

High Earth orbits' characterisation by Hamiltonian reduction on the ecliptic Ioannis Gkolias, Martin Lara & Camilla Colombo

- Motivation
- Equatorial reduction
- Ecliptic reduction
- Phase-space study
- Disposal design

Motivation

June 19, 2018 — I. Gkolias — High Earth orbits — Page 3 of 27

Motivation

Model formulation

The orbit of a massless Earth's satellite in high orbit (no drag) can be modelled as a perturbed Keplerian motion

$$\mathcal{H} = \mathcal{H}_{ ext{kep}} + \mathcal{H}_{ ext{zonal}} + \mathcal{H}_{ ext{third-body}}$$

Keplerian part:

$$H_{
m kep} = -rac{\mu}{2a}$$

Zonal Harmonics:

$$H_{\text{zonal}} = -\frac{\mu}{r} \sum_{j \ge 2} \left(\frac{R_{\oplus}}{r}\right)^j C_{j,0} P_{j,0}(\sin \phi)$$

• Third-body attraction (Sun and Moon):

$$H_{ ext{third-body}} = -rac{\mu'}{r'} \left(rac{r'}{||\mathbf{r} - \mathbf{r}'||} - rac{\mathbf{r} \cdot \mathbf{r}'}{r'^2}
ight)$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 5 of 27

Express all positions in the **equatorial frame** Satellite's position:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R_3(-\Omega)R_1(-i)R_3(-\theta) \begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix}$$

Moon's position:

$$\begin{pmatrix} x_{\mathbb{C}} \\ y_{\mathbb{C}} \\ z_{\mathbb{C}} \end{pmatrix} = R_1(-\epsilon)R_3(-\Omega_{\mathbb{C}})R_1(-i_{\mathbb{C}})R_3(-\theta_{\mathbb{C}})\begin{pmatrix} r_{\mathbb{C}} \\ 0 \\ 0 \end{pmatrix}$$

Sun's position:

$$\begin{pmatrix} x_{\odot} \\ y_{\odot} \\ z_{\odot} \end{pmatrix} = R_{1}(-\epsilon)R_{3}(-\theta_{\odot}) \begin{pmatrix} r_{\odot} \\ 0 \\ 0 \end{pmatrix}$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 6 of 27

Reduction of the J_2 part of the Hamiltonian:

$$H_{J_2} = \frac{\mu}{r} \left(\frac{R_{\oplus}}{r}\right)^2 J_2 P_2(\sin\phi)$$

where

$$\sin \phi = \frac{z}{r}$$

We average over the satellite's mean anomaly to get:

$$ar{H}_{J_2} = ar{H}_{J_2}(a, e, i, -, -, -; \mu, J_2, R_\oplus) = rac{J_2 R_\oplus \mu(3 \sin^2 i - 2)}{4 a^3 \eta^3}$$

with $\eta = \sqrt{1 - e^2}$.

Reduction of the Sun's perturbing effect

$$H_{\odot} = -rac{n_{\odot}a_{\odot}^{3}}{r_{\odot}}\left(rac{r}{r_{\odot}}
ight)^{2}P_{2}(cos\psi_{\odot})$$

where

$$\cos(\psi_{\odot}) = \frac{xx_{\odot} + yy_{\odot} + zz_{\odot}}{rr_{\odot}}$$
$$H_{\odot} = H_{\odot}(a, e, i, \Omega, \omega, M, \theta_{\odot}; n_{\odot}, a_{\odot}, \epsilon)$$

We average in closed form over the satellite's mean anomaly

$$ar{H}_{\odot}=ar{H}_{\odot}({\sf a},{\sf e},i,\Omega,\omega,-, heta_{\odot};{\sf n}_{\odot},{\sf a}_{\odot},\epsilon)$$

Reduction of the Moon's perturbing effect

$$H_{\mathbb{Q}} = -\beta \frac{n_{\mathbb{Q}} a_{\mathbb{Q}}^{3}}{r_{\mathbb{Q}}} \left(\frac{r}{r_{\mathbb{Q}}}\right)^{2} P_{2}(\cos\psi_{\mathbb{Q}})$$

where

$$\cos(\psi_{\mathbb{Q}}) = \frac{xx_{\mathbb{Q}} + yy_{\mathbb{Q}} + zz_{\mathbb{Q}}}{rr_{\mathbb{Q}}}$$

$$H_{\mathbb{C}} = H_{\mathbb{C}} (a, e, i, \Omega, \omega, M, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}}; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon)$$

We average in closed form over the satellite's mean anomaly

$$\bar{H}_{\mathbb{C}} = \bar{H}_{\mathbb{C}} (a, e, i, \Omega, \omega, -, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}}; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon)$$

We average one more time again in closed form, over the Moon's mean anomaly

$$\bar{\bar{H}}_{\mathbb{C}} = \bar{\bar{H}}_{\mathbb{C}} (\mathbf{a}, \mathbf{e}, i, \Omega, \omega, -, \Omega_{\mathbb{C}}, -; \beta, \mathbf{n}_{\mathbb{C}}, \mathbf{a}_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon, \eta_{\mathbb{C}})$$

The full system is

$$ar{ar{H}}=ar{H}+ar{H}_{\odot}+ar{ar{H}}_{\Bbb C}$$

and has 2.5 degrees of freedom

$$ar{ar{H}}=ar{ar{H}}(\mathsf{a},\mathsf{e},i,\Omega,\omega,-,\Omega_{(\!()\!)}, heta_\odot;\mu,J_2,R_\oplus,\epsilon,n_\odot,\mathsf{a}_\odot,\mathsf{n}_{(\!()\!)},\mathsf{a}_{(\!()\!)},\mathsf{n}_{(\!()\!)},\mathsf{a}_{(\!()\!)},\eta_{(\!()\!)})$$

If we try to further reduce the system by an elimination of the satellite's node, time-dependent terms associated with $\Omega_{\mathbb{C}}$ and θ_{\odot} still remain.

Express all positions in the **ecliptic frame** Satellite's position:

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = R_3(-\Omega)R_1(-i)R_3(-\theta) \begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix}$$

Moon's position:

$$\begin{pmatrix} \xi_{\mathbb{C}} \\ \eta_{\mathbb{C}} \\ \zeta_{\mathbb{C}} \end{pmatrix} = R_3(-\Omega_{\mathbb{C}})R_1(-i_{\mathbb{C}})R_3(-\theta_{\mathbb{C}})\begin{pmatrix} r_{\mathbb{C}} \\ 0 \\ 0 \end{pmatrix}$$

Sun's position:

$$\left(\begin{array}{c} \xi_{\odot} \\ \eta_{\odot} \\ \zeta_{\odot} \end{array}\right) = R_{3}(-\theta_{\odot}) \left(\begin{array}{c} r_{\odot} \\ 0 \\ 0 \end{array}\right)$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 11 of 27

Reduction of the J_2 part of the Hamiltonian:

$$H_{J_2} = \frac{\mu}{r} \left(\frac{R_{\oplus}}{r}\right)^2 J_2 P_2(\sin\phi)$$

The relation between equatorial and ecliptic coordinates is simply

$$\left(\begin{array}{c} x\\ y\\ z \end{array}\right) = R_1(-\epsilon) \left(\begin{array}{c} \xi\\ \eta\\ \zeta \end{array}\right)$$

and

$$\sin \phi = \frac{z}{r} = \frac{\zeta \cos(\epsilon) + \eta \sin(\epsilon)}{r}$$

We average in closed form over the satellite's mean anomaly

$$ar{H}_{J_2} = ar{H}_{J_2}(a,e,i,\Omega,-,-;\mu,J_2,R_\oplus,\epsilon)$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 12 of 27

Reduction of the Sun's perturbing effect

$$H_{\odot} = -rac{n_{\odot}a_{\odot}^{3}}{r_{\odot}}\left(rac{r}{r_{\odot}}
ight)^{2}P_{2}(cos\psi_{\odot})$$

where

$$\cos(\psi_{\odot}) = \frac{\xi\xi_{\odot} + \eta\eta_{\odot} + \zeta\zeta_{\odot}}{rr_{\odot}}$$
$$H_{\odot} = H_{\odot}(a, e, i, \Omega, \omega, M, \theta_{\odot}; n_{\odot}, a_{\odot})$$

We average in closed form over the satellite's mean anomaly

$$ar{H}_{\odot}=ar{H}_{\odot}({\sf a},{\sf e},i,\Omega,\omega,-, heta_{\odot};{\sf n}_{\odot},{\sf a}_{\odot})$$

Reduction of the Moon's perturbing effect

$$H_{\mathbb{Q}} = -\beta \frac{n_{\mathbb{Q}} a_{\mathbb{Q}}^{3}}{r_{\mathbb{Q}}} \left(\frac{r}{r_{\mathbb{Q}}}\right)^{2} P_{2}(\cos\psi_{\mathbb{Q}})$$

where

$$\cos(\psi_{\mathbb{C}}) = \frac{\xi\xi_{\mathbb{C}} + \eta\eta_{\mathbb{C}} + \zeta\zeta_{\mathbb{C}}}{rr_{\mathbb{C}}}$$

$$H_{\mathbb{C}} = H_{\mathbb{C}} (a, e, i, \Omega, \omega, M, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}}; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon)$$

We average in closed form over the satellite's mean anomaly

$$\bar{H}_{\mathbb{C}} = \bar{H}_{\mathbb{C}} (a, e, i, \Omega, \omega, -, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}}; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon)$$

We average one more time again in closed form, over the Moon's mean anomaly

$$\begin{split} \bar{\bar{H}}_{\mathbb{C}} &= \bar{\bar{H}}_{\mathbb{C}} \; (\textit{a},\textit{e},\textit{i},\Omega,\omega,-,\Omega_{\mathbb{C}}\;,-;\beta,\textit{n}_{\mathbb{C}}\;,\textit{a}_{\mathbb{C}}\;,\textit{i}_{\mathbb{C}}\;,\epsilon,\eta_{\mathbb{C}}\;) \end{split}$$
The full system is
$$\bar{\bar{H}} = \bar{H} + \bar{H}_{\odot} + \bar{\bar{H}}_{\mathbb{C}}$$

and is still of 2.5 degrees of freedom

However, in this representation, the time-dependencies appear coupled with the satellite's **ecliptic node**.

Therefore, we can proceed with a further **elimination of the ecliptic node**. This is accomplished by working in a suitable **rotating frame** and is a valid operation when the perturbations are **of the same order**, i.e. for **distant** Earth's satellites.

$$\bar{\bar{H}}_{J_2} = \frac{J_2 R_{\oplus}^2 \mu (3\cos^2 i - 1)(3\sin^2 \epsilon - 2)}{8a^3 \eta^3}$$

$$\bar{\bar{H}}_{\odot} = a^2 n_{\odot}^2 \left(-\frac{15}{16} e^2 \cos 2\omega \sin^2 i + \frac{1}{16} (2 + 3e^2) (3 \sin^2 i - 2) \right)$$

$$\bar{\bar{H}}_{\mathbb{Q}} = -\frac{a^2 n_{\mathbb{Q}}^2 \beta (3\cos^2 i_{\mathbb{Q}} - 1)((2 + 3e^2)(3\cos^2 i - 1) + 15e^2 \sin^2 i \cos 2\omega)}{32\eta_{\mathbb{Q}}^2}$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 16 of 27

The reduction on the ecliptic results in a $1\ \text{D.O.F}$ Lidov-Kozai type Hamiltonian

$$\bar{\bar{H}} = \frac{A}{\eta^3} (2 - 3\sin^2 i) + B((2 + 3e^2)(2 - 3\sin^2 i) + 15e^2\sin^2 i\cos 2\omega)$$

where

$$A = -\frac{J_2 R_{\oplus} \mu}{8a^3} (2 - 3\sin^2 \epsilon)$$

and

$$B = -\frac{1}{16} \left(n_{\odot}^2 + \frac{n_{\widetilde{\mathbb{Q}}}^2}{\eta_{\widetilde{\mathbb{Q}}}} \beta \frac{3\cos^2 i_{\widetilde{\mathbb{Q}}} - 1}{2} \right) a^2$$

June 19, 2018 — I. Gkolias — High Earth orbits — Page 17 of 27

Study of the reduced model

We introduce the non-singular elements

$$k = e \cos \omega, \ h = e \sin \omega$$

and the equations of motion are

$$\frac{dk}{dt} = -\frac{\sqrt{1-h^2-k^2}}{na^2} \frac{dV(k,h)}{dh}$$
$$\frac{dh}{dt} = \frac{\sqrt{1-h^2-k^2}}{na^2} \frac{dV(k,h)}{dk}$$

• Equilibrium points: dk/dt = dh/dt = 0

- Stability determined from the eigenvalues of the linearised system
- Parameter space of (a, i_{circ})

POLITECNICO

ILANO 186

Bifurcation diagram

June 19, 2018 — I. Gkolias — High Earth orbits — Page 19 of 27

June 19, 2018 — I. Gkolias — High Earth orbits — Page 20 of 27

June 19, 2018 — I. Gkolias — High Earth orbits — Page 21 of 27

June 19, 2018 — I. Gkolias — High Earth orbits — Page 22 of 27

June 19, 2018 — I. Gkolias — High Earth orbits — Page 23 of 27

Bifurcation diagram vs numerical simulations

June 19, 2018 — I. Gkolias — High Earth orbits — Page 24 of 27

Disposal design

June 19, 2018 — I. Gkolias — High Earth orbits — Page 25 of 27

Conclusion

- We have reduced the problem of high Earth satellites using an ecliptic representation
- The resulting 1 D.O.F system describes the in-plane stability
- We studied the reduced phase-space by computing the equilibrium points and their stability
- We have calculated the bifurcation diagram

Further work:

- Recover the short-periodic terms
- Add more perturbations, J_2^2 and up to P_4 for the Moon
- Study the equilibria and their bifurcation on a sphere
- Exploit the reduced dynamics for preliminary mission design

Thank you for your attention!

Ackowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COM-PASS)

June 19, 2018 — I. Gkolias — High Earth orbits — Page 27 of 27

Fast re-entering orbits

June 19, 2018 — I. Gkolias — High Earth orbits — Page 28 of 27

High Earth Orbits lifetimes

June 19, 2018 — I. Gkolias — High Earth orbits — Page 29 of 27

Effective cleansing mechanism

June 19, 2018 — I. Gkolias — High Earth orbits — Page 30 of 27

