

Towards a sustainable exploitation of the geosynchronous orbital region

Ioannis Gkolias¹, Camilla Colombo¹, Martin Lara² ¹*Politecnico di Milano, ² University of La Rioja* RCAAM, Academy of Athens, July 2018

Geostationary belt

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Geosynchronous ground tracks

24/07/2018

Current ESA guidelines

Conformance with the GEO disposal requirement can be ensured by using a disposal orbit with the following characteristics:

- Eccentricity ≤ 0.005 ,
- Min perigee altitude above the GEO altitude ∆h_p ≥ 235+1000 c_R
 A/m

GEO protected region (GEO region): segment of spherical shell

- Iower altitude boundary = geostationary altitude minus 200 km,
- upper altitude boundary = geostationary altitude plus 200 km,
- latitude sector: 15 degrees South ≤ latitude ≤ 15 degrees North

a-e distribution of all objects in GEO

GEO population

900 70 [0.8 400 800 60 0.7 350 700 50 0.6 300 600 0.5 250 i (deg) 30 500 Θ 0.4 200 400 0.3 150 300 20 0.2 200 100 10 0.1 100 50 0 0 0 0 4.2 4.3 4.15 4.25 4.35 4.1 4.1 4.15 4.2 4.25 4.3 4.35 $a\,(\mathrm{km})$ $a\,(\mathrm{km})$ $\times 10^4$ $\times 10^4$

a-i distribution of all objects in GEO

Why revisit GEO disposal?

- Many people believe that the debris situation in GEO is shorted out, but is it really and in which timescale?
- Population models predict on average 1 GEO collision in the next 100 years.
- Satellites in graveyard orbits act as debris sources, even without collisions (e.g. HARM GEO population).
- From planetary defence point of view, if we keep the same rate of populating GEO, we will detectable by an equivalently advanced civilization by the year 2200.

Questions:

- Are current guidelines enough to ensure long-term GEO sustainability?
- Are there alternative ways to exploit the geosynchronous orbital region?

GEO DYNAMICAL MAPPING

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Semi-analytical modelling

PlanODyn (semi-analytical orbit propagation)

Force model: 4x4 geopotential, 3rd body perturbations (up to 5th order in the parallax factor), solar-radiation pressure, Earth's precession

Grid definitions

Orbit propagation for 120 years

Tesseral Maps

Main grid: $a - \lambda$ (201x201) Parameters: *e*, *i*, *A*/m (5x11x2)

Disposal Maps

Main grid: ω - Ω (201x201) Parameters: e , i, A/m (5x91x2)

Action Maps

Main grid: *e* - *i* (201x201) > 12 Million Parameters : a, (Ω, ω) , A/m (3x50x2)

Orbits propagated > 50 Million

Dynamical indicators:

$$Diam(e) = |e_{max} - e_{min}|$$

, $|e_{max} - e_0|$ $\Delta e \to 0$ Bounded

> 4 Million

> 36 Million

$$\Delta e = \frac{1}{|e_{re-entry} - e_0|} \qquad \Delta e \to 1 \qquad \text{Re-entry}$$

Tesseral maps

Standard s/c, initial circular orbit

 $A/m = 0.012 \text{ m}^2/\text{kg}$ $e_0 = 0.01$

Tesseral maps

Enhanced-SRP s/c, initial circular orbit $A/m = 1 \text{ m}^2/\text{kg}$

 $e_0 = 0.01$

24/07/2018

Disposal maps

Standard s/c

 $e_0 = 0.2$

$A/m = 0.012 \text{ m}^2/\text{kg}$

 $e_0 = 0.001$

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Disposal maps

Enhanced-SRP

 $A/m = 1 \text{ m}^2/\text{kg}$

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Eccentricity-inclination space

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Re

SHIF

**** ****

Re SHIFT

Angle-averaged maps

24/07/2018

DISPOSAL MANOEUVRES

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Disposal design

Process followed for each initial orbit

Graveyard design

Requirement for graveyard disposal

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Re

Re-entry design

Requirements for re-entry disposal

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Re

Best case scenario maps

Maximum available $\Delta v = 50$ m/s

Re

 $\Omega_0 = 0, \, \omega_0 = 0$

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

 \bigcirc

DISPOSAL ISSUES

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Population and dynamics

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

22 POLITECNICO MILANO 1863

Re

Fast re-entering orbits

Ω

 $a{=}R_{GEO}$, $e{=}0.200$, $i{=}$ 0 deg , A/m =0.012 m^2/kg

Re

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

POLITECNICO MILANO 1863 24

 $\langle \rangle$

Re

HI

Re

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

***** ****

Re

The Sirius constellation

"Missed" opportunity?

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Does enhancing SRP always help?

Re

Suppressing the Lidov-Kozai effect

ANALYTICAL MODELING

24/07/2018

RCAAM Academy of Athens– GEO Disposal – I. Gkolias

Motivation

Hamiltonian reduction on the ecliptic

- Artificial satellite theories are developed in a coordinate frame that has the equator as the main plane.
- Geopotential is more conveniently expressed in this frame.
- Third body perturbations more conveniently expressed in the ecliptic.

Question

Could an analytical theory developed on the ecliptic provide us with more insight for distant Earth satellite orbits?

Equatorial and Ecliptic frames

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R_1(-\epsilon) \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix}$$

Nonlinear relationship between ecliptic and equatorial inclinations

 $\cos I_Q = \cos \varepsilon \cos I - \sin \varepsilon \sin I \cos \Omega$

 $\cos I = \cos \varepsilon \cos I_Q + \sin \varepsilon \sin I_Q \cos \Omega_Q$

Body positions

equatorial frameecliptic frame• Satellite's position: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R_3(-\Omega)R_1(-i)R_3(-\theta) \begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix}$ • Satellite's position:• Moon's position: $\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = R_3(-\Omega)R_1(-i)R_3(-\theta) \begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix}$ • Moon's position:• $\begin{pmatrix} x_{\alpha} \\ y_{\alpha} \\ z_{\alpha} \end{pmatrix} = R_1(-\epsilon)R_3(-\Omega_{\alpha})R_1(-i_{\alpha})R_3(-\theta_{\alpha}) \begin{pmatrix} r_{\alpha} \\ 0 \\ 0 \end{pmatrix}$ • Moon's position:• Sun's position: $\begin{pmatrix} \xi_{\alpha} \\ \eta_{\alpha} \\ \zeta_{\alpha} \end{pmatrix} = R_3(-\Omega_{\alpha})R_1(-i_{\alpha})R_3(-\theta_{\alpha}) \begin{pmatrix} r_{\alpha} \\ 0 \\ 0 \end{pmatrix}$ • Sun's position: $\begin{pmatrix} \xi_{\alpha} \\ \eta_{\alpha} \\ \zeta_{\alpha} \end{pmatrix} = R_3(-\Omega_{\alpha})R_1(-i_{\alpha})R_3(-\theta_{\alpha}) \begin{pmatrix} r_{\alpha} \\ 0 \\ 0 \end{pmatrix}$ • Sun's position: $\begin{pmatrix} \xi_{\alpha} \\ \eta_{\alpha} \\ \zeta_{\alpha} \end{pmatrix} = R_3(-\Omega_{\alpha})R_1(-i_{\alpha})R_3(-\theta_{\alpha}) \begin{pmatrix} r_{\alpha} \\ 0 \\ 0 \end{pmatrix}$

Model formulation

The orbit of a massless Earth's satellite in high orbit (no drag) can be modelled as a perturbed Keplerian motion

$$\mathcal{H} = \mathcal{H}_{\text{kep}} + \mathcal{H}_{\text{zonal}} + \mathcal{H}_{\text{third-body}}$$

Keplerian part:

$$H_{
m kep} = -rac{\mu}{2a}$$

Zonal Harmonics:

$$H_{\text{zonal}} = -\frac{\mu}{r} \sum_{j \ge 2} \left(\frac{R_{\oplus}}{r}\right)^j C_{j,0} P_{j,0}(\sin \phi)$$

Third-body attraction (Sun and Moon):

$$H_{\text{third-body}} = -\frac{\mu'}{r'} \left(\frac{r'}{||\mathbf{r} - \mathbf{r}'||} - \frac{\mathbf{r} \cdot \mathbf{r}'}{r'^2} \right)$$

Zonal part

Reduction of the J_2 part of the Hamiltonian:

$$H_{J_2} = \frac{\mu}{r} \left(\frac{R_{\oplus}}{r}\right)^2 J_2 P_2(\sin\phi)$$

$$\sin\phi = \frac{z}{r}$$

$\sin \phi - Z$	$\zeta \cos(\epsilon) + \eta \sin(\epsilon)$
$\sin \varphi = \frac{1}{r}$	r

We average in closed form over the satellite's mean anomaly

$$\begin{split} \bar{H}_{J_2} &= \bar{H}_{J_2}(a, e, i, -, -, -; \mu, J_2, R_{\oplus}) \\ &= \frac{J_2 R_{\oplus} \mu (3 \sin^2 i - 2)}{4 a^3 \eta^3} \\ \eta &= \sqrt{1 - e^2} \end{split}$$

$$\bar{H}_{J_2} = \bar{H}_{J_2}(a, e, i, \Omega, -, -; \mu, J_2, R_{\oplus}, \epsilon)$$

Sun's perturbing effect

Reduction of the Sun's perturbing effect

$$H_{\odot} = -\frac{n_{\odot}a_{\odot}^{3}}{r_{\odot}}\left(\frac{r}{r_{\odot}}\right)^{2}P_{2}(\cos\psi_{\odot})$$

$$\cos(\psi_{\odot}) = \frac{xx_{\odot} + yy_{\odot} + zz_{\odot}}{rr_{\odot}} \qquad \qquad \cos(\psi_{\odot}) = \frac{\xi\xi_{\odot} + \eta\eta_{\odot} + \zeta\zeta_{\odot}}{rr_{\odot}}$$

We average in closed form over the satellite's mean anomaly

$$ar{H}_{\odot}=ar{H}_{\odot}(a,e,i,\Omega,\omega,-, heta_{\odot};n_{\odot},a_{\odot})$$

Moon's perturbing effect

Reduction of the Moon's perturbing effect

$$H_{\mathbb{Q}} = -\beta \frac{n_{\mathbb{Q}} a_{\mathbb{Q}}^{3}}{r_{\mathbb{Q}}} \left(\frac{r}{r_{\mathbb{Q}}}\right)^{2} P_{2}(\cos\psi_{\mathbb{Q}})$$
$$\cos(\psi_{\mathbb{Q}}) = \frac{xx_{\mathbb{Q}} + yy_{\mathbb{Q}} + zz_{\mathbb{Q}}}{rr_{\mathbb{Q}}} \qquad \cos(\psi_{\mathbb{Q}}) = \frac{\xi\xi_{\mathbb{Q}} + \eta\eta_{\mathbb{Q}} + \zeta\zeta_{\mathbb{Q}}}{rr_{\mathbb{Q}}}$$

We average in closed form over the satellite's mean anomaly

$$\bar{H}_{\mathbb{Q}} = \bar{H}_{\mathbb{Q}} (a, e, i, \Omega, \omega, -, \Omega_{\mathbb{Q}}, \theta_{\mathbb{Q}}; \beta, n_{\mathbb{Q}}, a_{\mathbb{Q}}, i_{\mathbb{Q}}, \epsilon)$$

We average one more time again in closed form, over the Moon's mean anomaly

$$\bar{\bar{H}}_{\mathbb{Q}} = \bar{\bar{H}}_{\mathbb{Q}} (a, e, i, \Omega, \omega, -, \Omega_{\mathbb{Q}}, -; \beta, n_{\mathbb{Q}}, a_{\mathbb{Q}}, i_{\mathbb{Q}}, \epsilon, \eta_{\mathbb{Q}})$$

Advantage of the ecliptic frame

The full system is

$$ar{ar{H}} = ar{H} + ar{H}_{\odot} + ar{ar{H}}_{\Bbb C}$$

and is still of 2.5 degrees of freedom

 $\bar{\bar{H}} = \bar{\bar{H}}(a, e, i, \Omega, \omega, -, \Omega_{\mathbb{C}}, \theta_{\odot}; \mu, J_2, R_{\oplus}, \epsilon, n_{\odot}, a_{\odot}, n_{\mathbb{C}}, a_{\mathbb{C}}, \eta_{\mathbb{C}})$

HOWEVER

In the ecliptic representation time dependencies are always coupled with the ecliptic node of the satellite.

Further ecliptic reduction

Therefore, we can proceed with a further **elimination of the ecliptic node**. This is accomplished by working in a suitable **rotating frame** and is a valid operation when the perturbations are **of the same order**, i.e. for **distant** Earth's satellites.

$$\bar{\bar{H}}_{J_2} = \frac{J_2 R_{\oplus}^2 \mu (3\cos^2 i - 1)(3\sin^2 \epsilon - 2)}{8a^3 \eta^3}$$

$$\bar{H}_{\odot} = a^2 n_{\odot}^2 \left(-\frac{15}{16} e^2 \cos 2\omega \sin^2 i + \frac{1}{16} (2 + 3e^2) (3\sin^2 i - 2) \right)$$

$$\bar{\bar{H}}_{\mathbb{Q}} = -\frac{a^2 n_{\mathbb{Q}}^2 \,\beta (3\cos^2 i_{\mathbb{Q}} - 1)((2 + 3e^2)(3\cos^2 i - 1) + 15e^2 \sin^2 i \cos 2\omega)}{32\eta_{\mathbb{Q}}^2}$$

Lidov-Kozai type Hamiltonian

The reduction on the ecliptic results in a 1 D.O.F Lidov-Kozai type Hamiltonian

$$\bar{\bar{H}} = \frac{A}{\eta^3}(2 - 3\sin^2 i) + B((2 + 3e^2)(2 - 3\sin^2 i) + 15e^2\sin^2 i\cos 2\omega)$$

where

$$A = -\frac{J_2 R_{\oplus} \mu}{8a^3} (2 - 3\sin^2 \epsilon)$$

and

$$B = -\frac{1}{16} \left(n_{\odot}^2 + \frac{n_{\widetilde{\mathbb{Q}}}^2}{\eta_{\widetilde{\mathbb{Q}}}} \beta \frac{3\cos^2 i_{\widetilde{\mathbb{Q}}} - 1}{2} \right) a^2$$

The system no longer depends on M and Ω , therefore the semi-major axis a is constant and

$$\sqrt{1-e^2}\cos i = \text{constant}$$

Study of the reduced model

We introduce the non-singular elements

 $k = e \cos \omega, \ h = e \sin \omega$

and the equations of motion are

$$\frac{dk}{dt} = -\frac{\sqrt{1-h^2-k^2}}{na^2} \frac{dV(k,h)}{dh}$$
$$\frac{dh}{dt} = \frac{\sqrt{1-h^2-k^2}}{na^2} \frac{dV(k,h)}{dk}$$

• Equilibrium points: dk/dt = dh/dt = 0

Stability determined from the eigenvalues of the linearised system

Parameter space of (a, i_{circ})

Study of the reduced model

Low inclinations at all altitudes

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Study of the reduced model

Moderate inclinations at high altitudes

Study of the reduced model

Polar inclinations at medium altitudes

24/07/2018

Study of the reduced model

Polar inclinations at high altitudes

Bifurcation diagram

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Comparison with numerical simulations

24/07/2018

RCAAM Academy of Athens- GEO Disposal - I. Gkolias

Disposal design

24/07/2018

Conclusions

Numerical investigation

- For low initial inclinations: graveyard orbits with low variation of eccentricity.
- For inclined geosynchronous natural re-entry is possible.
- Optimise disposal manoeuvre for each particular end-of-life scenario.
- Is a single equation guideline for GEO enough?
- Could eccentric and inclined, small size constellations lead us to a sustainable exploitation of GEO?
- All maps and manoeuvres calculated will be made public on the ReDSHIFT web site (<u>http://redshift-h2020.eu</u>).
- ReDSHIFT software tool for EOL disposal calculation will be available online

Conclusions

Analytical modelling

- We have reduced the problem of high Earth satellites using an analytical representation.
- The resulting 1 D.O.F. system describes the in plane stability.
- We studied the reduced phase-space by computing the equilibrium points and their stability.
- We have calculated the bifurcation diagram.

Further work:

- Recover the short-periodic terms.
- Add more perturbations, second order J2 and up to P4 for the Moon.
- Study the equilibria and their bifurcation on a sphere.
- Exploit the reduced dynamics for preliminary mission design.

(2) 10

The analytical study of this presentation has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 COMPASS)

Towards a sustainable exploitation of the geosynchronous orbital region

Ioannis Gkolias, Camilla Colombo, Martin Lara ioannis.gkolias@polimi.it, camilla.colombo@polimi.it http://redshift-h2020.eu/, www.compass.polimi.it