an anion-exchange 124 

process, to produce nanolime in water at room temperature, has been patented (47). The 125 

nanolime, dispersed in ethanol, iso-propanol or water-alcohol mixtures, is composed by 126 

pure, crystalline and thin hexagonal lamellas (Fig.1). Recent studies reveal that the lamellas 127 

can be composed of nanoparticles <10nm in length and 6nm in thickness (48,49). Nanolime 128 

dispersions are successfully employed on wall paintings, stuccoes and frescoes and in the 129 

refurbishments of architectonical surfaces (50–59). In particular, both in wall paintings and 130 

in frescoes, the nanolime guarantees a re-adhesion of detached paint layers on the wall 131 

substrate (42,50,51). Promising results are also obtained on stones and mortars, in terms 132 

of superficial consolidation as well as of reduction of water absorbed for capillarity (up to 133 
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70%), (53–59). Nanolime is able to penetrate up to some millimeters from the stone surface, 134 

filling the pores without occluding them. Moreover, when applied in diluted dispersions 135 

(<5g/l), nanolime does not produce relevant chromatic alteration on the stone surface. 136 

From the results obtained in the different cases, the nanolime can represent a promising 137 

material for the restoration and preservation of the historic works of art, perfectly combining 138 

its consolidation efficacy with physico-chemical compatibility with the original historic lime 139 

based material. 140 

3. Waste management and recycling  141 

3.1 Recycled glass 142 

According to the United Nations glass waste represents about 7% of the total solid waste 143 

available; moreover, glass wastes occupy extensive parts of the landfills due to its non-144 

biodegradable nature (60,61). In addition, the glass industry uses high amount of natural 145 

resources and energy and it produces high CO2 emissions. Theoretically, glass can be 146 

recycled many times. Anyway, mixing different colored glass waste makes the recycling 147 

process unfeasible and highly expensive. Thus, concrete industry can represent a possible 148 

solution for an environmentally friendly management of glass wastes. Furthermore, the use 149 

of glass waste in construction appears among the most sustainable options since its use 150 

could reduce the environmental costs of concrete production.  151 

Firstly, according to the chemical composition, glass waste should be suitable as raw 152 

material for cement production (62). Moreover, being amorphous (63) and with large 153 

quantities of silicon and calcium, glass is, in theory, pozzolanic if finely ground (63–68). 154 

Many studies (69–72) have confirmed that ground glass powder exhibits a good pozzolanic 155 

reactivity (69,70). Instead, the increase of finely ground glass content reduces strength of 156 

concrete at early ages due to slower pozzolanic reaction compared to cement hydration and 157 
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to a lower cement content (72,73); thus, different studies have investigated the optimum 158 

percentage of glass powder (5-30%) to replace cement, as well as the optimum particle size 159 

(0.1-100 m). Based on the study of Shao (69,70), concrete with glass particles passing at 160 

38 m sieve replacing 30% f cement, exhibited higher strength than that with fly ash. Effects 161 

of glass color on strength are not evident; mechanical properties, in fact, are more related 162 

to physical characteristics than to slight difference in chemical compositions (74). Glass 163 

powder can contribute, after a proper curing, to a beneficial refinement of the pores (63,73) 164 

and a delay the penetration of ionic species (75–77). The only concern for using glass 165 

powder in cementitious materials is the potential alkali-silica reaction (ASR). Anyway, 166 

expansion tests carried out in most studies (69–76) showed that the ASR expansion 167 

decreased along with the percentage of glass powder due to its pozzolanic behaviour.  168 

Glass waste (78) is an interesting to replace natural aggregates in concrete. Due to low 169 

absorption capacity, recycled glass aggregate is able to improve freeze–thaw resistance, 170 

drying shrinkage and abrasion (79). Idir et al. (79–84)found that a particle size less than 0.9-171 

1 mm did not induce any harmful effect of ASR with a 20% of partial replacement of glass 172 

aggregate; with a lower particle sizes a higher percentage could be used safely (73). To 173 

avoid ASR reaction in concrete with glass aggregates, is necessary to reduce size of glass 174 

particles, glass content and using porous lightweight aggregate (84–89) or supplementary 175 

cementitious materials, including finely ground glass (80). 176 

Several authors (71,90) studied the combined use of waste glass as a partial replacement 177 

of cement and aggregate in the same mixture. Shayan et al. (71) demonstrated that after 178 

increasing the glass powder (up to 30%) no effects of ASR were evident in a mixture with 179 

50% replacement of natural aggregate with waste glass. Recently, processes for the 180 

production of expanded glass particles have been developed and use of this lightweight 181 

aggregate for concrete has been proposed by several authors (85–89). Bertolini et al. (85) 182 
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demonstrated that the combination of expanded glass and silica fume led to a structural 183 

lightweight concrete showed a high resistance to the penetration of aggressive agents. 184 

Based on the results obtained in the reference (91), the same authors in a recent study (86) 185 

have verified also the possibility to manufacture lightweight mortars with expanded glass 186 

aggregates and glass powder in replacement of 30% cement. Preliminary results confirmed 187 

the beneficial effects of glass waste in terms of decreasing ASR expansion with respect to 188 

standard mortars (Figure 2).  189 

3.2 Aggregates from automotive shredder residues 190 

Every year in the world more than 50 Mt of End-of-Life Vehicles (ELV) are produced (92), 191 

as a consequence about 9 Mt of wastes are yielded. According to the European Directive 192 

(2000/53/EC) more than 95% (by mass) of ELV produced after 1979 shall be reused and 193 

recovered and more than 85% must be recycled. Nowadays, about 80-95% of ELV are 194 

subjected to a disassembling of glasses, transmission components, tires, seats and liquids 195 

drainage. At the shredding plant, an heterogeneous mix -‘’Automotive Shredder Residue’’ 196 

(ASHR)- is produced (93) constituted up to 75% of fine combustible materials with a calorific 197 

value higher than > 13 MJ/kg (94). However, this waste is highly contaminated by heavy 198 

metals (Errore. L'origine riferimento non è stata trovata.) and often it contains mineral 199 

oils and fluids (95–100). In Europe, ASHR is classified as hazardous waste (2000-532-EEC 200 

directive).  201 

As far as the inorganic fraction, excellent results have been obtained transforming the finest 202 

particles of ASHR (<4mm) into aggregates after a chemical treatment with calcium 203 

sulfoaluminate or Portland cement (101–103). Alunno Rossetti (101,102) pointed out an 204 

efficient process for aggregates production from ASHR, consisted of a preliminary 205 

separation step, where a fraction containing mainly inert and nonmetallic materials was 206 

sieved to obtain the required grading, followed by the mixing of this fraction with binding 207 
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materials and a superplasticizer agent, to produce granules of up to 2000 kg m-3 of specific 208 

weight. These aggregates were employed to manufacture concrete with a 28-day 209 

compressive strength in the range 25-32 MPa (101,102,104) and noticeable freeze-thaw 210 

resistance (104). 211 

3.3 Recycled aggregates in concrete 212 

Concrete is one of the most widely used construction material in the world. In most cases, 213 

concrete elements are demolished at the end of their life, generating construction and 214 

demolition waste (CDW). Pure concrete waste can be obtained if all non-mineral dry building 215 

materials (plasterboards, wood, metals, plastics, glass) are removed before the demolition. 216 

All these extra materials can be recycled to produce eco-friendly plaster and mortars such 217 

as wood chips (105), waste glass (106,107), waste plastic particles (108,109), bricks (110). 218 

Concerning structural concrete, several papers showed the suitability of reusing up to 30% 219 

coarse recycled aggregate particles for concrete strength classes up to 40 MPa (111–116). 220 

Moreover, a correlation between elastic modulus and compressive strength of recycled-221 

aggregate concrete (RAC) was found in (112), showing that 15% lower elastic modulus is 222 

achieved by using 30% recycled aggregates, while tensile strength is reduced by 10% if the 223 

same concrete strength class is achieved by replacing 30% virgin aggregates with recycled 224 

concrete particles (111–115). 225 

In terms of drying shrinkage, lower strains are detected especially for earlier curing times 226 

(111,112,117). Concerning time-dependent characteristics, creep behavior is more 227 

influenced by the presence of recycled aggregates than shrinkage, (114,118). 228 

Even if 100% replacement of virgin aggregate is carried out by using particles coming from 229 

treatment of CDW, structural concrete can be prepared due to the positive effect on 230 

compressive strength achieved by adding fly ash/silica fume and an acrylic-based 231 

superplasticizer (111). Moreover, if fly ash is added to RAC, the volume of macro pores is 232 
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reduced, causing benefits in terms of mechanical performances such as compressive, 233 

tensile and bond strengths (111,115). In addition, fly ash proved to be very effective in 234 

reducing carbonation and chloride ion penetration depths in concrete, even in RAC (111).  235 

Finally, on the basis of the results obtained through cyclic loading tests of beam–column 236 

joints, those made of RAC showed adequate structural behaviour (119,120). The previous 237 

encouraging results were obtained by using only coarse recycled aggregate, while, many 238 

authors found that in RAC the fine fraction is particularly detrimental to both mechanical 239 

performances and durability of concrete. For these reasons the more recent approach is to 240 

recycle for concrete production only the coarse recycled fraction. In several works (110,121–241 

126) the possibility of reusing the fine fraction waste as aggregate for bedding mortars was 242 

evaluated (122,123). Mortars containing recycled fine aggregates develop lower mechanical 243 

strength with respect to the reference mixture, particularly when recycled bricks are used. 244 

Nevertheless, the bond strength (123–126) at the interface between the mortar and the brick 245 

comes out to be higher for mortars prepared with recycled aggregates.  246 

A further opportunity can be the reuse of the very fine fraction (Figure 3) coming from 247 

recycling of CDW as filler for concrete, especially self-compacting mixtures (127–129). In 248 

particular, the rubble powder proved to be more promising with respect to limestone powder 249 

and fly ash as mineral addition for SCC. In conclusion, an optimization of the self-compacting 250 

concrete mixture seems to be achievable by the simultaneous use of rubble powder and 251 

coarse recycled aggregate. 252 

3.4 Artificial aggregates in concrete 253 

Industrial solid wastes (ISW) represent a widespread threat around the world due to the 254 

pollution to human health and the environment. The specific treatment of ISW plays an 255 

important role to maximize the efficiency of recycling processes (130,131). Among the 256 

different techniques, cold bonding pelletization is often proposed in low cost building 257 
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materials production (92). Particularly, one of the most interesting solution for waste 258 

recovery is the manufacture of recycled artificial aggregates (132–138). Cement-based cold 259 

bonding pelletization process has recently gained a relevant attention (102–104,139–142). 260 

The stabilization/solidification process uses a rotary plate pelletization pilot-scale apparatus 261 

with binding mixes. A double-step pelletization is performed in order to obtain final products 262 

with improved properties (143). Such process has been employed incorporating the waste 263 

content in the binding matrix from a minimum of 50% (wt. %) up to a maximum 70%.  264 

After this step, a second one is carried out with pure binder to encapsulate the aggregates 265 

(Figure 4) coming from the one step within an outer shell. This further step has proved to be 266 

very effective to improve the technological and leaching properties.  267 

Such approach has economic and environmental advantages due to the reduced energy 268 

requirement (process carried out at room temperature) respect to the industrial alternatives 269 

such as sintering (144,145), which is an energy intensive process. More recently, alternative 270 

cement-free binding matrices with reduced embedded CO2  have been proposed for 271 

stabilization/solidification (146,147) such as geopolymer and alkali activated ones. These 272 

systems have gained an increasing interest from researchers thanks to promising results in 273 

terms of mechanical, physical, durability properties and possibility of synthesis starting from 274 

natural/industrial wastes (125,148) for a wide range of applications (149–153). A further 275 

reason of interest in cold bonding pelletization is a significant reduction of quarrying activities 276 

(154–159).  277 

Colangelo et al. (160,161) used municipal solid waste incinerator (MSWI) fly ash as raw 278 

materials while cement, lime and coal fly as binders. According to Shi (160,161), a pre-279 

washing treatment has been carried out to reduce the content of chlorides and sulfates 280 

contained in MSWI fly ash since the cementitious matrix has a reduced capability to 281 

immobilize chlorides and other soluble salts. The examined MSWI fly ash have been 282 

submitted to a two-step washing pre-treatment with liquid/solid ratio equal to 2:1 (160) in 283 
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order to reduce soluble salts content and the production of liquid waste. The MSWI fly ash 284 

samples, after washing pre-treatments, have been introduced in a pilot scale granulator 285 

apparatus having a rotating and tilting plate with a diameter of 80 cm in order to obtain the 286 

granules. The granules have been cured in a climatic chamber for 12 hours at 50°C and a 287 

relative humidity of 95%. Such phase gives the granules the necessary hardening to be 288 

used for the handling phase so it is very effective. Then, the granules have been cured for 289 

14 days at room temperature and humidity. Produced aggregates satisfied all the tests to 290 

be used in concrete industry.  291 

3.5 Recycled tires in concrete production 292 

The increasing number of vehicles on the roads generates about 1.4 billion of end-of-life 293 

tires (ELT) worldwide every year. The inadequate disposal of tires may be in some cases a 294 

potential threat to human health (fire risk, haven for rodents or other pests) and cause of 295 

environmental risks. The limited space and their potential for reuse has led many countries 296 

to impose a ban on the practice of landfilling. The estimated EU annual cost for the 297 

management of ELTs is € 600 million (162,163).  298 

The tire is a complex and high-tech product representing a century of innovation, which is 299 

still on-going. Tire is made up of: (i) elastomeric compound, (ii) fabric and (iii) steel. The 300 

fabric and steel form the structural skeleton of the tire with the elastomer forming the ‘‘flesh’’ 301 

of the tire in the tread, side wall, apexes, liner and shoulder wedge. The elastomer is 302 

vulcanized and combined to chemicals and reinforcing fillers (e.g., carbon black) to further 303 

increase hardness (164). 304 

Tyre rubber is resistant to mould, heat humidity, bacterial development, resistance to 305 

ultraviolet rays, some oils, many chemicals. Other features are the non-biodegradability, 306 

non-toxicity, elasticity. However, many of the characteristics, which are beneficial during on-307 
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road life, are disadvantageous in post-consumer life and boost the transformation of this 308 

material from an environmental problem to engineering resource. 309 

The recovery includes different options: i) ‘‘energy recovery’’ where ELTs, having a calorific 310 

value equivalent to that of good quality coal, are used as an alternative to fossil fuels, ii) 311 

‘‘chemical processing’’ such as pyrolysis, thermolysis and gasification, and iii) ‘‘mass 312 

recovery’’. The latter, when not applied in the form of whole tyres (such as for crash barriers) 313 

consists in a “granulate recovery” which involves tyre shredding and chipping, by which tyres 314 

are cut into small pieces of different sizes (shreds: 460-25 mm; chips: 76-13 mm; crumb 315 

rubber: 5-0.1 mm) (162). After the removal of the steel and fabric, the recycled tyre rubber 316 

(RTR) can be used for a variety of civil engineering projects such as, i.e., soft flooring for 317 

playgrounds and sports stadiums, modifiers in asphalt paving mixtures or additive/aggregate 318 

to Portland cement concrete. Among these, the addition (as crumb rubber) to asphalt 319 

mixtures is highly diffused due to the good chemical interaction, even leading to a partial 320 

dissolution (165). The recovery of RTR as aggregate in cement concrete has been 321 

discouraged so far by the not favorable interactions with the matrix and the loss of 322 

compression strength. However, these composites present many advantages and many 323 

reasons to address future research, as below discussed. 324 

RTR used in cement concrete ranges from crumb rubber powders to rubber chips and is 325 

added to the cement paste by partial (or eventually total) replacement of the coarse or fine 326 

aggregates (165). The cement paste is mainly characterized by hydrated metal /semimetal 327 

oxides, thing that explains the hydrophilic nature (high surface energy). Rubber, instead, 328 

made of organic polymers, is characterized by a low surface energy, and therefore a 329 

hydrophobic character. The interaction hydrophilic-hydrophobic is very unfavorable resulting 330 

in a poor adhesion between rubber particles and the cement matrix. Figure 5 (top) shows 331 

SEM images of a typical sand based cement mortar and of a RTR added mortar (bottom): 332 

while a perfect adhesion can be appreciated between sand grains and cement paste, a 333 
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significant separation exists between the paste and the rubbery sites (166). For this reason, 334 

various rubber chemical treatments have been lately tested with the purpose of improving 335 

adhesion. Among these, treatments with NaOH (167–169), HNO3 and cellulosic derivatives 336 

(170), or silane coupling agents (171) have been reported. 337 

The significant loss of strength (reduction of 45 % upon 15 % of RTR addition (172,173) is 338 

mainly due to the fact that rubber sites are significantly softer than their surrounding media 339 

acting like ‘‘holes’’ inside the concrete.  This critical property has limited so far the RTR 340 

added cement concrete to non-structural applications such as exterior wall materials, 341 

pedestrian blocks, lightweight aggregate in flowable fill for cement concrete, highway sound 342 

walls, residential drive ways, and garage floors (165). 343 

An enhancement of toughness and ability to absorb impact energy has been observed with 344 

respect to conventional cement concrete (somewhere also explained and modeled), also in 345 

addition to an increased flexural strength (165,173). 346 

The lightweight character of the rubberized concrete (due to the low specific weight of 347 

rubber), should be considered an advantage for the use as construction material since 348 

nowadays the structural efficiency is more important than the absolute strength level. 349 

Specifically, a decreased density for the same strength reduce the dead load, foundation 350 

size, and construction costs. Further, the low density enhances sound and thermal 351 

insulation, further properties relevant to construction applications (174). 352 

The hydrophobic character of the rubber particles, although responsible of a difficult 353 

adhesion with the cement paste, has been recently proved (Figure 6) to strongly inhibit the 354 

absorption of water in rubberized mortars, which is instead instantaneous in the normal (i.e. 355 

sand containing) ones (166). This fact, which means higher freeze and thaw resistance, 356 

represents a further important key for future developments. 357 

3.6 Recycled polymers in cementitious mixtures 358 
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Plastic products are used in almost every field, particularly in packaging, building and 359 

construction, automotive and electronics. However, the massive use of polymer products 360 

involves several environmental issues related to the plastic waste management and the 361 

possibility to reuse them. In the last decades, several studies investigated the use of plastic 362 

wastes in construction field. The use of recycled polymers in cementitious mixtures can be 363 

summarised in three different applications: I) polymeric fibers, II) plastic aggregates and III) 364 

polymer modified concrete. 365 

The use of polymeric fibers in cementitious materials is able to overcome their brittle nature 366 

and cracking resistance. The properties of fiber reinforced cementitious composites (FRCC) 367 

depend on several fiber parameters such as: fibers amount (volume fraction), geometry 368 

(aspect ratio, surface texture etc.) and mechanical properties (depending on their nature). 369 

Moreover, also fibers durability in the alkaline environment and fiber/matrix bond play an 370 

important role in the fiber reinforced composite behavior. A great number of studies focused 371 

the attention on the use of fibers deriving from recycled PET, PVC, nylon and polyolefin 372 

(175–185). PET fibers present some durability issues in the alkaline environment (176,181) 373 

while the other common polymeric fibers (PP, PE, PVC etc.) are not chemically degraded in 374 

such environment. Considering compressive strength of FRCC, some authors reported a 375 

slight increase (177,183) while in other cases a decrease (178,180) of this property respect 376 

to unreinforced cementitious composites. The different results are explained by considering 377 

the ability of fibers to exert a confinement action, in the former cases, or the weak bond 378 

between fibers and the cementitious matrix, in the latter cases. On the contrary, splitting 379 

tensile strength and flexural strength of FRCC increase at increasing fibers volume fraction 380 

(177,178,180,186). Fresh properties of FRCC are greatly affected by fibers addition, 381 

depending on fibers volume fraction and geometry. Generally, fibers quantity increase 382 

determines a decrease of workability (178,183,186). Several studies focused the attention 383 
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on the investigation of the interfacial transition zone (ITZ) between fibers and cementitious 384 

matrix because synthetic fibers, have, in general, no chemical interactions with the 385 

cementitious matrix. Moreover, due to the smooth surface of traditional polymeric fibers, a 386 

very poor adhesion exists between the reinforcing phase and the matrix. To improve the 387 

adhesion and/or the interactions between fibers and the cementitious matrix two main 388 

approaches have been investigated: fibers mechanical deformation or surface chemical 389 

treatments but also ITZ densification. In the first case the aim is to increase surface contact 390 

area using crimped, twisted, fibrillated or embossed fibers (179,180). Fibers mechanical 391 

deformation increases friction during pull-out, delaying fiber/matrix debonding under load. 392 

ITZ densification provides a more uniform and continuous interphase between the two 393 

components while fibers chemical treatments, like graft copolymerization of acrylic acid, 394 

alkaline hydrolysis, nano-silica deposition and oxygen plasma, allow chemical interactions 395 

between fiber surface and cement paste (187–189). Finally, many authors investigated the 396 

use of recycled polymeric fibers to contrast shrinkage cracking phenomena in cementitious 397 

materials. Cracks number and area decrease at increasing fibers volume fraction depending 398 

also on fibers geometry and morphology (179,180,182).  399 

Another viable strategy for polymeric wastes recycling is their use as aggregates in mortars 400 

or concrete. For this purpose, aggregates of different size (coarse and fine), geometry 401 

(pellets, flakes etc.) and polymeric nature (PET, PP, PS, HDPE, PVC etc.) have been 402 

investigated (155,174,190–199). On one side, using plastic aggregates is possible to obtain 403 

lightweight materials with a lower thermal conductivity, compared to traditional cementitious 404 

materials (174,190–192,196,198,200). Moreover, several authors reported also an 405 

improvement of acoustic isolation and impact resistance (175,190,191). Besides, plastic 406 

aggregates addition leads to a compressive strength decrease (155,174,190–198). 407 

However, also in this case, aggregates/matrix affinity plays a fundamental role and different 408 
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strategies have been proposed in the literature: the improvement of aggregates surface 409 

roughness, the densification of the ITZ or using expanded aggregates 410 

(155,174,191,193,194). In this particular case, aggregates open porosity is able to offer 411 

interlocking positions for the cementitious paste thus enhancing the adhesion and the 412 

homogeneity of the ITZ (155,174). However, several studies report about workability 413 

reduction of such composites resulting in poor compaction and thus porosity increase 414 

(155,191). Durability problems are strictly related to composites porosity and for this reason 415 

several authors describe an increase of water absorption, a decrease of freeze/thaw 416 

resistance and permeability to detrimental substances (CO2, chlorides ions, salts etc.) 417 

(191,194,196). However, some authors obtained good results in terms of abrasion and 418 

shrinkage resistance (191,195,197). Finally, attention must be paid also to compaction and 419 

segregation of plastic aggregates due to their low specific weight (199). As reported in 420 

literature, a viable strategy to avoid these phenomena is the use of fly ashes or silica fume 421 

but also using some additives (201–204) (superplasticizers, air entraining agent etc.). 422 

In addition to polymeric fibers and aggregates, recycled polymers are also used as binder 423 

to produce the so called polymer modified concrete (PMC). The combination of conventional 424 

concrete and polymeric resins is able to overcome traditional drawbacks of cementitious 425 

materials like durability related issues, weak adhesion to substrates and low tensile strength 426 

(205,206). Several authors investigated the possibility to recycle PET by a glycolysis 427 

process to produce an unsaturated polyester resin to be used as binder in concrete or mortar 428 

preparation (207–209). Some interesting and promising results were obtained, such as a 429 

sharp decrease of water absorption at increasing PET content but also an increase of 430 

compressive strength at increasing resin content (208). Good effects were also reported in 431 

terms of porosity reduction, correlating such results to the porosity open to water and 432 
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porosity by N2 absorption (209). More recently, a cement-less polymer concrete was 433 

investigated, using only recycled PP and recycled HDPE as binders (210).  434 

 435 
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TABLES 987 

Table 1 - ASHR composition 988 

Component % (wt) Element % (wt) 

PP 25 C  

PE 5 H  

PVC 10 Cl  

ABS 8 N  

PU 8 S  

PA 6 
Heavy metals 

(ppm) 

Rubbers 9 Cd 69 

Cables/wires 2 Cr 826 

Metals 2 Cu 4800 

Glass 24 Pb 2740 

Other 1 Zn 6900 
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