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A Hexagonal Pseudo-polar FFT for
Formation-Flying Interferometric Radiometry

Ahmed Kiyoshi Sugihara El Maghraby , Angelo Grubišić , Camilla Colombo , and Adrian Tatnall

Abstract— A novel mission concept applying satellite forma-
tion flight to passive microwave interferometry was recently
proposed to significantly improve the interferometer’s spatial
resolution. This concept was shown to sample the visibility in
a hexagonal tile of polar grids, and to recover the brightness
map, this visibility must be inverted via a discrete polar inverse
Fourier transform. For a fast and accurate solution, this letter
develops a modified hexagonal variant of the pseudo-polar
fast Fourier transform (PPFFT) and its inverse and explores
its performance when applied to the proposed formation-flight
radiometer. Compared to the conventional rectangular PPFFT,
we find approximately a fivefold improvement in the recovered
radiometric accuracy, where the rms radiometric error is in the
order of 10−2 K. The impact of visibility interpolation method is
also explored, showing that an FFT-based interpolation technique
leads to the most accurate final image recovery.

Index Terms— Image reconstruction, microwave radiometry,
mission concept, satellite formation flight, synthetic aperture
imaging.

I. INTRODUCTION

M ICROWAVE radiometers are highly versatile Earth
observation instruments which map the brightness tem-

perature of the Earth at specific microwave frequency bands.
Carefully choosing the frequency allows the observation of dif-
ferent features of the Earth; for example, the L-band (1.4 GHz)
is most sensitive to ocean salinity and soil moisture, and
radiometry at the resonance frequencies of oxygen and water
molecules is the basis of atmospheric sounding. While real-
aperture radiometers rely on scanning reflectors to map the
brightness temperature, interferometric, i.e., synthetic aperture,
radiometers produce the map using a set of coherent receivers,
ridding the need for large scanning mechanisms. This enables
the synthesis of very large apertures, as demonstrated by the
Soil Moisture and Ocean Salinity (SMOS) mission [1].

Recent years have seen a remarkable acceleration in the
development of geostationary interferometric radiometer sys-
tems for atmospheric sounding. The development of the

Manuscript received February 7, 2018; revised June 29, 2018; accepted
August 4, 2018. Date of publication November 8, 2018; date of current version
February 27, 2019. This work was supported by the U.K. Engineering and
Physical Sciences Research Council under Award 1503202. (Corresponding
author: Ahmed Kiyoshi Sugihara El Maghraby.)

A. K. Sugihara El Maghraby, A. Grubišić, and A. Tatnall are with
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rotating interferometers, e.g., the Geostationary Atmospheric
Sounder (GAS) [2] and the Geostationary Interferometric
Microwave Sounder (GIMS) [3] has brought in demand a
fast and accurate method for polar Fourier transform for
image reconstruction. The problem stems from the fact that
interferometric radiometers do not measure the brightness
temperature directly, but instead, they measure an interme-
diary quantity known as the visibility function. The visibility
function is related to the brightness temperature via the Van
Cittert–Zernike theorem, stating that the visibility is the spatial
Fourier transform of the modified brightness temperature map,
as follows [4], [5]:

T̂B(ξ, η) =
∫∫ +∞

−∞
W (u, v) · V (u, v) · e2π i(uξ+vη)dudv (1)

where T̂B(ξ, η) is the recovered modified brightness tem-
perature map of the target, where [ξ, η] are the direction
cosines. V (u, v) is the visibility function, where [u, v] are the
horizontal and vertical components of the baseline vector, and
W (u, v) [6] is a window function designed to reduce Gibbs
ringing.

In practice, interferometers measure the visibility func-
tion as a set of point samples. Given a pair of antennas
separated by a known distance [u, v], called the baseline
vector, the microwave signals each of these antennas receive
from the source, i.e., Earth, are cross-correlated to produce a
single Hermitian pair of visibility samples at points [u, v] and
[−u,−v]. The set of all possible baseline pairs produce the
visibility sample set. Polar sampling grids arise from rotating
interferometers, e.g., GAS and GIMS. The rotating design is
motivated by the need to minimize system complexity and
mass, where the rotation allows each antenna pair to take mul-
tiple visibility samples as they move in space, minimizing the
required number of antennas. From these samples, the bright-
ness temperature map of the Earth is recovered via a discrete
inverse Fourier transform. Here, it must be highlighted that
the inversion method that best suits the application depends
closely on the given type of grid. For example, the SMOS
mission produces a hexagonal grid, therefore, the hexagonal
FFT is the fastest and most accurate method [7], while for
GIMS, the PPFFT has shown the best results [8].

Now, a multisatellite interferometric radiometer concept
has been described in [9] which uses intersatellite baselines
to achieve unprecedented baseline lengths, thus significantly
improving the interferometer’s spatial resolution. Fig. 1(a)
shows the formation configuration for a nine-cubesatellite
design, and the resultant visibility sampling pattern is shown
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Fig. 1. (a) (Top) Nine-cubesat configuration for the proposed interferometer
and its (Bottom) instantaneous sampling pattern. (b) Rotation of the central
array leads to a hexagonal tile of polar grids. + shows the overlapping regions.
Hexagon: area in which the proposed hexagonal PPFFT grids are interpolated.
Square: conventional PPFFT.

in Fig. 1(b). The grid is a hexagonal tile of overlapping
polar grids. As the central satellite rotates, the central part
of Fig. 1(b) is sampled by central satellite on its own, while
baselines between different satellites, i.e., the intersatellite
baselines, produce the remaining samples, highlighted in
dashed contours.

While the conventional rectangular PPFFT can still be
applied to invert this set of visibility samples, it is found that
the overlapping areas introduce a strong noise at the polar
grids’ interfaces with neighboring grids. If a grid can be found
that can be tiled without overlaps, we can expect a significant
improvement in the accuracy of the recovered map. In this
pursuit, we develop a new hexagonal variant of the PPFFT
method.

II. HEXAGONAL PSEUDO-POLAR FAST

FOURIER TRANSFORM

The conventional PPFFT applies the combination of 1-D
FFT and 1-D fractional Fourier transform—for which fast
algorithms are available—to find the Fourier transform of an
input image in the pseudo-polar grid. Averbuch et al. [10]
have presented a comprehensive description of the rectangular
PPFFT and its inverse, and Zhang et al. [8] have presented
the technique as an effective method to invert the visibility
sampled by the rotating radiometer GIMS. The method in [11]
further generalizes the PPFFT to include polygons of multiples
of four; however, the hexagonal case still remains unexplored.
Based on these precedents, the following paragraphs describe
the forward and inverse transforms to the hexagonal grid.

Given an N × N input image, hexagonal PPFFT outputs
three N×2N grids designated as G1, G2, and G3, the arrange-
ment of which is shown in Fig. 2. The axes ξξ and ξη are as
defined in [10], where they refer, respectively, to the horizontal
and vertical components of the angular spatial frequency
present in the discrete N × N image. The conventional 2-D
FFT produces an equispaced N × N rectangular grid within
the 2π×2π square, which is also the area the rectangular

Fig. 2. Proposed hexagonal PPFFT grid with N = 8. Shaded area: full
spatial frequency content of the input N × N image. Hexagon: tile size.

PPFFT covers. Unlike the rectangular PPFFT, the hexagonal
grid does not capture all spatial frequency content present
in the input image. This is to allow all spatial frequency
samples in the hexagonal grid to remain within the frequencies
reproducible by the original N × N image. This means the
forward hexagonal PPFFT is a lossy process if the input image
contained frequencies outside the hexagonal area, shown by
the shaded square in Fig. 2. This is acceptable for our applica-
tion, however, since we are concerned with the inverse PPFFT,
in which we start with the hexagonal grid, for which we
can losslessly recover their spatial frequency components. To
achieve this, the hexagonal PPFFT requires two 1-D fractional
FFTs. The hexagonal PPFFT process to find G1 is defined as
follows.

1) The input N × N image, g1, is zero padded to N × 2N ,
with indexes 0 ≤ k1 < N and 0 ≤ k2 < 2N . A single-
dimensional fractional Fourier transform is taken in the
horizontal direction as follows:

g̃1[k1, l] =
2N−1∑
k2=0

g1[k1, k2] · exp

(
−2π ik2l

2N

√
3

2

)
(2)

with index −N ≤ l < N . The fractional Fourier
transform can be evaluated using three FFTs [12].

2) Fractional Fourier transform is then applied to each
column with the fraction α gradually shifting from
−(

√
3/2)(1/

√
3) = −(1/2) to (1/2), defined as follows

G1[m, l] =
N−1∑
k1=0

g̃1[k1, l] · exp

(−2π ik1m

N

l

2N

)
(3)

with −(N/2) ≤ m < (N/2).

As inherent to FFT, this method presumes the cell k1 =
k2 = 0 as the origin of the input image. To shift this origin to
k1 = k2 = (N/2), the following may be applied:

G∗
1[m, l] = G1[m, l] · ex p

[
π i

2

(
m

l

N
+ l

√
3

2

)]
. (4)
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To find the G2 and G3 sets, the input image is rotated about
k1 = k2 = (N/2) by 60◦ and 120◦ clockwise, respectively, and
the above-mentioned process is repeated.

While the process is strictly speaking irreversible due to
incomplete rank, an iterative approach as described by Aver-
buch et al. [10] shows a reliable inverse PPFFT process. For
this, the adjoint transform process is defined

ĝ1[k1, k2] =
N
2 −1∑

m=− N
2

N−1∑
l=−N

G1[m, l] ·
√

3

2
· | l

2N
| · 1

2N2

× exp

(
2π ik1m

N

l

2N
+ 2π ik2l

2N

√
3

2

)
(5)

which is followed by the image recombination process

ĝk = ĝ1k + rot60(ĝ2k) + rot120(ĝ3k) (6)

where rot60 and rot120 are the 60◦ and 120◦ anticlockwise
rotation processes, respectively, about k1 = k2 = (N/2). The
scalar weights (

√
3/2), |(l/2N)|, and (1/2N2) account for the

differential area corresponding to, respectively, the horizontal
and vertical fractional Fourier transforms and the discrete
N×2N Fourier transform. The iteration procedure is then as
follows:

gk+1 = gk − T H
P P (TP P(gk) − G) (7)

where G is the concatenation of G1, G2, and G3, gk is the
N×N iteration image initialized as a zero matrix, TP P() is the
forward PPFFT process finding the three grids concatenated
to a single matrix Gk , and T H

P P () is its adjoint process.
Gk converges from a zero matrix to the given G. Here,
T H

P P (TP P(gk)− G) is the residual, and the stopping condition
is when the rms of this map falls under a specified threshold.

One key consideration here is that the 60◦ and 120◦ rotations
of the input image when finding grids G2 and G3 mean that
G2 is not sensitive to sources in areas 2 and 4 in Fig. 3(b), and
neither is G3 to areas 3 and 4. As a corollary, the rotations
of g2 and g3 made as part of the recombination process cause
the edges of these grids to fall out of g1, which is the output
grid. Both of these properties mean that the hexagonal PPFFT
is unable to reconstruct objects lying in areas 2, 3, and 4,
and these areas are set to zero at the end of every iteration
to ensure convergence. This is acceptable in the presented
application; however, when the image contains objects in these
areas, it must be zero padded to ensure the areas 2, 3, and 4
are zero before forward transformation.

Furthermore, it is found that the rotation process is a
key step that can introduce significant noise when performed
poorly. Unlike the 90◦ rotation required for the conventional
PPFFT, for which an exact solution is available, the 60◦
and 120◦ rotations require 2-D image interpolation. Several
interpolation methods are tried as presented in Table I, finding
that the FFT interpolation produces the best result. This
method [13] first applies a 2-D FFT to the input array, zero
padding the result in the frequency domain and applying an
inverse FFT to recover the interpolated image.

The processes so far recover an image from a pseudo-polar
grid of visibility. The remaining task is to interpolate the

Fig. 3. (a) Tested input brightness temperature maps. (b) Input image shown
in scale, as viewed from the geostationary orbit. Subgrids G1, G2, and G3
recover subimages g1, g2, and g3, respectively. 60◦ and 120◦ rotations mean
that only area 1 contains contributions from all subimages.

visibility from the polar grid to the pseudo-polar grid, which
can be done in two steps of single-dimensional interpolation:
first interpolating in the angular direction, followed by the
radial direction. For the first step, it has been found that the
cyclic sinc interpolation is suitable [8]. Radial interpolation
drives the quality of the recovered image, as this is the
dimension with sparse sampling [see Fig. 1(b)]. In Table I
we compare linear, spline, and FFT interpolation, and again
we find the FFT method most suitable. Note that if we
wish to recover the brightness temperature map centered at
k1 = k2 = (N/2), the interpolation process maps to G∗ in
(4), and not G.

III. SIMULATION RESULTS

Now, we evaluate the performance of the proposed method
at reconstructing the brightness temperature map from a vis-
ibility set taken by the proposed multisatellite interferometer.
We simulate the full-size array, with 9 cubesatellites and
236 elements per arm. This generates 19 polar grids, 7 of
which are as shown in Fig. 1(b). One of these grids is
considered at a time and interpolated into the PPFFT grid. The
proposed hexagonal grid corresponds to the hexagonal area
shown in Fig. 1(b), while the conventional PPFFT corresponds
to the square. The sum of the recovered maps from all 19 grids
produces the final map. The Blackman window [6] is applied
to the visibility samples prior to inverting. The radiometric
error map is defined as the difference between the recovered
map and the original map passed through the Blackman low-
pass filter to account for the radiometer’s spatial resolution.
The rms is taken within the central part of this map and
reported in Fig. 4 and Table I.

To compare the proposed method against the method pro-
posed in [9], the same input image of the Earth is used,
as shown in Fig. 3(a) (top), and the visibility samples are
obtained in the same manner, summarized as follows. The
input 2048 × 2048 image is zero padded by a factor of 8
and its FFT is taken, producing an oversampled visibility
given in a Cartesian grid. Our input visibility samples are
interpolated from within this grid to the grid pattern shown
in Fig. 1(b), via 2-D planar spline interpolation. To ensure that
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Fig. 4. Radiometric accuracy of gk at successive iterations of the iterative
inverse PPFFT for input images 1 (top-left), 2 (bottom-left), and 3 (bottom-
right), measured as an rms error within the area shown in Fig. 6. The
rectangular and hexagonal pseudo-polar grids are run with and without
preprocessing with a priori information. Note that this is not a measure of
the residual of the iteration process.

TABLE I

RADIOMETRIC ERROR OF RECOVERED MAP BY VISIBILITY

INTERPOLATION AND IMAGE ROTATION TECHNIQUES

the error introduced by this method is sufficiently low, we use
the Shepp–Logan phantom [14], amplified in magnitude by a
factor of 200 to better represent the brightness temperature of
the Earth, to compare the brightness temperature error for the
case the visibility is taken analytically, against the case the
visibility is taken by interpolation. The disagreement between
the two cases was 7.0 × 10−4 K. Two other input images are
tested to study the method’s response to extreme scenarios.
Fig. 3(a) (middle) shows a simulated map at 53 GHz, produced
by the Synthetic Aperture Interferometric Radiometer Perfor-
mance Simulator (SAIRPS) [15]. Since the map is extremely
smooth, we expect to see the best performance from this map.
Then, we add a Gaussian white noise to this image with
1σ = 100 K to represent the opposite extreme, as shown
in Fig. 3(a) (bottom).

Fig. 4 shows the convergence rate of the retrieval method
shown in (7). Both the raw visibility and the preprocessed
visibility using a priori information, as suggested in [16], are
inverted. This information includes the locations of the earth–
sky horizon, the sun, and the moon, and the average brightness
temperatures of the Earth, sun, moon, and the background
radiation. Preprocessing the visibility measurements results in
an almost immediate convergence.

Table I shows the impact of visibility interpolation technique
in the radial direction to the radiometric accuracy of the

Fig. 5. (Left) Error map of input 1 recovered with linear visibility inter-
polation and (Right) spline interpolation. Both cases exhibit sensitivity loss
away from the origin. RMS is taken within the inner ring. Middle ring is the
earth–sky horizon. Outer ring is the interferometer’s alias-free field of view.

reconstruction method, for the raw and preprocessed sets of
visibility samples. The cyclic sinc interpolation is used for
the angular direction for all cases. The poor performance
of linear and spline interpolations was expected since the
3λ sampling period of the interferometer is just under the
Nyquist limit, which is 3.29λ [9]. Fig. 5 shows the brightness
temperature error maps for linear (left) and spline (right)
interpolation, for the preprocessed visibility samples. Severe
loss of sensitivity is seen away from the origin as both methods
struggle to interpolate the high-frequency sinusoids in the
visibility domain, which are responsible for off-axis sources.
The interferometer’s alias-free field of view is marked by the
outermost circle, beyond which the first alias of the Earth
is visible. Table I also lists the performance of the three
interpolation methods for image rotation processes, and again,
the FFT method produces the best radiometric accuracy.

In practice, a threshold residual will be set as a stopping
condition for the iteration process. Fig. 6 shows the results
for input 1 with 1×10−3 K threshold. The conventional
method converges in 11 iterations while the hexagonal method
converges in 4 iterations. Fig. 6(a) (left) shows the radiometric
error map for the conventional PPFFT, and Fig. 6(a) (right)
shows the Fourier transform of this map, produced by simply
applying an FFT to the left image. This map clearly shows the
spikes present at the boundaries of the overlapping polar grids.
This noise can be attributed to the fact that the overlapping
visibility samples are selected discretely, as shown in Fig. 1(b)
as +, and this discrete choice can cause strong quantization
error if sampling is sparse. The hexagonal PPFFT reduces
this noise by eliminating these overlaps. In Fig. 6(b) (right),
the interfaces between neighboring grids are much smoother,
with the circular spikes removed. The noise levels within the
hexagonal grids are, in fact, slightly higher compared to the
conventional PPFFT due to the image rotation processes. How-
ever, the total noise level shows a factor of 4.8 improvement
for this particular input with 0.023-K error, shown in Fig. 6(b).
The best and worst cases tested with inputs 2 and 3 indicate
the improvement factors of 6.0 and 4.7, respectively.

Finally, we note that the proposed method does not attempt
to remove aliases. Strong alias of the sun, in particular, can
substantially reduce the radiometric accuracy in the aliasing
regions, thereby limiting the advantage of the method to the
conventional PPFFT. Fig. 7 shows the worst cases for the
two methods when the sun appears just next to the Earth.
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Fig. 6. Recovered brightness temperature error maps for the conventional
and the proposed method, applied on input 1 with 10−3 K threshold
residual. (a) Conventional PPFFT, rms = 0.111 K. (b) Hexagonal PPFFT,
rms = 0.023 K. (Left) Spatial distribution of the error. (Right) Spatial
frequency distribution.

Fig. 7. Radiometric error map for input 2 when the sun’s first alias enters
the image, for (Left) conventional PPFFT and (Right) the proposed method.

We can see both methods are convergent and suffer equally
from the alias. Aliases of the moon and other celestial bodies
are negligible compared to the earth’s brightness temperature.

IV. CONCLUSION

A novel hexagonal variant of the pseudo-polar FFT and its
inverse have been developed to recover the Earth’s brightness
temperature map from the visibility sampled by the proposed
multisatellite interferometric radiometer. Compared to the con-
ventional rectangular PPFFT, the proposed method achieves
approximately a fivefold improvement in the recovered radio-
metric accuracy when applied to the proposed interferometer.
Three input maps have been tried, representing the brightness
temperature map of the Earth at various frequencies. The
best result is achieved for the smoothest map (Im 2) with
a factor of 5.95 improvement, while the roughest map (Im 3)
showed 4.67, and the average expected map (Im 1) showed
4.73. The proposed method requires that the corners of the
rectangular input image are empty. When objects exist in these
corners, e.g., the sun, the method converges with these objects
removed. To fully harness the advantages of this method,

a separate method is needed to remove the aliases of the sun,
by either subtracting the brightness temperature map of the
sun from the visibility samples prior to image recovery or by
postrecovery deconvolution, e.g., CLEAN.
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