

High Earth orbits' characterisation by Hamiltonian reduction on the ecliptic

Ioannis Gkolias, Martin Lara \& Camilla Colombo

## Outline

- Motivation
- Equatorial reduction
- Ecliptic reduction
- Phase-space study

■ Disposal design

## Motivation



## ORBIT PERTURBATIONS

Traditional approach: counteract perturbations

- Complex orbital dynamics
- Increase fuel requirements for orbit control



## C MPASS

Novel approach: leverage perturbations

Reduce extremely high
space mission costs

Create new opportunities for exploration and exploitation

Mitigate space debris

Develop novel techniques for orbit manoeuvring by surfing through orbit perturbations

## Motivation



## Model formulation

The orbit of a massless Earth's satellite in high orbit (no drag) can be modelled as a perturbed Keplerian motion

$$
\mathcal{H}=H_{\text {kep }}+H_{\text {zonal }}+H_{\text {third-body }}
$$

■ Keplerian part:

$$
H_{\mathrm{kep}}=-\frac{\mu}{2 a}
$$

- Zonal Harmonics:

$$
H_{\text {zonal }}=-\frac{\mu}{r} \sum_{j \geq 2}\left(\frac{R_{\oplus}}{r}\right)^{j} C_{j, 0} P_{j, 0}(\sin \phi)
$$

- Third-body attraction (Sun and Moon):

$$
H_{\text {third-body }}=-\frac{\mu^{\prime}}{r^{\prime}}\left(\frac{r^{\prime}}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|}-\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r^{\prime 2}}\right)
$$

## Equatorial reduction

Express all positions in the equatorial frame

- Satellite's position:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R_{3}(-\Omega) R_{1}(-i) R_{3}(-\theta)\left(\begin{array}{l}
r \\
0 \\
0
\end{array}\right)
$$

- Moon's position:

$$
\left(\begin{array}{l}
x_{\mathbb{G}} \\
y_{\mathbb{G}} \\
z_{\mathbb{G}}
\end{array}\right)=R_{1}(-\epsilon) R_{3}\left(-\Omega_{\mathbb{G}}\right) R_{1}\left(-i_{\mathbb{G}}\right) R_{3}\left(-\theta_{\mathbb{G}}\right)\left(\begin{array}{c}
r_{\mathbb{G}} \\
0 \\
0
\end{array}\right)
$$

- Sun's position:

$$
\left(\begin{array}{c}
x_{\odot} \\
y_{\odot} \\
z_{\odot}
\end{array}\right)=R_{1}(-\epsilon) R_{3}\left(-\theta_{\odot}\right)\left(\begin{array}{c}
r_{\odot} \\
0 \\
0
\end{array}\right)
$$

## Equatorial reduction

Reduction of the $J_{2}$ part of the Hamiltonian:

$$
H_{J_{2}}=\frac{\mu}{r}\left(\frac{R_{\oplus}}{r}\right)^{2} J_{2} P_{2}(\sin \phi)
$$

where

$$
\sin \phi=\frac{z}{r}
$$

We average over the satellite's mean anomaly to get:

$$
\bar{H}_{J_{2}}=\bar{H}_{J_{2}}\left(a, e, i,-,-,-; \mu, J_{2}, R_{\oplus}\right)=\frac{J_{2} R_{\oplus} \mu\left(3 \sin ^{2} i-2\right)}{4 a^{3} \eta^{3}}
$$

with $\eta=\sqrt{1-e^{2}}$.

## Equatorial reduction

Reduction of the Sun's perturbing effect

$$
H_{\odot}=-\frac{n_{\odot} a_{\odot}^{3}}{r_{\odot}}\left(\frac{r}{r_{\odot}}\right)^{2} P_{2}\left(\cos \psi_{\odot}\right)
$$

where

$$
\begin{gathered}
\cos \left(\psi_{\odot}\right)=\frac{x x_{\odot}+y y_{\odot}+z z_{\odot}}{r r_{\odot}} \\
H_{\odot}=H_{\odot}\left(a, e, i, \Omega, \omega, M, \theta_{\odot} ; n_{\odot}, a_{\odot}, \epsilon\right)
\end{gathered}
$$

We average in closed form over the satellite's mean anomaly

$$
\bar{H}_{\odot}=\bar{H}_{\odot}\left(a, e, i, \Omega, \omega,-, \theta_{\odot} ; n_{\odot}, a_{\odot}, \epsilon\right)
$$

## Equatorial reduction

Reduction of the Moon's perturbing effect

$$
H_{\mathbb{C}}=-\beta \frac{n_{\mathbb{C}} a_{\mathbb{C}}^{3}}{r_{\mathbb{C}}}\left(\frac{r}{r_{\mathbb{~}}}\right)^{2} P_{2}\left(\cos \psi_{\mathbb{C}}\right)
$$

where

$$
\begin{gathered}
\cos \left(\psi_{\mathbb{C}}\right)=\frac{x x_{\mathbb{C}}+y y_{\mathbb{C}}+z z_{\mathbb{C}}}{r r_{\mathbb{C}}} \\
H_{\mathbb{C}}=H_{\mathbb{C}}\left(a, e, i, \Omega, \omega, M, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}} ; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{Z}}, \epsilon\right)
\end{gathered}
$$

We average in closed form over the satellite's mean anomaly

$$
\bar{H}_{\mathbb{C}}=\bar{H}_{\mathbb{C}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}} ; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon\right)
$$

## Equatorial reduction

We average one more time again in closed form, over the Moon's mean anomaly

$$
\overline{\bar{H}}_{\mathbb{C}}=\overline{\bar{H}}_{\mathbb{C}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{C}},-; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon, \eta_{\mathbb{C}}\right)
$$

The full system is

$$
\overline{\bar{H}}=\bar{H}+\bar{H}_{\odot}+\overline{\bar{H}}_{\mathbb{C}}
$$

and has 2.5 degrees of freedom

$$
\overline{\bar{H}}=\overline{\bar{H}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{C}}, \theta_{\odot} ; \mu, J_{2}, R_{\oplus}, \epsilon, n_{\odot}, a_{\odot}, n_{\mathbb{C}}, a_{\mathbb{C}}, \eta_{\mathbb{C}}\right)
$$

If we try to further reduce the system by an elimination of the satellite's node, time-dependent terms associated with $\Omega_{\mathbb{\Omega}}$ and $\theta_{\odot}$ still remain.

## Ecliptic reduction

Express all positions in the ecliptic frame

- Satellite's position:

$$
\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)=R_{3}(-\Omega) R_{1}(-i) R_{3}(-\theta)\left(\begin{array}{l}
r \\
0 \\
0
\end{array}\right)
$$

- Moon's position:

$$
\left(\begin{array}{l}
\xi_{\mathbb{G}} \\
\eta_{\mathbb{\Omega}} \\
\zeta_{\mathbb{}}
\end{array}\right)=R_{3}\left(-\Omega_{\mathbb{}}\right) R_{1}\left(-i_{\mathbb{}}\right) R_{3}\left(-\theta_{\mathbb{}}\right)\left(\begin{array}{c}
r_{\mathbb{G}} \\
0 \\
0
\end{array}\right)
$$

- Sun's position:

$$
\left(\begin{array}{c}
\xi_{\odot} \\
\eta_{\odot} \\
\zeta_{\odot}
\end{array}\right)=R_{3}\left(-\theta_{\odot}\right)\left(\begin{array}{c}
r_{\odot} \\
0 \\
0
\end{array}\right)
$$

## Ecliptic reduction

Reduction of the $J_{2}$ part of the Hamiltonian:

$$
H_{J_{2}}=\frac{\mu}{r}\left(\frac{R_{\oplus}}{r}\right)^{2} J_{2} P_{2}(\sin \phi)
$$

The relation between equatorial and ecliptic coordinates is simply

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=R_{1}(-\epsilon)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)
$$

and

$$
\sin \phi=\frac{z}{r}=\frac{\zeta \cos (\epsilon)+\eta \sin (\epsilon)}{r}
$$

We average in closed form over the satellite's mean anomaly

$$
\bar{H}_{J_{2}}=\bar{H}_{J_{2}}\left(a, e, i, \Omega,-,-; \mu, J_{2}, R_{\oplus}, \epsilon\right)
$$

## Ecliptic reduction

Reduction of the Sun's perturbing effect

$$
H_{\odot}=-\frac{n_{\odot} a_{\odot}^{3}}{r_{\odot}}\left(\frac{r}{r_{\odot}}\right)^{2} P_{2}\left(\cos \psi_{\odot}\right)
$$

where

$$
\begin{gathered}
\cos \left(\psi_{\odot}\right)=\frac{\xi \xi_{\odot}+\eta \eta_{\odot}+\zeta \zeta_{\odot}}{r r_{\odot}} \\
H_{\odot}=H_{\odot}\left(a, e, i, \Omega, \omega, M, \theta_{\odot} ; n_{\odot}, a_{\odot}\right)
\end{gathered}
$$

We average in closed form over the satellite's mean anomaly

$$
\bar{H}_{\odot}=\bar{H}_{\odot}\left(a, e, i, \Omega, \omega,-, \theta_{\odot} ; n_{\odot}, a_{\odot}\right)
$$

## Ecliptic reduction

Reduction of the Moon's perturbing effect

$$
H_{\mathbb{C}}=-\beta \frac{n_{\mathbb{C}} a_{\mathbb{C}}^{3}}{r_{\mathbb{C}}}\left(\frac{r}{r_{\mathbb{~}}}\right)^{2} P_{2}\left(\cos \psi_{\mathbb{C}}\right)
$$

where

$$
\begin{gathered}
\cos \left(\psi_{\mathbb{C}}\right)=\frac{\xi \xi_{\mathbb{C}}+\eta \eta_{\mathbb{C}}+\zeta \zeta_{\mathbb{C}}}{r r_{\mathbb{C}}} \\
H_{\mathbb{C}}=H_{\mathbb{C}}\left(a, e, i, \Omega, \omega, M, \Omega_{\mathbb{}}, \theta_{\mathbb{C}} ; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{\Omega}}, \epsilon\right)
\end{gathered}
$$

We average in closed form over the satellite's mean anomaly

$$
\bar{H}_{\mathbb{C}}=\bar{H}_{\mathbb{C}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{C}}, \theta_{\mathbb{C}} ; \beta, n_{\mathbb{C}}, a_{\mathbb{Z}}, i_{\mathbb{C}}, \epsilon\right)
$$

## Ecliptic reduction

We average one more time again in closed form, over the Moon's mean anomaly

$$
\overline{\bar{H}}_{\mathbb{C}}=\overline{\bar{H}}_{\mathbb{C}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{}},-; \beta, n_{\mathbb{C}}, a_{\mathbb{C}}, i_{\mathbb{C}}, \epsilon, \eta_{\mathbb{C}}\right)
$$

The full system is

$$
\overline{\bar{H}}=\bar{H}+\bar{H}_{\odot}+\overline{\bar{H}}_{\overparen{C}}
$$

and is still of 2.5 degrees of freedom

$$
\overline{\bar{H}}=\overline{\bar{H}}\left(a, e, i, \Omega, \omega,-, \Omega_{\mathbb{C}}, \theta_{\odot} ; \mu, J_{2}, R_{\oplus}, \epsilon, n_{\odot}, a_{\odot}, n_{\mathbb{}}, a_{\mathbb{C}}, \eta_{\mathbb{C}}\right)
$$

However, in this representation, the time-dependencies appear coupled with the satellite's ecliptic node.

## Ecliptic reduction

Therefore, we can proceed with a further elimination of the ecliptic node. This is accomplished by working in a suitable rotating frame and is a valid operation when the perturbations are of the same order, i.e. for distant Earth's satellites.

$$
\begin{gathered}
\overline{\bar{H}}_{J_{2}}=\frac{J_{2} R_{\oplus}^{2} \mu\left(3 \cos ^{2} i-1\right)\left(3 \sin ^{2} \epsilon-2\right)}{8 a^{3} \eta^{3}} \\
\overline{\bar{H}}_{\odot}=a^{2} n_{\odot}^{2}\left(-\frac{15}{16} e^{2} \cos 2 \omega \sin ^{2} i+\frac{1}{16}\left(2+3 e^{2}\right)\left(3 \sin ^{2} i-2\right)\right) \\
\overline{\bar{H}} \\
\mathbb{C}
\end{gathered}=-\frac{a^{2} n_{\mathbb{~}}^{2} \beta\left(3 \cos ^{2} i_{\mathbb{C}}-1\right)\left(\left(2+3 e^{2}\right)\left(3 \cos ^{2} i-1\right)+15 e^{2} \sin ^{2} i \cos 2 \omega\right)}{32 \eta_{\mathbb{Q}}^{2}} .
$$

## Ecliptic reduction

The reduction on the ecliptic results in a 1 D.O.F Lidov-Kozai type Hamiltonian

$$
\overline{\bar{H}}=\frac{A}{\eta^{3}}\left(2-3 \sin ^{2} i\right)+B\left(\left(2+3 e^{2}\right)\left(2-3 \sin ^{2} i\right)+15 e^{2} \sin ^{2} i \cos 2 \omega\right)
$$

where

$$
A=-\frac{J_{2} R_{\oplus} \mu}{8 a^{3}}\left(2-3 \sin ^{2} \epsilon\right)
$$

and

$$
B=-\frac{1}{16}\left(n_{\odot}^{2}+\frac{n_{\mathbb{G}}^{2}}{\eta_{\mathbb{G}}} \beta \frac{3 \cos ^{2} i_{\mathbb{C}}-1}{2}\right) a^{2}
$$

## Study of the reduced model

We introduce the non-singular elements

$$
k=e \cos \omega, h=e \sin \omega
$$

and the equations of motion are

$$
\begin{aligned}
\frac{d k}{d t} & =-\frac{\sqrt{1-h^{2}-k^{2}}}{n a^{2}} \frac{d V(k, h)}{d h} \\
\frac{d h}{d t} & =\frac{\sqrt{1-h^{2}-k^{2}}}{n a^{2}} \frac{d V(k, h)}{d k}
\end{aligned}
$$

■ Equilibrium points: $d k / d t=d h / d t=0$
■ Stability determined from the eigenvalues of the linearised system

- Parameter space of ( $a, i_{\text {circ }}$ )


## Bifurcation diagram



Phase-space study


Phase-space study


Phase-space study


## Phase-space study



## Bifurcation diagram vs numerical simulations



## Disposal design



## Conclusion

■ We have reduced the problem of high Earth satellites using an ecliptic representation

- The resulting 1 D.O.F system describes the in-plane stability

■ We studied the reduced phase-space by computing the equilibrium points and their stability
■ We have calculated the bifurcation diagram
Further work:

- Recover the short-periodic terms

■ Add more perturbations, $J_{2}^{2}$ and up to $P_{4}$ for the Moon
■ Study the equilibria and their bifurcation on a sphere

- Exploit the reduced dynamics for preliminary mission design


## Thank you for your attention!

## Ackowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 - COMPASS)


MILANO 1863

## Fast re-entering orbits








Lifetime: 17.7 years!!! LEO dwell time: 5 days GEO dwell time: 2 days


## High Earth Orbits lifetimes



## Effective cleansing mechanism



