
Towards a High-Performance Modelica Compiler 

DOI Proceedings of the 13th International Modelica Conference 313 
10.3384/ecp19157313 March 4-6, 2019, Regensburg, Germany 

Towards a High-Performance Modelica Compiler 
Agosta, Giovanni and Baldino, Emanuele and Casella, Francesco and Cherubin, Stefano and Leva, Alberto 
and Terraneo, Federico 

313 
  

Towards a High-Performance Modelica Compiler

Giovanni Agosta1 Emanuele Baldino1 Francesco Casella1 Stefano Cherubin1 Alberto Leva1

Federico Terraneo1

1DEIB, Politecnico di Milano, Italy, given_name.family_name@polimi.it

Abstract
The use of Modelica as a modelling and simulation lan-
guage is progressively replacing hand-tuned simulation
code written in traditional imperative programming lan-
guages. This adoption is fuelled by the availability of
libraries to target different application domains, as well
as optimizations in Modelica implementations that allow
to address larger problems. However, the effort required
to extend existing Modelica implementations to support
large scale models may not be economically sustainable
by the Modelica community. To overcome this barrier, we
believe a perspective change is required. Instead of devel-
oping, maintaining and optimizing a dedicated codebase,
we propose to develop a Modelica implementation by re-
lying on the LLVM state-of-the-art compiler framework.
Although this approach will require a higher initial devel-
opment effort, we believe that it will lead to significantly
improved performance as well as lower overall cost. The
paper discusses a possible roadmap for such a develop-
ment, and presents a very early prototype implementation
that exploits array structures by avoiding scalar expansion
during the code generation process.
Keywords: Modelica Tools, Large-scale model simulation,
Compilers, LLVM

1 Introduction
The high-level, declarative nature of the Modelica lan-
guage has secured it a widespread adoption across indus-
try and academia alike, bringing DAE-based modeling to
many fields where custom simulation codebases had to be
developed and maintained.

The performance of mainstream Modelica tools when
handling large models has recently improved, mainly
thanks to the introduction of sparse solvers (see,
e.g. (Braun et al., 2017)). However, for systems approach-
ing or exceeding the one-million equation target the code
generation time is unacceptably large, as well as the mem-
ory footprint of the generated simulation code, which also
has an impact on simulation speed due to CPU cache
misses. Efficient simulation of large scale systems, with
hundred of thousands to millions of equations, can to-
day only be done with an acceptable compilation and exe-
cution performance through hand-written and hand-tuned
simulation code. Large-scale models are typical of – and
increasingly common in – a variety of relevant application
fields: smart grids (Vialle et al., 2017) where there is the

need to simulate the stability of an electrical network, de-
tailed thermal simulations (Leva et al., 2016) that require
to partition physical objects in a large number of finite vol-
umes, coarse-scale fluid dynamics models for simulation
studies targeted to energy efficiency (Bonvini and Leva,
2011). Several more examples could be reported that we
omit for brevity.

In crafting hand-written simulation codes optimized to
scale to millions of equations, the human designer follows
an integrated approach, by coordinating optimizations that
are specific of the simulation domain (such as exploiting
sparsity in the model, causalization and tearing) and op-
timizations specific of the computer architecture domain
(such as loop optimizations, cache optimizations, vector-
ization and parallelization).

Although the need to extend existing Modelica im-
plementations to support large models is recognized by
the Modelica community (Frenkel et al., 2011; Casella,
2015), significant effort is still required to effectively sup-
port large-scale systems. Existing Modelica toolchains
are mainly targeted at medium-sized models, and there-
fore perform heavy structural analysis optimization passes
along the translation process. These operations scale
poorly for large-scale system. Furthermore, the C-code
generation phase does not take into account architectural
optimizations, and simply generates unoptimized C code.
This approach passes the burden of optimization to the C
compiler, to the detriment to both the overall translation
efficiency and runtime performance.

A major issue concerning the generation of C code (or
any other imperative language, for that matter) is that
it is structurally impossible to make the compiler aware
of structural properties of the code that could allow fur-
ther optimizations. Such properties are an obvious conse-
quence of the structural properties of the Modelica code.
They can only be preserved by skipping the generation of
an intermediate imperative code and by using an interme-
diate representation instead. One such property, for ex-
ample, is guaranteeing the absence of pointer aliasing. A
C compiler could in principle infer some of such prop-
erties from the generated C code, but there is no guar-
antee that such inference is complete and a lot of time
would be wasted recovering information that was already
known in the beginning. Moreover, existing Modelica
workflows lose additional information during the flatten-
ing phase, such as arrays and looping constructs, and as a
consequence the generated C code does not exploit exist-
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ing CPU architectures effectively.

Significant performance improvements of Modelica
tools could thus be achieved if an integrated approach
is adopted, where high-level information from the Mod-
elica source, instead of being transferred to an imper-
ative language compiler, is used directly to produce
architecture-optimized machine code, effectively resulting
in a Modelica-to-binary-code workflow.

Summarizing, in this paper we argue that to scale the
Modelica language to large-scale problems, a change of
perspective is required, where a Modelica compiler –
not just a translator – can perform model-specific and
architectural-specific optimizations in an integrated way.
Our proposal aims at improving the code generation pro-
cess without any impact on the Modelica syntax and se-
mantics. Thus, being fully compatible with existing Mod-
elica models and libraries. However, our vision involves
the re-design of portions of the existing compilation-
related language specifications – e.g. the flattening.

We argue that to achieve this result in a cost-effective
way, and without redesigning from scratch a complex code
generation infrastructure and porting it to existing and fu-
ture CPU architectures, said Modelica compiler has to be
integrated in an existing compiler framework. For this
reason, we propose to design a Modelica compiler inte-
grated in LLVM (Lattner and Adve, 2004), which is a state
of the art compiler framework, designed with the explicit
goals of modularity and extensibility. The authors form an
inter-disciplinary research group within the Dipartimento
di Elettronica, Informazione e Bioingegneria of Politec-
nico di Milano, which includes strong competences in the
areas of Modelica and object-oriented modelling and sim-
ulation, Computer Architectures, and Compiler Design.

This on-going work is today at a very early stage of de-
velopment. The main goal of this paper is thus to present
this group’s vision and roadmap, as well as to present
some initial results of a very early prototype.

This paper is organized as follows. Section 2 summa-
rizes the state of the art of the support of large-scale mod-
els in Modelica tools. Section 3 shows a motivating exam-
ple for the proposal, while Section 4 presents in detail our
roadmap toward the development of a highly optimized
Modelica compiler for large-scale systems. Section 5 il-
lustrates the activities we carried out so far, and finally
Section 6 ends the paper with some concluding remarks.

2 State of The Art
We now briefly describes the state of the art in order to
motivate the presented research. Section 2.1 looks at the
matter from the Modelica side, evidencing in particular
some emerging application domains that require a techno-
logical evolution on the part of Modelica tools. Section 2.2
conversely takes the compiler technology standpoint, in a
view to sketching out how recent developments in that do-
main could help realize the mentioned evolution.

2.1 The Modelica Side
As discussed in (Casella, 2015), the architecture of cur-
rent mainstream Modelica tools was designed with indi-
vidual systems in mind: one robot (possibly two coop-
erating robots), one hybrid car, one power plant, one air
conditioning system, etc., which could be handled by ex-
panding the system model all the way down to its scalar
equations, performing optimization on them, and eventu-
ally generating code to solve them with ODE solvers us-
ing dense matrix algebra. In fact, the very same Modelica
Language specification (The Modelica Association, 2017)
describes the flattening process with reference to individ-
ual scalar variables.

Unfortunately, this approach does not scale well when
large-scale systems and systems of systems are modelled.
The potential application domains include power gener-
ation and transmission systems, smart grids, smart dis-
trict heating systems with heat pumps (possibly integrated
with smart grids), simulation of large fleets of interact-
ing autonomous cars, building energy management simu-
lation (BEMS), and all kinds of future internet-of-things
and cyber-physical systems, whose behaviour is the re-
sults of the interaction of a large number of physical en-
tities, interacting through a communication network and
controlled by centralized and distributed control systems.

The availability of high-quality, open-source, general-
purpose sparse solvers such as IDA, Kinsol, and KLU
has recently triggered an effort to include support of
sparse solvers in Modelica tools, as well as alternative ap-
proaches to the simulation of Modelica models that do not
rely on the causalization of the system equations but use
direct DAE solvers once the system has been symbolically
brought to index 1, see (Braun et al., 2017). However, the
structural analysis of the system equations, and the conse-
quent code generation, is still carried out on a fully flat-
tened and expanded system.

Some work has been carried out in the past on meth-
ods to carry out the structural analysis of the system while
keeping repetitive structures such as arrays of variables
and loop equations as atomic entities, see (Arzt et al.,
2014), possibly also considering issues such as CPU cache
misses in the generated code, see (Schuchart et al., 2015).
(Zimmer, 2009) proposed methods to exploit the object-
oriented structure of large system models, rather than go-
ing through full flattening of the equations, in order to
come up with more efficient code generation strategies.
Unfortunately, all these attempts have remained confined
to the stage of concept or prototype implementation, but
never made it into mainstream Modelica compiler tech-
nology.

2.2 The Compiler Technology Side
Compiler technology, while being from several points of
view a mature research field, is still evolving. Modern
compilers are very costly to develop, ranging in the tens
to hundreds of person-years to reach full maturity when
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starting from scratch 1. As a result, the ability to trans-
late to and from multiple source and target languages is a
highly desirable feature, as it allows to pool resources in
the development of the large portion of a compiler that is
neither target-dependent nor source-dependent.

Since many compiler transformations are fairly general
(e.g., loop transformations (Bacon et al., 1994; Grosser
et al., 2011) such a loop unrolling or loop tiling apply in
the same way to all loops with the same induction vari-
able evolution), re-implementing them for a new language
is unlikely to provide any beneficial effect, and is instead
likely to cost additional time in development, optimiza-
tion, and bug fixing. Actually, the benefits of pooling de-
velopment resources in this manner are so massive that it
is preferrable to abstract some target and language prop-
erties (e.g., the size of C integer types for a given target
machine) into codified data structures in order to max-
imise the fraction of the compilation that can be han-
dled by otherwise target-independent, source-independent
tools. Thus, a modern compiler is usually implemented
on top of a compiler framework, a collection of libraries
for manipulating and storing an intermediate representa-
tion, that is a set of data structures that are semantically
equivalent to the original program.

As a result of this trend, the GNU Compiler Collection
(GCC) dominated the compiler market for decades. How-
ever, advanced software does not always age well, and
adding more and more optimisation passes forced GCC
to stretch the limits of its original design, for instance
by adding multiple intermediate representations to supple-
ment the original RTL, which was deemed too low-level
to allow certain optimisations.

Nowadays, the industry is increasingly supporting the
LLVM compiler framework (Lattner and Adve, 2004) as
a more streamlined and modern alternative, leveraging a
single, low-level intermediate representation, but capital-
ising an improved ability to perform loop transformations
on lower lever representations. Thanks to the support from
multiple large companies such as Google, Apple, Arm,
and Sony, LLVM was able to catch up a 20+ years devel-
opment gap, reaching a position of industry standard in a
mere decade from its introduction in 2004. As anticipated
and better detailed in Section 4 later on, we propose to de-
velop a Modelica compiler based on LLVM. This choice
will in our opinion entail advantages as for both simula-
tion code efficiency and compiler maintainability.

Regarding efficiency, some optimizations were already
mentioned, namely operating under the guarantee of no
pointer aliasing. Others are for example loop optimiza-
tions, on which some words are spent later on. In addition,
not going through an imperative language allows the com-
piler to preserve the non-ordered character of the model

1See https://news.ycombinator.com/item?id=
16469218 for the development cost of GCC and related tools by
Cygnus, estimated in 250 M$ over 10 years by founder D. Henkel-
Wallace, and http://www.ace.nl/compiler/cosy.html for
the development cost of CoSy, estimated in 200 person/years.

(equations in Modelica) as opposite to the ordered nature
e.g. of C vectors. When vectors are created to host vari-
ables in current mainstream Modelica tools, the order in
which these occupy a vector is chosen without any con-
science of the consequences on the final machine code.
For example, on two different architectures, the same vec-
tor order can result in very different cache management ef-
ficiencies. A C compiler is inherently incapable of swap-
ping two elements in a vector, as this would alter the se-
mantics of the C program. The same operation however
does not alter the semantics of the model, for which the
order of variables in vectors is irrelevant.

Coming to the creation and maintenance of the envis-
aged compiler, a distinctive feature of this research is that
LLVM-based compiler development mostly concerns im-
perative languages, while Modelica is declarative. De-
spite the problems that will surely be encountered, adopt-
ing the LLVM framework is keen to produce benefits also
from this viewpoint. When considering a highly spe-
cialized declarative language such as Modelica, one may
come to the wrong conclusion that the majority of trans-
formations required by the code generation process will
be strictly language-dependent, and thus to be developed
from scratch. In fact, this is actually not the case, as most
of the primitives that are provided in an optimized way by
the LLVM framework can readily be used in the Modelica
context. For example, the well-known equation-variable
matching phase of the code generation process starting
from Modelica models corresponds to a graph manipu-
lation problem for which LLVM provides the basic data
structures (nodes, arcs). In fact, it turns outs that the
standard matching algorithm is already implemented ef-
ficiently in LLVM 2, because it represents the basic foun-
dation of other types of data-flow analysis, so it can be
readily re-used.

3 Motivating Example
As a motivating example for our research, in this section
we show and briefly comment an experiment that was per-
formed to understand the current scalability gap between
Modelica toolchains and optimized handwritten code.

Consider the Modelica benchmark code in Listing 1.
The code represents a simple 1D thermal model, describ-
ing thermal conduction in a solid copper wire divided in
nx sections of equal length. Just as in the ScalableTest-
Suite (Casella, 2015), this model can be simulated with a
progressively large nx, to observe the scalability of a Mod-
elica toolchain.

The model was tested with a number of equations rang-
ing from 10 to 1 million, using OpenModelica 1.13.0 and
Dymola 2018. In both toolchains, an explicit Euler inte-
gration algorithm was used. The platform used to run the
experiments is a NUMA node with two Intel Xeon E5-
2630 V3 CPUs (@3.2 GHz), and 128 GB of DDR4 mem-

2See http://llvm.org/doxygen/SCCIterator_8h_
source.html
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Listing 1. Thermal conduction benchmark.

model Thermal1D
parameter Integer nx = 1000;
parameter Real area = 0.0005^2*3.14;//m^2
parameter Real nlength = 0.1; //m
parameter Real conductivity = 401; //W/m.K
parameter Real specheatcap = 385; //J/Kg.K
parameter Real density = 8960; //Kg/m^3
parameter Real Thi = 400+273.15; //K
parameter Real Tlo = 20+273.15; //K
parameter Real g =
conductivity * area / nlength;

parameter Real c =
specheatcap * density * area * nlength;

Real T[nx];
initial equation
for x in 1 : nx loop
T[x] = Tlo;

end for;
equation
c * der(T[1]) = g * (T[2] - T[1])

+ 2*g * (Thi - T[1]);
c * der(T[nx]) = g * (T[nx-1] - T[nx])

+ 2*g * (Tlo - T[nx]);
for x in 2 : nx-1 loop
c * der(T[x]) = g * (T[x-1] - T[x])

+ g * (T[x+1] - T[x]);
end for;

annotation(experiment(StartTime = 0,
StopTime = 100000, Tolerance = 1e-6,

Interval = 20));
end Thermal1D;

ory (@1866 MHz) on a dual channel memory configura-
tion. The operating system is Ubuntu 16.04 with version
4.4.0 of the Linux kernel. The compiler used is CLANG
version 3.8.0 for OpenModelica, and GCC 7.3.0 for Dy-
mola. The model was also manually translated in opti-
mized C++ code, using an explicit Euler integration algo-
rithm, exploiting the sparsity in the model, and preserving
the contained loop constructs. The optimized version can
be found in Listing 2.

Tables 1-3 show the results. The simulation column re-
ports only the time for the integration of the differential
equations, excluding initialization time and the time re-
quired to save results to disk. The binary code size column
is only the part of the executable file containing assembly
instructions (the .text section), in order to not take into ac-
count other metadata such as debug symbols that could be
present in the executable. The source code size column is
the sum of the size of all C and header files produced by
the translator.

From the tables, two main facts can be noted. First,
the current generation of Modelica translators is, at least
in this simple example, around two orders of magnitude
slower than hand-tuned code. Second, the tables evidence
the effects of the loss of model structure in current Model-
ica translators. The flattening of looping constructs results
in a source and binary code size that grows linearly with

Listing 2. Optimized C++ implementation.

#include <cstdio>
#include <cstring>
#include <string>
#include <chrono>
#include <algorithm>

using namespace std::chrono;

// #define PRINT

int main(int argc, char *argv[])
{

if(argc<2) return 1;
int N = std::stoi(argv[1]);
const int Nsteps = 5000;
const double h = 20.0;
const double g = 0.00314785;
const double c = 0.2707936;
const double Thi = 400.0 + 273.15;
const double Tlo = 20.0 + 273.15;
double *x=new double[N];
double *xo=new double[N];
for(int i = 0; i < N; i++) xo[i] = Tlo;
FILE *fh=fopen("log.csv","w");

auto a = steady_clock::now();
for(int j = 0; j < Nsteps; j++)
{

x[0] = (1.0-3.0*g*h/c) * xo[0]
+ g*h/c * xo[1]
+ 2.0*g*h/c*Thi;

for(int i = 1; i < N-1; i++)
x[i] = g*h/c * xo[i-1]

+ (1.0-2.0*g*h/c) * xo[i]
+ g*h/c * xo[i+1];

x[N-1] = (1.0-3.0*g*h/c) * xo[N-1]
+ g*h/c * xo[N-2]
+ 2.0*g*h/c*Tlo;

std::swap(x,xo);
#ifdef PRINT
for(int i = 0; i < N; i++)

fprintf(fh,"%e,",xo[i]);
fprintf(fh,"\n");
#endif //PRINT

}
auto b = steady_clock::now();
auto e = duration_cast<

duration<double>>(b-a)
.count();

printf("Simulation time %f\n",e);
fclose(fh);
delete[] x;
delete[] xo;

}

respect to the number of equations in the system, while
this does not happen in the handwritten code. As a smaller
code size translates to better cache locality, this difference
can at least partially explain the improved simulation per-
formance of hand tuned code.

However, there is no theoretical reason why an opti-
mizing Modelica compiler could not generate as efficient
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Table 1. OpenModelica Thermal1D simulation time, binary and
source code size

Equations Simulation Binary Source
10 40 ms 34.6 KByte 46.1 KByte

100 43 ms 101 KByte 183 KByte
1000 331 ms 775 KByte 1.55 MByte

10000 2.49 s 7.37 MByte 15.6 MByte
100000 69.0 s 73.7 MByte 160 MByte

1000000 Stopped after 2 hours

Table 2. Dymola Thermal1D simulation time, binary and source
code size

Equations Simulation Binary Source
10 37.6 ms 193 KByte 8665 Byte

100 49.1 ms 238 KByte 53.7 KByte
1000 274 ms 690 KByte 527 KByte

10000 2.64 s 5.17 MByte 5.35 MByte
100000 61.9 s 50.9 MByte 55.7 MByte

1000000 Stopped after 2 hours

Table 3. Handwritten C++ Thermal1D simulation time, binary
and source code size

Equations Simulation Binary Source
10 46 µs 4922 Byte 1258 Byte

100 257 µs 4922 Byte 1258 Byte
1000 3.72 ms 4922 Byte 1258 Byte

10000 34.2 ms 4922 Byte 1258 Byte
100000 401 ms 4922 Byte 1258 Byte

1000000 3.62 s 4922 Byte 1258 Byte

code as the handwritten one—a remark that in our opinion
motivates our research path.

Finally, it is also worth noticing that the time required
by the Modelica translators to produce the C code and
compile it can significantly exceed the simulation time.
Considering the 100000 equations benchmark, OpenMod-
elica took 55 minutes, while Dymola took 4 minutes and
20 seconds. Furthermore, the 1 million equations bench-
mark was stopped for both Dymola and OpenModelica
after two hours, and the simulation had not yet started.
Compiling the handwritten C++ code took only 183ms, as
the code size is independent on the model size, although a
fair comparison cannot be made due to the time required
to manually translate the Modelica code to C++.

4 Roadmap
Given the considerations laid out so far, it is the authors’
opinion that producing highly optimized binary code from
a Modelica model is possible. The process we envision
first translates the Modelica code into an LLVM intermedi-
ate representation (LLVM-IR), and then turns that directly
into architecture-optimized machine code. Such an ap-
proach exploits all the structural information and metadata
that comes from the original Modelica model to the fullest
extent.

We also believe that, given the functionality offered by
the LLVM framework, this objective can be achieved with
an effort that will be abundantly rewarded in terms of ef-
ficiency, scalability and, last but not least, maintainability.
The performance of the LLVM framework will further im-
prove over time thanks to the efforts of the very active
community working on it, which is much wider than the
community of Modelica tool developers.

The roadmap laid out here is based on three main as-
sumptions:

• in the future there will be a growing interest in the
simulation of large-scale, modular Modelica models
of ever-increasing size;

• such large-scale models are built by connecting a
very large number of instances of a relatively small
number of models, which only differ by the numeri-
cal values of their parameters – this is possibly (but
not necessarily!) done via arrays of variables and
models;

• virtually all modular models are characterized by lo-
cal interaction, i.e., most (if not all) the components
in the system interact with a small number of neigh-
bours only, which means that the corresponding DAE
system has a very high degree of sparsity and O(N)
non-zero entries in the incidence matrix, N being the
number of instantiated models.

The Modelica compiler we are aiming to build will ex-
ploit these features to achieve highly efficient and opti-
mized simulation code generation and execution. This will
be obtained by working on two lines of development, Line
A and Line B, which are orthogonal and can be carried out
simultaneously. Line B is partitioned into two subsequent
phases, as shown in Figure 1.

A

B1 B2

time

Figure 1. The development of our proposed compiler will fol-
low two lines, Line A (compiler backend) and Line B (compiler
frontend), partitioned into Phase B1 and Phase B2.

4.1 Line A
Line A focuses on the improvement of the Modelica com-
piler backend by directly integrating with the LLVM com-
piler framework. The Modelica code will be translated
directly into an LLVM-IR, which retains all the structural
information that can be extracted from the original Mod-
elica code. This will allow the generation of machine code
which is optimized thanks to this information, as well as
all the available information about the target hardware ar-
chitecture.
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The traditional intermediate C (or C++) code genera-

tion will thus be skipped, drastically reducing the code
generation time while at the same time allowing more op-
timizations to be performed faster.

4.2 Line B
Line B focuses on the Modelica compiler frontend, which
extends from the Modelica source code parsing to the the
transformation of the DAE equations in a form that can be
passed to a DAE solver.

4.2.1 Phase B1

The traditional Modelica code generation toolchains are
based on the complete flattening of the object-oriented
features and on the expansion of arrays and unrolling of
for loops. In fact, the very same Modelica Language
Specification is written with this assumption in mind.

The goal of this line is to preserve arrays, for loops,
and in general the object-oriented structure of the models
as much as possible, in order to factor out common be-
haviour (= equations) in large-scale models. Thus it is
possible to achieve much faster code generation, a much
smaller memory fooprint, and hence much faster code
execution thanks to the vastly reduced chances of cache
misses, among other optimizations sought after in Line A.
Of course the generated code should eventually lead to the
solution of a system of equations which is equivalent to the
one that would be obtained by applying the full flattening
and expansion mentioned in the Modelica Specification.

The main idea is that the machine-code function to
compute the residuals of DAE (and their directional
derivatives) in an object which is instantiated many times
in the system should only be generated once and then
called many times using different inputs and outputs cor-
responding to the specific variables of each instance.

The concept should be then extended to cover hybrid
systems, involving the equations in when clauses, the
clocked equations and the zero-crossing functions which
are also repeated many times in the large-scale model. The
very nice feature of this approach is that the code genera-
tion time and the generated machine code footprint scales
as O(1) for a large system with N components.

This approach requires the use of direct sparse DAE
solvers, such as IDA, which avoids the need of causal-
ization and allows to preserve an N:1 mapping (possibly
with some optimizations such as alias elimination) be-
tween each equation in for loops or model arrays and
the corresponding function computing the residual of the
equation in the DAE system. This would not possible if
the system were causalized, turning it into a set of ODEs,
because in general the causalization destroys such N:1 cor-
respondence, depending on the specific causality relation-
ships in the overall system model.

In fact, such an N:1 mapping can be applied to the vast
majority of the DAE equations a typical large-scale system
model. However, a small set of equations remains that
needs a special handling, that will be carried out following

the traditional approach for simplicity.
The first sub-set in this set of equations is given by

the equations corresponding to flow variables in connec-
tion sets. Assuming there are no redundant connec-
tion statements in a connection set, a statement such as
connect(a,b) can be directly mapped into the equa-
tions 0 = a.vn f − b.vn f with an N:1 mapping only for the
non-flow variables vn f . The equations for flow variables,
instead, can only be generated once the connection sets
have been computed, a task that can only be performed
by analyzing the fully assembled system; only one flow
equation per connection set is eventually generated.

The second sub-set is given by the auxiliary equations
needed to generate the results of inStream() operators.
Also in this case it is necessary to analyze the connection
sets of the full system model, since the expression of the
results of the inStream() operator depends on the car-
dinality of the set and on the min attribute of the flow
variables of each involved connector.

The third sub-set involves DAE systems of index
greater than one. If the system is known a-priori to have
index one, as it is e.g. the case of phasor-based power
generation and transmission system models, then this set
is empty and there is no need of further processing. The
a-priori assumption of structural index one could be de-
clared by a suitable annotation of the model. Otherwise
it is necessary to flatten and expand the system model all
the way down to scalar components, run the matching al-
gorithm and in case of failure due to structural high index,
run Pantelides’ algorithm, which will identify algebraic
constraint equations between variables that appear differ-
entiated in the model, differentiate them and add them to
the original set of DAEs. The dummy-derivatives algo-
rithm will also require to select the state set (statically or
dynamically), and to demote some derivatives to dummy
derivatives, hence a provision must be made to identify
as dummy derivatives some elements of un-expanded ar-
rays of derivatives, that are handled by the O(1) efficient
code described above. Eventually, the DAE solver will
be passed the residuals and Jacobian of a reduced-order
index-1 system.

Note that in Phase B1 we still need to expand all non
index-1 systems, as in the current state-of-the-art Model-
ica compilers. We postpone the exploitation of optimiza-
tion opportunities for higher-index system to the B2 phase.
This milestone partitioning allows us to reach a working
compiler in shorter time by prioritizing the optimization
of index-1 systems.

Summing up, a straightforward implementation of the
tool requires to fully flatten and expand the model to scalar
components, build the connection sets on it, and then run
the standard structural analysis algorithms on it. Note that
this fully expanded model will not be used directly for
code generation, but only to perform structural analysis.
The actual code generation process will start from an un-
expanded version of the model, in order to achieve O(1)
performance as much as possible.
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This processing phase on the fully expanded model re-

quires O(N) time, so it doesn’t scale as well as the gener-
ation of equations that have an N:1 mapping, which scales
as O(1) as discussed above. However, experience carried
out by some of the authors with the OpenModelica com-
piler shows clearly that the time and memory resources
involved in these specific phases of the processing of a
fully flattened model are a tiny fraction (5–10% at most)
of the total. Hence, a performance improvement of at least
one order of magnitude is expected by following this ap-
proach, compared to the traditional approach of running
all the code generation phases on the fully flattened sys-
tem.

As to the runtime performance of the executable sim-
ulation code, it has to be noted that the cardinality of the
additional set of equations that need to be generated from
the fully expanded model (connection equations for flow
variables, equations defining inStream() outputs and
equations differentiated by Pantelides’ algorithm) is again
a very tiny fraction (a few percentage point at most) of
the total number of equations of the system. This means
that the penalty on the runtime performance and memory
footprint of these equations not being handled in an array-
and object-oriented-structure-preserving way will be very
small, compared to what happens when a traditional full
flattening and expansion approach is followed.

4.2.2 Phase B2

Once the development of Phase B1 is complete, it would
be possible to focus on the modularization of the struc-
tural analysis algorithms. The current state-of-the-art ap-
proaches work only on scalar variables. In this phase, a
generalized versions of such algorithms will be designed,
which can handle entire arrays and sets of equations from
for loops, or from arrays of models as individual E and
V nodes.

On one hand, this modularization would further im-
prove the performance and the scalability of the tool. On
the other hand, developing such generalized algorithms
that work efficiently in all cases could turn out to be quite
a hard task. Therefore, the ratio between the development
effort and the performance gains is probably going to be
much less spectacular than the one that can be achieved
by completing Phase B1. It is the authors’ opinion that
this kind of optimization is worth considering only after
the optimizations described in Phase B1 have been fully
exploited.

5 On-Going Work
Since the second half of 2018, we started the implementa-
tion of a compiler prototype to materialize the effort dis-
cussed in Section 4. The development of such prototype
is being addressed in a master’s thesis work that aims at
demonstrating the benefits of the efficient exploitation of
arrays and equation loops. Due to time and resource limi-
tations, the current prototype is still in a very preliminary
state.

The focus of this thesis work is avoiding the generation
of redundant code that is obtained when the conventional
flattening-based approach based is followed. At the mo-
ment authors are writing, our prototype is limited to the
handling of flat models with no object-oriented structures.
Structural analysis is still not implemented, so that only
the dense version of the IDA DAE solver can be used.
Last, but not least, the direct LLVM-IR code generation
is not yet in place, and the prototype still generates C code
that is then compiled by clang into executable code.

As a consequence, the performance of our compiler
prototype on large-scale models is still very far from the
objectives stated in the roadmap. That said, our proto-
type can handle simple Modelica models with arrays and
for loops, producing correct simulation results. The im-
provements currently supported by our prototype lie in the
code generation stage. We aim at the preservation of the
data- and code-structures concepts as they are written in
the Modelica source code. In particular, we avoid to per-
form the vector expansion whenever it is possible. Thus,
we generate a residual function that features loops over
variables. Our compiler generates a compact code that
better exploits instruction locality with respect to the code
generated by OpenModelica.

Another improvement over the OpenModelica code
generation consists in the reduced modularity of the resid-
ual function. OpenModelica generates a single C function
for each equation to be described. This approach is fairly
convenient for debugging purposes, as it allows to trace
the effects of the single equation from the source code to
the executable binary. However, it implies a non-trivial
overhead due to function call instructions at runtime, and
this overhead is not paid back through code reuse, as these
functions are only called once. We reduce this overhead
during the code generation stage in two ways. The first
optimization is a direct consequence of the loop preserva-
tion: whenever there is an equation within a loop body,
we reuse the same code at each iteration of the loop. The
second optimization consists in the inlining of functions,
to be performed before the code generation. Instead of
generating an independent C function and respective call
instructions to invoke it, we directly place the code of that
function in the residual function. This second optimiza-
tion can be performed at almost zero cost during the code
generation stage, as opposed to later forcing the compiler
to analyze the emitted code as a whole.

Although preliminary results on small dense systems
supported by our prototype are promising, actual di-
rect performance comparisons on meaningful test cases
against mainstream Modelica translators will become sig-
nificant as soon as the support for the sparse version of the
IDA solver is implemented. This effort and the replace-
ment of the intermediate C code generation pass with the
LLVM-IR one are planned to be carried out in 2019.
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6 Conclusions
In this paper, we are proposing to realise a Modelica com-
piler based on a compiler framework, namely LLVM. The
presented research is carried out by a group at the Politec-
nico di Milano, putting together knowledge and experi-
ence about Modelica and its use for a wide variety of ap-
plications, about computer architectures, and about com-
piler science and technology.

We have motivated our proposal based on current trends
observed in the problems that Modelica models need to
address, with particular (yet not exclusive) reference to
large-scale systems.

We have argued that not passing through the generation
of source code in an imperative language can yield im-
provements in terms of wider optimization possibilities,
as the semantics of a language like C inherently causes
a loss of information about the semantics of the original
model, that could be exploited to tailor the code to its tar-
get architecture.

We have also noticed that the huge effort spent, and the
vast community involved in compiler frameworks, quite
certainly entail future benefits in terms of compiler stan-
dardization and maintainability.

We have shown a motivating example to support our
statements, defined a roadmap for future activities, and
briefly described what we carried out so far.

We hope that this paper fosters a discussion in the Mod-
elica community, and that our proposal can be a basis for
a future generation of efficient, architecturally flexible and
easily maintainable Modelica compilers.
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