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Abstract— In this paper, we address power control in a wire-
less cellular network where multiple mobile users are served by
a set of base stations, one per cell. Their reference base station
has then to set their transmission power so as to maximize the
level of service measured in terms of transmission throughput.
Interference due to communication of devices on the same
wireless channel is coupling the decisions of all base stations
in the cellular network. We propose a distributed algorithm
based on proximal minimization that makes the base stations
reach consensus to a solution that guarantees an optimal
throughput for all mobile devices, by appropriately setting the
signal to interference plus noise ratio. The introduced algorithm
is compared with a gradient-based distributed algorithm via
an extensive simulation study, which reveals the advantage of
proximal minimization in the case when the cost function is
non-differentiable and the sub-gradient has to be computed.

I. INTRODUCTION

Power control in wireless cellular networks has been a
topic of growing interest in the latest decades, possibly due
to the pervasive use of wireless communications, [1], [2].

The large growth of the number of wireless devices
has prompted the need for suitable resource management
strategies so as to allow high quality of transmission while
avoiding excessive power consumption, with the latter aspect
being particularly critical for those devices using a battery
with limited autonomy.

We consider a wireless cellular network where each cell
is associated with a base station, and base stations exchange
data via wired communication. Mobile users adopt Code
Division Multiple Access (CDMA, [3]) to communicate on
the same channel with the base station in their cell. If
the same communication channel is used in all cells, then,
interference occurs among all mobile users in the network,
thus causing a decrease of the quality of transmission as
measured by the Signal to Interference plus Noise Ratio
(SINR). Consequently, the throughput of the device can
deteriorate, since, as the SINR decreases, the number of
retransmissions increases, with a reduction of the effective
data transmission rate.
An adjustment of the transmission power is then needed to
guarantee a certain transmission rate and throughput. Due
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to the wireless channel resource sharing, this leads to a
network-wide constrained optimization problem where the
transmission powers of all devices in the cellular network
have to be jointly set so as to maximize the sum of their
throughputs while not exceeding the power transmission
capabilities of each one of them. The solution is far from
being trivial like, e.g., “use the maximum transmission power
per device” because this would have the positive effect of
increasing the signal component but, at the same time, it
would also increase the interference.

Solving the problem in a centralized way can be compu-
tationally challenging and also requires the transmission of
much information among base stations, possibly overloading
the wired communication network. Most of the approaches
proposed in the literature are actually based on a distributed
scheme and they can be classified into two main categories,
i.e., autonomous and non-autonomous, the distinguishing
feature being that, while in the former communications occur
only between base station and mobile users, in the latter base
stations collaborate and exchange information.

The approach described in [4] and further studied in [2],
belongs to the first class and aims at minimizing the total
transmission power subject to constraints on the SINR via
a distributed iterative algorithm. At every iteration, each
mobile user sets its transmission power at a certain level,
communicates using that power level, and then refines it
based on the information on the SINR provided by its
reference base station. Autonomous distributed approaches
to power control based on games involving non-cooperative
users are proposed in [5] and [6]. A further autonomous
approach in the literature consists of formulating power
control as an open loop global optimization problem where
the SINR is not a constraint but has to be optimized via a
distributed scheme, [7], [8].

The solution of the power control problem in a dis-
tributed non-autonomous fashion involves communication
among neighboring base stations and information sharing on
their local solutions. The involved additional communication
overhead is not an issue though, since, typically, base stations
are connected via a wired backbone. In turn, the exchange
of information between base stations leads to a faster opti-
mization and to a more robust scheme.

In this work, we propose a novel distributed non-
autonomous algorithm for power control in a single channel
wireless cellular network. The algorithm is derived from
the proximal minimization based approach to distributed
optimization recently introduced in [9], [10]. In [11], the
same problem is addressed via sub-gradient based distributed



Fig. 1. Example of a cellular network with 9 wire-connected (red dashed
lines) base stations (blue diamonds) and a number of mobile devices (green
circles). Dotted squares denote coverage area of each base station.

optimization, which is adapted here to our modeling set-
up where possibly multiple mobile users are linked to the
same base station. A comparative analysis via an extensive
simulation study is performed between the two methods.

The rest of the paper is organized as follows. In Section II
we formulate the power control problem for a single channel
wireless cellular network, extending the problem description
in [11] to a set-up where multiple mobile users are possibly
communicating with the same base station. In Section III, we
propose a distributed non-autonomous algorithm for power
control which is derived from the proximal minimization
based approach to distributed optimization. A comparative
analysis via extensive simulations with the alternative method
in [11] derived from sub-gradient based distributed optimiza-
tion is presented in Section IV. Finally, some concluding
remarks are drawn in Section V.

II. POWER CONTROL PROBLEM FORMULATION

We consider a cellular network with m mobile users MUj ,
j = 1, . . . ,m, served by n base stations BSi, i = 1, . . . , n,
as in Figure 1. A common wireless channel is used for data
exchange between mobile users and base stations, so that
each mobile user introduces some interference in the data
exchange of the others with their reference base station.

The channel is static, and the number of mobile users is
assumed constant in the time scale of interest. We suppose
that each base station, say BSi, has an accurate estimate
of the amplitude gains (called also channel coefficients) hi,j
of the links from all mobile users MUj , j = 1, 2, . . .m.
In particular, if MUj is in a cell that is not an immediate
neighbor of BSi, then, it causes negligible interference and
hi,j will be close to zero. If MUj is either in cell i or in
an immediate neighboring cell, BSi can estimate the channel
coefficient from pilot signals that are sent by the mobile user
MUj .

Each mobile user MUj is served by a single base station
and exchange data with it via wireless communication using
a transmission power pj .

Let us consider base station BSi. Denote with Ji ⊆
{1, 2, . . . ,m} be the set of indices of the mobile users that
communicate with BSi. We can then compute the SINR
of MUj with j ∈ Ji at its reference base station BSi as
follows:

%j(p) =
pjh

2
i,j

σ2
i +

∑
s6=j psh

2
i,s

, (1)

where p =
[
p1 p2 . . . pm

]>
is the transmission power

vector, hi =
[
hi,1 hi,2 . . . hi,m

]>
is the vector con-

taining the channel coefficients of all communication uplinks
from MUj , j = 1, . . . ,m, to BSi, and σ2

i is the receiver
noise variance at the base station BSi. Shadow fading can
also be included by introducing a re-scaling lognormal dis-
tributed factor in the channel coefficient along each uplink,
[12], [13].

The SINR %j in (1) is strongly affecting the quality of the
transmission, and, in particular, the throughput achieved by
the mobile user MUj , which can be modeled (see e.g. [14])
as proportional to

Uj(p) = log(1 + η%j(p))

where η is a constant that depends on the modulation scheme.
The expression above further simplifies to

Uj(p) ≈ log(η%j(p)) (2)

in high SINR regime. This implies that some minimum
transmission power pmin > 0 should be adopted on each
link.

From the perspective of base station BSi, a certain quality
of transmission should be guaranteed to all mobile users that
BSi serves, while avoiding a too costly use of power. This
can be achieved by choosing p so as to maximize the worst
performance index

min
j∈Ji
{log(%j(p))− Vj(p)} , (3)

where Vj(·) is a convex and differentiable function that
represents the power cost for the mobile user MUj and is
then increasing as a function of pj . The contribution of η to
the cost can be neglected since it does not affect the solution.

Note that the above performance index depends on the
transmission power of all mobile users in the network
through %j(p) (see (1)) and not only on those that are served
by BSi. This entails that all base stations need to cooperate
to guarantee the best minimum quality of the transmission
for all users by jointly solving the following constrained
optimization problem

max
p

n∑
i=1

min
j∈Ji
{log(%j(p))− Vj(p)} (4)

subject to: pmin ≤ pj ≤ pmax, j = 1, . . . ,m,

where pmax > pmin denotes a maximum transmission power
and is assumed to be given.



III. DISTRIBUTED NON-AUTONOMOUS ALGORITHM
BASED ON PROXIMAL MINIMIZATION

We now reformulate the problem so that it fits the frame-
work of the distributed algorithm in [9], [10] for solving
convex optimization problems with separable cost and local
constraints on a global decision vector.

To this purpose, let us express vector p of the mobile
users transmission powers as a function of vector x =[
x1 . . . xm

]>
through the change of variables p = ex,

where ex =
[
ex1 ex2 . . . exm

]>
.

We then obtain the following reformulation of (4)

min
x∈X

n∑
i=1

fi(x) (5)

where the cost function fi is given by

fi(x) = max
j∈Ji

Jij(x) (6)

with Jij(x) = log
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Vj(ex) and the constraint set is

X = {x : log(pmin) ≤ xj ≤ log(pmax), j = 1, . . . ,m}.

If we let x? denote a solution to (5), then, the optimal
transmission power vector p? can be recovered as p? =
log(x?) where log(·) applied to a vector should be interpreted
as the log function applied to each component of the vector,
i.e., p? =

[
log(x?1) log(x?2) . . . log(x?m)

]>
.

Remark 1: Note that function Jij(x) is convex and dif-
ferentiable in x since it is the sum of two terms: the
log of the sum of exponentials in x and the convex and
differentiable function Vj(ex). Then, fi(·) is convex since
it is the maximum of convex functions. In the case when
there are multiple mobile users served by the base station
i, fi(·) is not guaranteed to be differentiable. Also, fi(·) is
known only to the base station BSi because it depends on
the channel coefficients hi. Note finally that set X is convex,
nonempty (pmin < pmax), and also compact since pmin > 0,
which guarantees that the set X? of minimizers of (5) is
non-empty.

Solving the constrained optimization problem (5) in a
centralized way can be difficult if the cellular network is
large. It in fact involves introducing some central unit –
possibly one of the base stations – and making all base
stations send to the central unit all their (local) information
on the estimates of the channel coefficients so as to allow for
the computation of the optimal transmission power values
of all mobile users by solving (5). These values are then
communicated to the base stations, which in turn assign
them to the mobile users that they are serving. This will
possibly cause an overload of the wired communication
network connecting the base stations.

We next propose a distributed approach to the solution
of (5) that does not require to introduce any central unit,
neither the base stations to share the channel coefficients of
their mobile users, which are considered to be a sensitive
information. The approach is described in Algorithm 1.

Algorithm 1 Distributed power control proximal algorithm
1: Initialization
2: k = 0
3: Consider xi(0) ∈ X , for all i = 1, ..., n
4: For i = 1, ..., n repeat until convergence
5: x̂i(k) =

n∑
j=1

aijx
j(k)

6: xi(k + 1)=arg min
xi∈X

{
fi(x

i) +
1

2c(k)
‖xi − x̂i(k)‖2

}
7: pi(k) = log(xi(k))
8: k ← k + 1

The weights aij ≥ 0, j = 1, . . . , n, at step 5 of Algorithm
1 encode the wired network (directed) communication graph,
in that if aij = 0, then, BSi does not receive any information
from BSj . The set of BSj such that aij > 0 are called
neighbors of BSi.

Initially, each base station BSi, i = 1, . . . , n, makes
its own guess on some tentative value xi(0) for the so-
lution to (5) (step 3, Algorithm 1). One possible choice
is xi(0) ∈ arg minxi∈X fi(x

i). At iteration k, each BSi
constructs a weighted average x̂i(k) of the tentative solutions
xj(k), j = 1, . . . , n, received by its neighbors and its
local one (step 5, Algorithm 1). Step 6 of Algorithm 1 is
a proximal minimization computation, where BSi solves a
local minimization problem, updating its tentative solution
with a value within X that minimizes the sum of its local
objective function fi(·) and a weighted quadratic term, which
accounts for the difference of its current tentative solution
from the average x̂i(k). The relative importance of the two
terms is determined by c(k) ∈ R+. Note that since fi(·)
is convex (see Remark 1) and the quadratic penalty term is
strictly convex, the resulting minimization problem admits a
unique solution at each iteration k.

We next present some assumptions that are needed to
prove converge of Algorithm 1 to an optimal solution p?

of the constrained optimization problem (4).
Assumption 1 (Connectivity and Communication): Let

(V,E) be the directed graph with nodes V = {1, . . . , n}
and edges E = {(j, i) : aij > 0}. We assume that (V,E)
is strongly connected, i.e., for any two nodes there exists a
path of directed edges that connects them.

Coefficients {c(k)}k≥0 in step 6 of Algorithm 1 have to
be chosen so as to satisfy the following assumption.

Assumption 2 (Coefficient {c(k)}k≥0): The sequence
{c(k)}k≥0 with c(k) ∈ R+ is non-increasing and satisfies∑∞
k=0 c(k) =∞, and

∑∞
k=0 c(k)2 <∞.

One possible choice for {c(k)}k≥1 that satisfies 2 is
c(k) = α/(k + 1)β for some α ∈ R+ and 0.5 < β ≤ 1.
Assumption 2 is identical to the conditions imposed in [15],
[16] on the step-size of their subgradient algorithms.

As in other contributions on distributed optimization in the
literature (see, e.g., [11], [17], [18], [19], [20], [15] to name
a few), we impose the following assumption on the weights
of the average tentative solution.

Assumption 3 (Weight coefficients): The coefficients aij ,



i, j = 1, . . . , n, satisfy the following conditions:
1) aij ≥ 0 for all i, j = 1, . . . , n,
2) aii > 0 for all i = 1, . . . , n,
3)
∑n
j=1 a

i
j = 1 for all i = 1, . . . , n,

4)
∑n
i=1 a

i
j = 1 for all j = 1, . . . , n,

where the last two conditions imply that the matrix with
element (i, j) equal to aij is doubly stochastic.

Note that all base stations are required to agree on the
same doubly stochastic matrices. This is a quite standard
assumption in distributed optimization algorithms of this
type (see also [15], [19], [16]). In the case when aij = aji ,
i, j = 1, . . . n, i.e., when (V,E) is an undirected graph, the
agreement can be achieved in one single iteration following
the distributed approach in [20].

Theorem 1 (Optimality): Consider Assumptions 1-3 and
Algorithm 1. We have that for some maximizer p? of problem
(4), all base stations reach consensus to p?, i.e.,

lim
k→∞

‖pi(k)− p?‖ = 0, i = 1, . . . , n.

Proof: Given the convexity of fi(·) and the convexity
and compactness of X (see Remark 1), by applying the
theorem on optimality of the distributed proximal algorithm
in [9], [10], we get that for some minimizer x? of problem
(5) the following convergence property holds

lim
k→∞

‖xi(k)− x?‖ = 0, i = 1, . . . , n.

Since the mapping pi(k) = log(xi(k)) from xi to pi is a
monotonically increasing bijective function and the cost that
is minimized in (5) is obtained by multiplying by -1 the
performance index that is maximized in (4), by defining p? =
log(x?) the statement in the theorem follows immediately.

Remark 2 (Resilience to failures): The optimality result
in Theorem 1 is preserved when temporary failure of com-
munication links occurs. This is because the asymptotic
optimality result in [9], [10] holds with time-varying weight
coefficients, under suitable long run connectivity conditions,
and a time-varying variant of Assumption 3 (see Assump-
tion 2 in [10]). Also, if one of the base stations definitely
breaks down, its mobile users can be re-assigned to the
closest base station, and the system will automatically adapt
to the new configuration, if the distributed algorithm for
transmission power control adjusts the weight coefficients
so as to comply with Assumption 3.

IV. SIMULATION-BASED PERFORMANCE ASSESSMENT
AND COMPARATIVE ANALYSIS

In this section, we show the performance of the proposed
distributed non-autonomous algorithm for power control in a
single channel wireless cellular network, and compare it with
the sub-gradient based alternative proposed in [11], which is
here presented in Algorithm 2 to comply with our notation.

In Algorithm 2, ΠX [·] denotes the projection onto set X
(which is straightforward since X is a box), and ∇fi(·) the
sub-gradient of function fi(·), which satisfies

∇fi(x)>(y − x) ≤ fi(y)− fi(x), x, y ∈ X.

Algorithm 2 Distributed power control sub-gradient algo-
rithm

1: Initialization
2: k = 0
3: Consider xi(0) ∈ X , for all i = 1, ..., n
4: For i = 1, ..., n repeat until convergence
5: x̂i(k) =

n∑
j=1

aijx
j(k)

6: xi(k + 1) = ΠX [x̂i(k)− c(k)∇fi(x̂i(k))]
7: pi(k) = log(xi(k))
8: k ← k + 1

Given that fi(·) in (6) is convex (see Remark 1), the sub-
gradient at x ∈ X is well-defined. However, it is not
differentiable in the case when the base station is serving
multiple users. The sub-gradient computation involves the
choice of the mobile user with the worst throughput at every
iteration, given the current value x of the iterated weighted
average x̂i. More specifically, we have that

∇fi(x) = ∇J̄i(x), (7)

where ∇J̄i(·) is the standard gradient of the function

J̄i(·) = Jijx(·) with jx = arg max
j∈Ji

Jij(x), (8)

which is convex and differentiable.
The same result in Theorem 1 holds for Algorithm 2 (see

[11] for a proof). The two algorithms work in the same
set-up and involve the same communication structure, both
avoiding local information sharing. The main difference is
how the tentative solution is updated at every iteration, and,
in particular, the methods used by each base station to solve
its local optimization problem.
A clear advantage of Algorithm 2 compared with Algorithm
1 proposed in this paper is that it is computationally less
demanding since it does not involve any optimization over X .
However, if we consider the multi-user case that is indeed the
most common in practice, Algorithm 2 is typically affected
by oscillations of the solution before convergence is reached.
This is caused by the non-differentiability of fi(·) and the
fact that the sub-gradient calculation in (7) involves the
identification of the mobile user with the worst throughput
given the current average tentative solution (see (8)).

In the simulation results, we consider cellular networks
with n base stations that are located on a regularly gridded
square area with grid parameter equal to 5. Each base station
is at the vertex of one or multiple squares and is wired
connected to all the base stations that belong to its same
squares, either on the same edge and or on the diagonal (see
Figure 1). Each mobile user is served by the closest base
station.

The channel coefficient hi,j of the communication link
from the mobile user j to the base station i is set to zero
if their distance is larger than or equal to 200, otherwise it
decays to zero as the fourth power of the distance. A shadow
fading factor modeled as lognormal with mean 1.05 and
variance 0.1 is introduced along each uplink. The receiver



Algorithm 3 Sinkhorn-Knopp algorithm
1: aij ← 1 if (i, j) ∈ E
2: aij ← 0 if (i, j) /∈ E
3: repeat
4: aij ← aij/

∑m
c=1 a

i
c, ∀i = 1, . . . ,m

5: aij ← aij/
∑m
r=1 a

r
j , ∀j = 1, . . . ,m

6: until Assumption 3 is satisfied within a given tolerance

noise variance is set equal to 10−4 at each base station. We
set log(pmin) = 0 and log(pmax) = 7 when defining the set
X . The term penalizing the transmission power cost in (3)
is given by Vj(p) = 10−3pj .

Parameter {c(k)}k≥0 appearing in both algorithms is set
equal to c(k) = α

(k+1)β
, where α = n and β = 0.7. The ini-

tial value for xi, i = 1, . . . , n, in both algorithms is set equal
to the local optimal solution: xi(0) ∈ arg minxi∈X fi(x

i).
Lastly, we set the weights coefficients so as to satisfy

Assumption 3. To this end, we use the procedure described
in [21] and formulate Algorithm 3, which is initialized
with the adjacency matrix A of the graph (V,E) (i.e., the
matrix which has 1 in position (i, j) if (i, j) ∈ E and
zero otherwise). Note that (i, i) ∈ E since we require
aii > 0 in Assumption 3. Then, under Assumption 1, the
adjacency matrix has full support (see [21] for a definition)
and Algorithm 3 is guaranteed to converge to a doubly
stochastic matrix with the same sparsity pattern of A.

Given that each base station is in charge of setting the
transmission power of the mobile users that it is serving,
when plotting the performance at time k we shall refer to
the transmission power vector p̂(k) that contains as elements
the transmission powers computed at iteration k by the base
stations for the mobile users that they are serving.

Performance evaluation and comparative analysis of the
distributed Algorithms 1 and 2 are performed in terms of
either the cost

n∑
i=1

fi(log(p̂(k))), k = 0, 1, . . . ,

or the normalized relative error cost
n∑
i=1

fi(log(p̂(k)))−min
x∈X

n∑
i=1

fi(x)

min
x∈X

n∑
i=1

fi(x)

, k = 0, 1, . . . .

All the numerical simulations were run using Matlab with
CVX, [22], as optimization interface and MosekTM, as solver.
In the first simulation study, we consider a cellular network
with n = 16 base stations and m = 16 mobile users, one
per base station.

We performed 100 runs of both Algorithms 1 and 2, where
the position of each mobile user is extracted at random in
a 5 by 5 square centered in a base station. The resulting
histograms of the normalized relative costs at iterations
k = 10, 50, 100, and 200, are plotted in Figure 2. The
relative error decreases progressively for both, after an initial

Fig. 2. Histograms of the normalized relative cost for the cellular network
with 16 base stations and 16 mobile users at iterations k = 10, 50, 100,
and 200, of Algorithms 1 (in blue) and 2 (in red).

Fig. 3. Cost function for a cellular network with 16 base stations and 16
mobile users for Algorithms 1 (in blue) and 2 (in red).

transient phase Algorithm 2 performs slightly better than
Algorithm 1. This is also apparent from Figure 3 where
the plots of the cost obtained with the two algorithms are
reported for one of the extracted configurations. Note that
both plots are smooth curves. As for the overshoot in the
cost for Algorithm 2, c(k) is large initially and makes the
algorithm take a large step in the wrong direction, thus
increasing the cost.

If we now consider the multi-user set-up, with n = 16
base stations but m = 20 mobile users, and perform the
same kind of experiments, we get the histograms of the
normalized relative cost and the plots for the cost in Figures 4
and 5, respectively. Convergence is slower and oscillations
deteriorate the performance of the solution obtained by
Algorithm 2.

In Figure 6, we report the time needed to run 100 iterations
of both algorithms for different instances of 5 different
single-user cellular networks. As expected Algorithm 2 is
less time consuming.

V. CONCLUDING REMARKS

In this paper we proposed a distributed transmission
power control algorithm for a wireless cellular network. The
algorithm is based on proximal minimization and represents
an alternative to a gradient-based distributed algorithm that



Fig. 4. Histograms of the normalized relative cost for the cellular network
with 16 base stations and 20 mobile users at iterations k = 10, 50, 100,
and 200, of Algorithms 1 (in blue) and 2 (in red).

Fig. 5. Cost function for a cellular network with 16 base stations and 20
mobile users for Algorithms 1 (in blue) and 2 (in red). The dotted constant
line is the optimal cost.

works in the same set-up, with the same guarantees on
convergence and optimality. The two approaches show sim-
ilar performance in the case when each base station serves
a single mobile user in the cellular network. Admittedly,
the proposed approach is computationally more demanding.
However, in the relevant case of multiple mobile users per
base station, it shows better performance than the gradient-
based approach since, as an effect of the cost being non-
differentiable, using a sub-gradient induces an oscillatory
behavior.
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