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Summary

This paper concerns the rheological characterisation of liquefied sands as non-
Newtonian Bingham fluids. For this purpose, dam breaking laboratory tests are often
executed and interpreted, offering a viable option to identify the properties of flu-
idised water-soil mixtures. However, limited attention has been devoted so far to
clarify what variables and measurements would allow an unambiguous calibration
of Bingham parameters, namely the viscosity � and the yield stress �y.
The numerical results of parametric studies based on the Particle Finite Element
Method (PFEM) are critically inspected to gain deeper insight into the problem.
First, it is confirmed that multiple �− �y pairs may reproduce the same experimental
evidence when formed by only one measurement – usually, the post-dam-breaking
displacement of the bottom toe (tip) of the liquefied mass. Then, two alternative
procedures are proposed for a unambiguous identification of both � and �y: one is
based on monitoring the evolving aspect ratio of the fluid mass during free, gravity-
driven flow; the other relies on a slightly different dam breaking test, also including
the impact of the liquefied soil against a rigid obstacle. In particular, the latter
approach reduces the relevant duration of the test, mitigating the possible influence
of re-consolidation effects on the calibration of rheological parameters.

KEYWORDS:
liquefied sands; rheology; Bingham fluid; dam breaking; CFD; PFEM

1 INTRODUCTION

The term ‘liquefaction’ denotes the loss of shear strength and stiffness suffered by loose sandy soils in response to monotonic
or cyclic stages of (nearly) undrained loading. Such a phenomenon is caused by the abrupt build-up of pore water pressure and
the resulting decrease of effective stresses, leading the soil to behave as a viscous fluid until solid-like properties are eventually
recovered through water drainage (re-consolidation)1.
Catastrophic consequences of sand liquefaction are documented in the literature in relation to countless case studies, including

foundation collapses under buildings and bridges2,3,4, flow slides in earth slopes5, failure of tailing dams6, sinking/flotation
of buried pipelines7. A number of constitutive models have been proposed in the literature to predict the onset of liquefaction
under either monotonic or cyclic undrained loading, however with no use in terms of post-liquefaction evolution, i.e. when large
deformation conditions weigh in. Some early works attempted the simulation of post-liquefaction flow in the framework of solid
mechanics by adopting enhanced finite-strain constitutive relationships8,9, up until the route of Computational Fluid Dynamics
(CFD) was found better suited for interaction problems involving solid structures and fluidised geomaterials.
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With very few exceptions of theoretical/analytical studies on permanent ground displacements10 and submarine landslides11,
different numerical methods have been applied to a variety of relevant applications, including liquefaction-induced soil lateral
spreading12, flow failure of mine tailing dams6, interaction of flowing masses with foundation piles13 and debris avalanches14.
For instance, Uzuoaka et al.12 proposed a finite volume discretization on a staggered grid of Navier-Stokes governing equations
based on a Semi Implicit Method for Pressure Linked Equation (SIMPLE) method. Hadush et al.15 studied the lateral spread-
ing of liquefied soils via a CIP (Cubic Interpolated Pseudoparticles) method, exploiting its capability to handle the interface
flow among different objects in presence of both compressible and incompressible materials. To overcome the intrinsic diffi-
culties associated with free-surface flow problems, Pastor et al.16,14 and Huang et al.17,18 resorted to SPH (Smoothed Particle
Hydrodynamics) to model the flow of fluidised geomaterials. More recently, Schenkengel & Vrettos19 embraced the framework
of statistical mechanics and applied a Lattice Boltzmann method to simulate the liquefaction-induced flow observed in shaking
table tests, slope failure, and around an embedded rigid wall. As further stressed later in this work, the so-called Particle Finite
Element Method (PFEM) has also proven a very suitable CFD approach to free-surface flow problems20,21, mostly due to the
fully Lagrangian formulation/solution of the problem.
In the lack of well-established constitutive theories for geomaterials transiting from solid-like to fluid-like behaviour, the lat-

ter is most often modelled in CFD-type simulations via the rheological idealisation of non-Newtonian Bingham fluid14. This
implies that no flow is possible while the magnitude of the deviatoric stress state is below a given threshold �y, beyond which
fluid flow occurs according to a linear relationship between deviatoric stresses and strain rates governed by the viscosity �.
Accordingly, the use of the Bingham model requires two material parameters to be identified, namely the viscosity and the yield
stress. The relevance of reliable rheological characterisation is self-apparent and key to the solution of engineering problems,
especially when no consensus has yet been achieved in the literature about the range of liquefied soil parameters22,13, or about
their correlation with other properties describing the pre-liquefaction solid state (e.g. relative density, fraction and mineralogy
of fine particles, in situ effective stress state etc.). In the case of the residual strength of granular materials after liquefaction
events, classical approaches rely on the back-calculated values from field case histories, as proposed by Stark & Mesri23 and
Olson & Stark24. The inherent uncertainties related to field conditions and measurements lead to prefer for rheological character-
isation laboratory tests with controlled initial/boundary conditions. The rheological parameters of fluidised soils can generally
be obtained through either dedicated laboratory devices (e.g. rheometric25,26 and viscometric22), or the back-analysis of small-
scale tests. As pointed out by Brezzi et al.27, viscosimeters are usually adopted for fine-grained soils, while their application
to coarser materials is generally quite limited. Furthermore, when the fluid to be characterised is a liquefied sand, the adopted
device should also allow for liquefaction itself to be triggered prior to relevant measurements. This argument confirms the higher
viability of rheological characterisation based on the back-analysis of small-scale tests, such as pulling bar tests13, moving ball
tests28,13,29, slump tests30,31,27, rotating drum32 and dam breaking tests.
The dam breaking test represents one of the simplest and fastest options for rheological characterisation, based on monitor-

ing/interpreting the free flow of a liquefied sand mass. The test is executed in two simple stages: (i) first, a mass of liquefied soil
is kept at rest against the fixed wall of a rigid container by a removable vertical baffle; (ii) then, the barrier is swiftly removed
so as to allow the gravity-driven flow of the material – along either a horizontal or inclined floor surface. Typical experimen-
tal measurements track the time evolution of the tip displacement and/or of the free surface. At notable variance with real field
cases, dam breaking tests performed in a laboratory environment enable full control of relevant initial and boundary conditions,
which makes these tests particularly amenable to numerical simulation and back-analysis. Importantly, dam breaking experi-
ments are purposely performed in a bidimensional setting. A single digital camera is thus sufficient to record the evolution of
the flowing mass in the vertical plan, and simpler 2D models are fully suitable for its numerical simulation.
This paper targets a substantial improvement of dam breaking test interpretation as a key step towards the accurate charac-

terisation of liquefied sands as Bingham fluids. For this purpose, parametric CFD-PFEM studies have been performed and their
results critically inspected. When carefully interpreted, CFD results allow to clearly link the main features of dam breaking flow
to the Bingham parameters of the liquefied sand, as well as to remove poorly documented ambiguities in existing interpretation
procedures. As a main outcome, this work establishes two alternative approaches to obtain from dam breaking test measurements
a single pair of viscosity and yield stress values for sands considered in their fully liquefied state.



Della Vecchia ET AL 3

2 BINGHAMMODELLING OF LIQUEFIED SANDS

Despite some valuable recent efforts33,34, a unified constitutive theory capable of describing both the solid-like and fluid-like
behaviour of granular materials has not yet been achieved. This knowledge gap preserves the high relevance of the CFD frame-
work to the analysis of fluidised geomaterials, in combination with rheological models that describe the behaviour of water-soil
fluid mixtures by relating stresses and strain-rates – e.g. � and ̇ in the case of uniaxial shear flow. For mixtures with high sedi-
ment concentration a linear rheological law can be assumed beyond a material-specific ‘yield stress’ threshold22. The presence
of a yield stress below which no fluid flow occurs implies the overall non-linearity of the rheological model, commonly referred
to as non-Newtonian. Several non-Newtonian formulations are available in the literature, among which the Bingham model has
gained over the years the widest popularity for applications involving liquefied sands17,35. The popularity of the Binghammodel
does not only arise from its simplicity, but also from the existing bulk of experimental data in its support – as shown by O’Brien
& Julien22 for fine-grained materials, and Nishimura et al.36 and by Gallage et al.37 for liquefied sands.

TABLE 1 Previous applications of fluid modelling to the flow of water-soil mixtures.

Authors Rheological model Application

Jeyapalan et al.6 Bingham Dam breaking
Uzuoka et al.12 Bingham Dam breaking
Hadush et al.38 Pseudo-plastic, Bingham Dam breaking
Hadush et al.15 Bingham Dam breaking
Moriguchi et al.39 Bingham (frictional) Dam breaking
de Alba & Ballestero29 Bingham Moving bar
Pastor et al.40 Viscoplastic Landslide
Moriguchi et al.35 Bingham (frictional) Dam breaking
Huang et al.17 Bingham (frictional) Dam breaking
Pastor et al.14 Bingham, Viscoplastic Landslide

Under pure shear flow conditions, Bingham’s model is represented by the simple uniaxial relationship between shear stress
and shear strain rate:
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where the material parameters � and �y represent the phenomenological viscosity and yield stress of the liquefied soil. Equation
(1) also shows how the same relationship can be recast into a Newtonian linear form through the definition of an equivalent,
strain-rate–dependent viscosity �′:
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which is in line with the wide experimental evidence concerning the non-Newtonian nature of liquefied soils15. The multi-axial
generalisation of Equations (1)-(2) for 2D/3D problems is straightforward and reads as41:
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where sij and "̇ij are the tensors of deviatoric stress and strain rate, respectively, whereas relevant tensor norms are defined as
‖

‖

‖

�ij
‖

‖

‖

=
√

(1∕2) sijsij and
‖

‖

‖

"ij
‖

‖

‖

=
√

(1∕2) "̇ij "̇ij . The Bingham model sets a relationship between the deviatoric components of
stress and strain rate tensors, while the hydrostatic mean pressure emerges from assumptions concerning the compressibility of
the fluid. In the following, incompressible fluid flow will be exclusively considered1, which is also consistent with assumption
of fully undrained conditions during post-liquefaction motion.
Refinements of the basic Bingham model have been also proposed to include a pressure-dependent yield stress (e.g. �y =

�y0+p tan�), thus introducing an additional parameter to calibrate. In light of its simplicity, the Binghammodel has been widely
applied to geotechnical problems; this is clearly witnessed by the literature review summary in Table 1, where relevant studies
on the flow of soil-water mixtures are mentioned along with the rheological model adopted. The Bingham model is also adopted
in this study with focus on the objective identification of its free parameters (� and �y – Equation 1) through dam breaking
experiments.

3 NUMERICAL SIMULATION OF DAM BREAKING TESTS

All CFD simulations have been carried out based on the Particle Finite Element Method (PFEM), in the version developed and
implemented by Cremonesi et al.42,41. The PFEM has been widely used in engineering applications, such as free-surface fluid
dynamics20,21, fluid-structure interaction43,44,45, bed erosion46, manufacturing processes47, landslides48 and granular flows49. In
particular, the method relies on a fully Lagrangian description of free-surface fluid flow, and has been proven especially suitable
for the simulation of fluid-structure interaction. The fluid mass is assumed to flow as a viscous incompressible fluid during the
time interval (0, T ), with the conservation of linear momentum and mass associated with the following Navier-Stokes equations
over the moving volume Ωt:

�
Dui
Dt

= �ij,j + �bi in Ωt × (0, T )

ui,i = 0 in Ωt × (0, T )
(4)

where Dui∕Dt represents the material time derivative operator applied to each component of local velocity ui, �ij the Cauchy
stress tensor, � the mass density and bi the external body force vector. The Cauchy stress tensor can be conveniently decomposed
into deviatoric (sij) and isotropic components (p, mean pressure):

�ij = sij − p�ij (5)

where �ij is the second-order identity tensor and the mean pressure p (positive when compressive).
The above governing equations in their fully Lagrangian form are then discretised in space according to the classical Galerkin

Finite Element approach, based on a linear equal-order nodal interpolation of both fluid pressure and velocity. The following
semi-discrete system of ordinary differential equations results:

MU̇ +KU + DTP = B (6)
DU = 0 (7)

where the vectors U and P contain the nodal values of velocity components and pressure respectively, whereas M is the mass
matrix,K the Bingham rheological/stiffness matrix,D the discrete divergence operator, B the vector of external body forces and
boundary tractions – full description of the above matrices/vectors is available in Cremonesi50.
Starting from pre-set initial conditions, time marching from tn to tn+1 is performed by applying the implicit backward Euler

integration scheme to the above semi-discrete, non-linear system of equations:
(M
Δt
+K

)

Un+1 + DTPn+1 = Bn+1 + M
Δt

Un (8)

DUn+1 = 0 (9)

Following Idelsohn et al.51, each simulation step is solved iteratively via a Picard algorithm, here preferred over the standard
Newton-Raphson scheme. Accordingly, a simple fixed point method is applied at each ktℎ iteration to evaluate the relevant
matrices emerging from Equations (8)–(9) at a configuration estimated at the (k − 1)tℎ iteration.

1During incompressible flow, the total strain rate tensor "̇ij coincides with its deviatoric component.
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The proposed numerical approach is based on a mixed formulation in which velocity and pressure play as independent vari-
ables. When the governing equations are discretised in space, the approximation spaces for pressure and velocity cannot be
defined independently, but should fulfil the so-called inf-sup (or LBB) condition. This implies a restriction on the compatibility
between the approximations of the two unknown variables. It is also possible to overcome the inf-sup condition (and the extra
computational burden it normally causes) by means of a stabilised reformulation of the original problem. Indeed, this path is
followed in the adopted Particle Finite Element Method (PFEM), in which linear/equal-order nodal interpolation of both veloc-
ity and pressure is set to guarantee very fast and efficient remeshing during large deformation. This choice would not per se
fulfill the inf-sup condition, so that the so-called pressure-stabilising/Petrov-Galerkin (PSPG) stabilization is introduced52, as
explained in Cremonesi et al42.
In the spirit of the PFEM, re-meshing is frequently performed to mitigate the mesh distortion sponstaneously arising from the

Lagrangian formulation of large deformation problems. A suitable index of element distortion is used to monitor the need for
mesh regeneration: whenever a new mesh has to be created (see Fig. 1a), a Delaunay tessellation technique is used to redefine
the element connectivities starting from the current nodal positions (see Figure 1b); moreover, an “alpha-shape” technique is
introduced to identify free-surfaces (see Figure 1c), according to the approach detailed in Cremonesi et al41,42.

(a) PFEM: initial point distribution (b) PFEM: Delaunay tessellation (c) PFEM: Delaunay tessellation and alpha-shape technique

FIGURE 1 PFEM redefinition of mesh connectivities: Delaunay tessellation and alpha shape technique: (a) PFEM: initial point
distribution; (b) PFEM: Delaunay tessellation; (c) PFEM: Delaunay tessellation and alpha-shape technique.

From a geotechnical standpoint, the assumption of incompressible one-phase flow can be regarded as a “total stress analysis”
of dam breaking: no distinction is made between solid and fluid phases, while undrained/isochoric conditions are maintained
during the motion of the liquefied soil mass – i.e. transient re-consolidation is neglected.
All PFEM simulations of dam breaking in this work refer to the set-up shown in Figure 2. The fluid mass is initially at rest in

a rectangular configuration (initial width L0 and heightH0), then let free to move under the gravity acceleration field. 2D plain
strain numerical simulations have been performed by discretising the liquefied soil domain with 3-node triangular elements.
Velocity no-slip boundary conditions have been set along all container walls, with constant pressure imposed at the free surface
of the flowing mass – no surface tension considered. Parametric analyses concerning space-time discresation have been initially
performed to ensure the accuracy of the numerical solution while trading off on the associated computational costs. Figure 3
exemplifies the evolution of an initial mesh set-up as induced by free-surface flow and related re-meshing – the effectiveness of
the “alpha-shape” technique in maintaining suitable element shapes upon re-meshing should particularly be noted.

4 MODEL PREDICTIONS AND CALIBRATION DILEMMA

The above PFEM model has been first used to reproduce the experimental results provided by Huang et al.17. These authors
performed a dam breaking test on saturated sand, brought to liquefaction through the 1 Hz vibration of a shaking table. The sand
sample used for the experiment (mean particle size: 0.24 mm) was prepared in the dam breaking box at a dry density of 1510
kg/m3, with the following relevant sizes as termed in Figure 2: Lbox = 98 cm, Hbox = 35 cm, L0 = 32 cm and H0 = 26.7 cm.
After sand liquefaction, the vertical baffle was removed and the material flow recorded by means of a high-speed camera. The
experimental results in Figure 4 illustrate the horizontal position of the liquefied mass tip against time, over a total duration of 6
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FIGURE 2 Dam breaking test: set-up and geometry

(a) initial mesh configuration

(b) final mesh configuration

FIGURE 3Mesh evolution due to fluid flow and related re-meshing: (a) initial and (b) final (steady state) mesh configuration.

s. PFEM simulations of the test have been executed with a mesh including 3000 nodes and a time-step sizeΔt = 0.001 s. Related
velocity contour plots are shown in Figure 5 at different time steps. The maximum shear strain resulting from all simulations is
in the order of 0.1 1∕s, which is well below the strain rate lower bound identified experimentally by O’Brien & Julien22 for the
applicability of Bingham modelling.
With no rheological characterisation available for the liquefied material, its density (�) viscosity (�) and yield stress (�y) have

been calibrated to best-fit the experimental data. However, even after pre-setting the mass density to � = 1600 kg/m3, it has
not been possible to identify a unique � − �y pair: Figure 4 confirms that simulations of comparable quality can be achieved
with two quite different sets of Bingham parameters. Similar predictions can be also obtained with different sets of rheological
parameters, namely larger viscosities associated with lower yield stresses.
On the same token, Figure 6 shows the outcome of a parametric study on the simulation of Huang et al.’s17 test with either

(i) varying viscosity (� ∈ [100;800] Pa⋅s) and constant �y = 20 Pa, or (ii) varying yield stress (�y ∈ [20;400] Pa) and constant
� = 400 Pa⋅s). It is apparent that variations of either � or �y produce similar qualitative effects on the position of the moving
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FIGURE 4 Position of the liquefied mass tip vs time: PFEM simulation vs. experimental data from Huang et al.17

(a) t = 0 s (b) t = 2 s

(c) t = 4 s (d) t = 6 s

FIGURE 5 Velocity contour plots – values in m/s. Set of material parameters: � = 1600 kg/m3, � = 300 Pa⋅s, �y = 50 Pa: (a)
t = 0 s; (b) t = 2 s; (c) t = 4 s; (d) t = 6 s.

tip, in a way that makes practically impossible to identify both parameters by only looking at one specific measurment. Similar
conclusions have also been drawn by Jeyapalan et al.6 and Moriguchi et al.39, still regarding the simulation of dam breaking
tests. Although conceptually obvious, such a “calibration dilemma” has not yet found a satisfactory solution – the remainder of
this paper is fully devoted to filling this relevant gap.
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(a) varying viscosity, constant yield stress (b) varying yield stress, constant viscosity

FIGURE 6 Sensitivity of dam breaking PFEM results to viscosity and yield stress – time evolution of tip position: (a) varying
viscosity, constant yield stress; (b) varying yield stress, constant viscosity.

5 UNAMBIGUOUS IDENTIFICATION OF BINGHAM PARAMETERS

5.1 From the analysis of free, gravity-driven flow
More robust calibration of Bingham parameters can be achieved by monitoring at the same time the position of the mass tip and
the maximum height at the back-wall, i.e. L andH in Figure 2, with the latter decreasing in time as the liquefied material flows.
In particular, useful indications may be obtained from the time evolution of theH∕L aspect ratio. After simple post-processing
of the same results as in Figure 6, Figure 7 shows how the effects of varying � and �y are more readily apparent when visualized in
terms ofH∕L ratio: a varying �y at constant � directly impacts the final steady state value of the aspect ratio, whereas a varying
� at constant �y results in different evolution rates towards approximately the same asymptotic H∕L value (Figure 7b). Unlike
the time evolution of the tip displacement, the asymptotic H∕L ratio appears to be barely affected by the material viscosity –
see Figure 7b. In order to highlight this finding, numerical simulations have been run up to a physical time of 100 seconds – a
significant interval compared to the typical duration of dam breaking tests. It should also be recalled that Bingham’s constitutive
equations (3) are perfectly compatible with limt→∞H > 0: the ability to mobilise shear at rest allows for a non-horizontal free
surface as static equilibrium is approached53.
The negligible influence of viscosity on the asymptoticH∕L value is confirmed in Figure 8a with respect to a different yield

stress, namely �y = 100 Pa. The alternative semi-logarithmic representation in Figure 8b remarks the role of viscosity to be
most relevant just in the early stage of dam breaking flow.
From a geotechnical standpoint, the time needed for theH∕L ratio to reach its steady state value would deserve further dis-

cussion. The case of liquefied sands seems quite delicate in this respect, as a meaningful characterisation of fluid-like behaviour
should concern a time-window preceding re-consolidation. Experimental data from the literature illustrate that the time needed
for the inception of pore pressure dissipation is hardly larger than 1–2 minutes under typical testing conditions29,54,55 – although
with prominent roles played by domain size and boundary conditions. The theoretical analyses by Balmforth et al.56 and Mat-
son & Hogg57 show that both H and L tend to reach �-insensitive asymptotic values at steady state, although with a timing
likely to let some re-consolidation to occur. Conversely, it can be proven58 that the H∕L ratio evolves much faster towards its
steady state, which makes such a variable better suited for the rheological characterisation of fully liquefied sands. Nevertheless,
it appears extremely challenging at the present state of the art to provide solid guidance on the timing of re-consolidation in
flowing soil masses, a process happening in dam breaking tests as in real flowslides. This suggests that any measures reducing
the meaningful duration of dam breaking tests can only be beneficial.
The link between the yield stress �y and the asymptotic H∕L ratio has been parametrically explored for �y ranging from 50

Pa to 400 Pa at constant viscosity � = 400 Pa⋅s: the black markers in Figure 9 represent single PFEM simulations, while the
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(a) varying yield stress, constant viscosity (b) varying viscosity, constant yield stress

FIGURE 7 Sensitivity of dam breaking PFEM results to viscosity and yield stress: time evolution of theH∕L ratio: (a) varying
yield stress, constant viscosity; (b) varying viscosity, constant yield stress.

(a) varying viscosity, constant yield stress(�y = 100 Pa) (b) varying viscosity, constant yield stress(�y = 100 Pa), time in logarithmic scale

FIGURE 8 Sensitivity of dam breaking PFEM results to viscosity: time evolution of theH∕L ratio for �y = 100 Pa: (a) varying
viscosity, constant yield stress(�y = 100 Pa); (b) varying viscosity, constant yield stress(�y = 100 Pa), time in logarithmic scale.

dashed interpolation line is associated with a very successful linear regression – coefficient of determination R2 = 0.9997.
Given the negligible influence of �, Figure 9 sets the ground for a unambiguous calibration of �y based on the asymptoticH∕L
ratio associated with the initial configurationH0–L0.
A more effective normalisation of numerical results can be achieved through a more general dimensionless variable B, also

including the effect of the material density � and initial geometrical configurationH0 − L0:

B =
�y

�gH0

L0
H0

, (10)

in which g denotes the gravity acceleration. To stress the benefits of normalising dam breaking results through B, additional
PFEM simulations have been performed for �y ∈ [50; 400] Pa, � = 400 Pa⋅s and four different fluid densities, namely� =
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FIGURE 9 Relationship between asymptoticH∕L ratio and yield stress �y for � = 400 Pa⋅s

1500, 1600, 1700, 1800 kg/m3. As illustrated in Figure 10a, each density value a linear relation between �y and asymptoticH∕L
has been found, each one characterised by a specific slope in the relevant plane. Remarkably, when the same numerical results
are re-plotted as a function of the aforementioned variable B, one single trend line can be identified – the linear regression line
drawn in Figure 10b features a coefficient of determination R2 = 0.9988.
The above arguments lead to conclude that monitoring the aspect ratio of the moving fluid mass can fruitfully support the

unambiguous identification of � and �y with no extra-costs compared to standard interpretation procedures – indeed, the same
images taken during the experiment provide both L and H at once. A robust calibration procedure distinguishing the roles
played by �y and � can be established in two simple steps:

1. identify the yield stress from the experimental steady-state value of the (H∕L) ratio – owing to the linearity of the trend in
Figure 10b, only two numerical simulations are needed to obtain the relevant calibration curve associated with a specific
initial geometry;

2. given �y, the experimental time evolution of the tip position can be best-fitted by setting an appropriate value of viscosity
� sought over a realistic range – see Figure 6a.

Once more, it is worth remarking the simplicity of the proposed procedure, corroborated by the results of previous theoretical
studies and state-of-the-art CFD-PFEM simulations.

5.2 From the analysis of the impact on a rigid obstacle
As previously noted, Bingham parameters should be calibrated against experimental data representative of sand flow in its fully
liquefied regime (before re-consolidation). However, real situations are envisaged in which the attainment of an asymptoticH∕L
ratio may be incompatible with such requirement. This drawback could be overcome by narrowing the time window over which
relevant measurements are gathered, for instance by studying the impact of the liquefied mass against a rigid obstacle after dam
breaking59.
This procedure seems particularly suitable in presence of fast re-consolidation, as impact tests can provide valuable informa-

tion in only a few seconds, a time shorter than needed to attain the asymptoticH∕L ratio during free flow. Further, it is shown
in the following that � and �y can be resolved even more clearly through the analysis of impact events.
With reference to the same set-up described by Huang et al.17, the time evolution of the fluid pressure at a point P in contact

with a vertical rigid obstacle is monitored, at distance dP from the baffle and elevation ℎP – see in Figure 11a. Hereafter, the
discussion is carried out regarding the results of PFEM simulations performed with dP = 0.28 m and ℎP = 0.016 m.
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(a) AsymptoticH∕L ratio vs. yield stress (b) AsymptoticH∕L ratio vs. B

FIGURE 10 Dependence of the asymptoticH∕L ratio on the yield stress �y at varying material density: (a) AsymptoticH∕L
ratio vs. yield stress; (b) AsymptoticH∕L ratio vs. B

(a) Set-up and geometry (b) Deformed mesh after soil mass stabilization

FIGURE 11 Dam breaking test with obstacle

Figure 12 depicts the time evolution of the fluid pressure at point P (pP ) for different viscosities and two distinct yield stresses
(�y = 20 Pa in Figure 12a and �y = 100 Pa in Figure 12b). Since slower fluid motion results from increasing values of viscosity,
a positive correlation is to be expected, for a given fluid density, between the time taken to impact the obstacle (impact time
ΔtP ) and the viscosity. Figure 13 confirms such expectation and shows that the ΔtP − � correlation is very well represented by a
linear regression line – in this case with a coefficient of determinationR2 > 0.998 for both yield stresses considered. Conversely,
Figure 12 supports the inference that � has no effect on the final value of pP , and opens to a two-stage calibration procedure in
which � and �y are decoupled and separately identified. Importantly, the whole process including dam breaking, obstacle impact
and final arrest takes place in only a few seconds, which leads closer to the assumption of fully liquefied regime.
Unlike the viscosity, the yield stress affects pronouncedly the final value of pP . In this respect, Figure 14 illustrates the

time evolutions of pP associated with different yield stresses at two distinct viscosities (� = 200 Pa⋅s and � = 400 Pa⋅s):
the strong effect of �y on the final value of pP appears to be decoupled from the specific viscosity, as further visualised in
Figure 15. Also in this case a linear regression trend works satisfactorily, with confirmed no effect of the viscosity. From a
physical standpoint, �y affects the final configuration of the liquefied mass in terms of limit inclination of the free surface and,
as a consequence, maximum elevation above the container floor. For instance, it could be easily verified in Figure 15 that the
asymptotic pP for �y → 0 (Newtonian fluid, no shear strength at rest) tends to the hydrostatic pressure under a flat free surface –
i.e. pP (t→∞) = �g(ℎ∞−ℎP ), where simple mass conservation arguments imply that L0 ⋅H0 =

(

L0 + dP
)

⋅H∞ (Figure 11a).
It should be mentioned that, for the ranges of viscosity, yield stress and density typical for fluidized soils (e.g. �y > 20 Pa, � > 20
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(a) Yield stress �y = 20 Pa (b) Yield stress �y = 100 Pa

FIGURE 12 Time evolution of the pressure pP at varying viscosity: (a) Yield stress �y = 20 Pa; (b) Yield stress �y = 100 Pa

FIGURE 13 Dependence of the impact time ΔtP on the viscosity for two different yield stresses

Pa⋅s, � between 1500 and 1800 kg/m3), the time evolution of the pressure on the obstacle can be either monotonically increasing
or showing some decrease after a slight peak, as is evident in Figure 14a. This effect arises from small differences in the global
dynamics of the flowing mass at different fluid viscosity and/or yield stress, which may imply different velocities at the time of
the impact. The mentioned peak in the pressure time evolution, however, does not have any influence on the stationary value
eventually attained (see Figures 12a and 13), nor, as a consequence, on the proposed calibration procedure.
Also in this alternative test set-up it is possible to normalize relevant correlations with respect to the density of the liquefied

sand and its initial geometry. For this purpose, two dimensionless groups – the variableB and the normalised pressure p∕(�gH0)
– can be fruitfully exploited. Figure 16 shows that, for different fluid densities � taken in the range from 1500 to 1700 kg/m3, all
the simulation results regarding final pP values lie on a single linear regression line – featuring a coefficient of determination
R2 = 0.991.
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(a) � = 200 Pa⋅s (b) � = 400 Pa⋅s

FIGURE 14 Time evolution of the pressure pP at varying yield stress: (a) � = 200 Pa⋅s; (b) � = 400 Pa⋅s

FIGURE 15 Dependence of the final pP pressure on the yield stress

The above analysis of PFEM results suggests an alternative procedure to identify unambiguously both � and �y from mea-
surements related to the dynamic impact of the liquefied soil mass on a rigid obstacle. Such a procedure requires the installation
of a pressure transducer on the obstacle wall, and consists of two straightforward steps:

1. first, infer the yield stress �y from the final value of the pressure pP at a given elevation ℎP along the obstacle wall – where
the mentioned pressure transducer shall have been installed. Owing to the linearity of dimensionless trend in Figure 16,
two numerical simulations suffice to obtain the relevant calibration relationship. In particular, �y can be extracted from
the dimensionless variable B, based on known values of �,H0 and L0;

2. the viscosity � is then derived as linked to the impact timeΔtP . Again, the linearity of the �−ΔtP relationship (see Figure
13) makes two simulations with different viscosities sufficient to draw the linear trend relevant to calibration, based on
the �y value identified in the previous step.
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FIGURE 16 Dependence of the final normalised pP pressure on B

The positioning of the obstacle (dp) certainly affects the results of experiments/simulations, and deserves one last remark.
Two extreme cases may be easily envisaged: (i) very large dP , with the flowing mass attaining a stationary state before reaching
the obstacle; (ii) very small dP , with the flowing mass over-topping the obstacle during the free fall following the dam-breaking.
In the intermediate settings considered in this study, the fluid mass first undergoes free falling right after dam breaking, then
flows along the floor of the container up to hitting the obstacle: after the impact the liquefied sand bounces back and finds a final
equilibrium through free oscillations damped out by its viscosity. In the simulations presented in the paper, the dynamics of the
flowing mass is always of the latter type. Accordingly, for the range of viscosity, yield stress and density typical for fluidised
geomaterials, over-topping will very hardly happen for dP∕L0 values larger than 0.5. From a practical standpoint, it is thus
recommended to design dam breaking experiments via preliminary CFD, so that the test can be made occur in conditions that
will enable unambiguous interpretation (and identification of material parameters).

6 CONCLUDING REMARKS

The interpretation of dam breaking tests on liquefied sands was reconsidered based on extensive CFD-PFEM parametric studies,
in order to make the rheological characterisation of such water-soil mixtures more accurate and reliable. Along with model
validation against literature data, it was first noted that, under the assumption of non-Newtonian Bingham behaviour, it would
not be possible to unambiguously identify two material parameters (viscosity and yield stress) only based on the measurement
of a single variable – usually, the evolving position of the tip of the liquefied mass.
PFEM simulations enabled to show that unambiguous parameter identification can be achieved by also monitoring the evolv-

ing aspect ratio (height over length) of the flowing mass or, even better, the fluid pressure on a rigid obstacle hit in the early
stage of gravity-driven flow. Both recommendations can be very inexpensively implemented into current testing/interpretation
procedures, with significant gain in terms of rheological characterisation. After verifying the suitability of the whole testing/-
monitoring set-up, the proposed identification procedures imply themselves a very low number of experimental tests, as long
as an appropriate CFD simulator is available for parallel back-analysis. The PFEM results presented in this work unveiled the
simplicity (linearity) of certain relationships between relevant dimensionless groups, which fosters robust calibration of both
rheological parameters: best case scenario is one dam breaking test and three CFD simulations to derive a unambiguous � − �y
pair.
Future extensions of the proposed interpretation framework may include additional rheological factors, such as the pressure-

dependence of the yield stress (frictional Bingham mixtures) and transient re-consolidation effects. The latter, in particular,
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seems to be a topic for future fundamental research, regarding the large deformation simulation of two-phase porous media in
the low-confinement regime.
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