

Permanent link to this version

http://hdl.handle.net/11311/1006863

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

Post-Print

This is the accepted version of:

L. Travaglini, S. Ricci, G. Bindolino
PyPAD: a Multidisciplinary Framework for Preliminary Airframe Design
Aircraft Engineering and Aerospace Technology, Vol. 88, N. 5, 2016, p. 649-664
doi:10.1108/AEAT-02-2015-0061

The final publication is available at https://doi.org/10.1108/AEAT-02-2015-0061

Access to the published version may require subscription.

This article is (c) Emerald Group Publishing and permission has been granted for this
version to appear here (http://hdl.handle.net/11311/1006863). Emerald does not grant
permission for this article to be further copied/distributed or hosted elsewhere without the
express permission from Emerald Group Publishing Limited.

When citing this work, cite the original published paper.

PyPAD: A Multidisciplinary Framework for Preliminary

Airframe Design

Lorenzo Travaglini , Sergio Ricci , Giampiero Bindolino

Department of Aerospace Science and Technology

Politecnico di Milano, ITALY

Abstract

The preliminary design of an aircraft is a complex task involving a lot of different disciplines and it is becoming more

challenging in the future due to the reduced budget and compressed time. At the same time new projects present new

technical challenges due to the request for highly demanding performances, in order to reduce the fuel consumption (cost

and environment impact) and to increase the payload. The preliminary design problem involves different disciplines, like:

Aerodynamics, Controls, Regulations, Performances, Systems Definition, Design, Loads & Aeroelasticity, Structural

Sizing, etc.. The present work focuses on the development of an integrated framework suitable for preliminary airframe

design, called PyPAD (Python module for Preliminary Aircraft Design). The modules developed until now allow for the

definition of multi fidelity aero-structural models starting from a CPACS input file and to compute static loads (trim) and

flutter margin with the minimum effort by the user. Moreover PyPAD is able to compute the dynamic response under all

the different load conditions, including discrete and continuous gust, nodal forces, command inputs. The tool is also able

to export the state-space aeroelastic models tacking advantage of the modern state space model realization. In this way

all the loads prescribed by the regulations can be computed in a fully automatic approach. A complete test case, starting

from the CPACS input and ending with the definition of structural, aerodynamic and aeroelastic models and with the

computation of different design loads is reported.

Keywords Preliminary Design, Aeroelasticity, Loads.

Paper type: Research paper

Introduction

The present work describes the development and an application of PyPAD (Python module for Preliminary Aircraft

Design), a framework suitable for preliminary airframe design. A special emphasis is devoted to the Design, Loads &

Aeroelasticity and Structural Sizing characteristics. All the other aspects are not neglected, but considered as inputs,

constraints or output requests. Clearly, even considering a partial aspect of the project, the problem is still strongly

multidisciplinary. The traditional approach iterates manually across models definition, loads computation, aeroleastic

analysis and structural sizing. This could lead to a slow convergence to the best solution or, even worst, the solution found

could not be the optimal one. Nowadays, thanks to computing power and engineering knowledge, the preliminary design

process can be approached in a fully automatic way tacking advantage of the Multidisciplinary Design Optimization

methods. Figure 1 depicts two logical flows, summarizing the traditional approach to preliminary design problem and the

one here proposed. The main disadvantages of the first one are:

• All the steps are performed manually and by different departments inside a typical small, medium-size aircraft

company. Engineers deal with repetitive works and the processes are error prone;

• A change in the conceptual design (due to aeroelastic behaviours or other problems) is very expensive. It is

therefore hard to investigate different conceptual designs and the solution found could be not the best one.

• All the steps are performed manually and by different departments inside a typical small, medium-size aircraft

company.

The proposed approach tries to solve all the highlighted problems:

• All the steps are performed using Multidisciplinary Optimization algorithms;

• Both structural and aerodynamic models (for loads computation and aeroelastic analysis) are defined in a fully

automatic way. Therefore different conceptual designs can be investigated;

• Aeroelastic behaviour are considered in the sizing process.

To achieve these results a multidisciplinary framework called PyPAD and composed by different modules, is under

development. The three main modules included in the full framework are:

• PyGFEM (a Python modules for the Generation of Finite Element Models): It is an object-oriented tool developed

under Abaqus-CAE environment able to define both structural and aerodynamic models starting from CPACS file

input;

• PyAERO (a Python module for the AEROelastic analysis): It is a tool able to perform all the needed analysis

needed to compute loads and aeroelastic responses.

• PySIZE (a Python module for the structural sizing): It will be a module dedicated to the sizing of the different

components.

PyPAD runs embedded in the Abaqus-CAE environment so to take advantage of the large library of low level routines for

FEM manipulation accessible via Python calls.

One of the key factor in defining a procedure able to quickly generate aircraft models for aerostructural analysis at

different levels of fidelity is represented by the strategy adopted for aircraft description and parameterization. In this work

the parameterization called CPACS (The Common Parametric Aircraft Configuration Schema) (DLR, 2013) proposed by

DLR is adopted. CPACS is a data definition for the air transport system based on a single XML file.

This data definition is becoming a standard due to its extendibility and completeness. A lot of data can be stored in a

CPACS file; the most important ones for this work are the geometry definitions, both external lofts and structural

configurations, as well as the related properties definition. In the following a quick overview of two of the main modules of

PyPAD is reported, as well as some specific examples.

Aero-structural models generation: PyGFEM module

PyGFEM is the module dedicated to the automatic generation of the full finite element model of the complete aircraft.

The capability to quickly generate a large spectrum of aerostructural models is a must due to the need to find the best

Figure 1 Preliminary Design: typical logic flow (left), proposed approach (right)

Figure 2 PyGFEM: main view

aircraft optimization by means of different iterations and mono-multi disciplinary optimization runs. Figure 2 depicts the

main idea driving the development of this, where the main core can be divided in two branches:

1. The core classes providing the definition of basic objects, like edges, airfoils, planes, cuts, lofts, materials,

properties, etc.;

2. The interface classes providing the coupling between CPACS input and core objects.

In such a way the core objects were developed without constraints by the inputs, providing generality and re-usability.

The task to represent the final objects starting from CPACS file is carried out by the interface classes, the only ones

depending on the input file. First of all PyGFEM reads from CPACS file all the information concerning airfoils (both for

wings and fuselages), materials, beam profiles and properties definitions, common data needed for the definitions of all

the others objects. Once all these data are stored in Abaqus-CAE database, PyGFEM can define wings and fuselages.

Wing

The loft definition (for both wings and fuselages) is described by sections and elements. The section defines a plane in the

space and each section can hold different elements each of them defines an airfoil on its plane. To drive the loft the

leading and trailing edges are defined and used as path for the loft extrusion (Figure 3 top left). Once the external loft is

defined, the movable surfaces (leading edges and trailing edges devices and spoilers) can be defined (Figure 3 top right).

The idea is to take advantage of the same classes used to describe the wing lofts. The user defines inboard and outboard

positions (relative to the ‘parent‘ wing), while for the definition of the 2D geometry he can chose airfoils (among the ones

defined) or can define them starting from the wing geometry. In the last case PyGFEM automatically computes the correct

airfoils and defines the movable surfaces using the same approach used for the wing. At the end it modifies the parent loft

removing the faces belonging to the new component. Also the leading edge devices are defined using this idea, but in this

case a new surface is added to the parent geometry, in order to redefine the structural leading edge. It is important to

underline that the movable surfaces are objects derived by the same class of the wing one, therefore it is possible to

define other devices referring to a movable surface (like double slot flaps). Once all the movable surfaces are defined

PyGFEM starts assembling the structural model of the different components (wings, movables surfaces and fuselages).

For the wings, the principal structural component are: spars, ribs, skins and stringers.

PyGFEM can define spars arbitrarily oriented in the space, with arbitrarily property partition. On the upper and lower edge

of the spar, if specified, two stringers representing the lower and the upper cup are added. Ribs are collected in set, and if

specified, each rib, in the ribs set, can have a different property.

 As for spars, also the ribs can be defined arbitrarily in the space. The ribs can start from each characteristic geometry,

like leading edge and spars, can end on trailing edge, spars and if specified can end when PyGFEM finds an intersection

with another rib. Moreover it is possible to force the rib to be perpendicular to a reference geometry (leading edge, trailing

edge, a spar, the local y axis) (Figure 3 bottom left). Knowing spars and ribs positions it is possible to define skins and

stringers. CPACS provides a nested data structure for the description of the skins. The basic object of this data is the

Figure 3 Wings definition: Sections & Elements (top left), Movables surfaces (top right),

Spars & Ribs (bottom left), Skins & Stringers (bottom right)

simple skin that can be defined using spars, ribs, leading and trailing edges as border lines or by the definition of

bounding parametric points on the loft. Inside this object the user can define (using relative parameters) other skins with

different properties. Besides in each skin the user can define a stringers set specifying the number of stringers or the pitch

between stringers or each relative position. Moreover the stringers can be rotated respect to the direction defined by the

leading edge (Figure 3 bottom right).

Fuselage

Regarding the structural definition of the fuselage a different approach was used. While for the wing all the structural

objects were defined on the same part, sharing edges and points, for the fuselages, different parts are defined and then

linked together using rigid links. Using this approach the time needed by the tool to define the model is substantially

reduced. This because the whole time execution is driven by the stringers (and frames) definition, particularly by the cuts

on the surfaces. The number of stringers on the wing could be very high, but it is possible to perform the cut of all the

stringers at the same time, so saving a lot of computational time. The same approach is not feasible on the fuselage due

to the curvature of the geometry and to the mutual cuts between stringers and frames. At the moment PyGFEM is able to

define a complete FE model of a transport aircraft fuselage, and the classes are easily extendible to others type of

fuselages. At the moment the limitation is on the input file. Figure 4 shows all the different parts and a detail of the central

fuselage. The floor structure is modelled coupling beam and plate elements. Cross beams, strut beams and floor beams

are described by beam elements, while the floor is described by plate elements (Figure top left). PyGFEM automatically

defines the central fuselage, the part where the wing is linked to the fuselage (Figures 4 bottom) using different objects:

• The Keal Beam and its reinforcements defined to restore the bending stiffness decreased by the cut for the wing

box;

• The forward and rear pressure bulkheads, defined to carry on the pressure load of the cabin;

• The Side Boxes, defined to restore the lateral bending stiffness;

• The Lateral Panel reinforcements, defined to stiffen the main landing gear bay;

• The Floor Pressure Bulkhead, defined to carry on the pressure load of the cabin.

Properties and Sets

The database defined in Abaqus CAE environment can be managed and accessible to the user using PyGFEM. The

objects defined are able to handle all the properties of the model, moreover all the objects hold informations about their

geometry and mesh using different set definitions. This will be very helpful during optimization study and will be very

useful to run analysis on local objects like buckling using ad-hoc solutions.

Aerodynamic models

PyGFEM is able to define a structured aerodynamic mesh to be used as input for SUnPaM (Subsonic Unsteady Panel

Method), the aerodynamic solver available inside PyPAD, based on the Morino’s method. Figure 5 (bottom) show different

views of the results obtained on a test case. Starting from the different parts, the program merges all the components

finding each intersection, then starts to check all the different couples of intersecting parts, adding construction cuts to

simplify the geometry, or cuts to define the projection of wings wake on the other part involved in the intersection (Figure 5

top).

Figure 4 Fuselages definition

Loads and aeroelasticity: PyAERO module

PyAERO is a module developed to compute all the aeroelastic responses such as Trim, Flutter, Dynamic Analysis, in

order to get all the loads and all the responses needed for the structural sizing. PyAERO uses the structural model

defined by PyGFEM and the aerodynamic database computed using SunPaM. All the routines are written in Python, but

to get better computational time performances, some core functions are written in FORTRAN, in order to take advantages

of numerical libraries like Lapack, Optimized Blas and FFTW and to exploit the power of parallel computing using

OpenMP.

SunPaM

SUnPaM (Subsonic Unsteady Panel Method) is a panel aerodynamic solver, based on the Morino method (Morino et al.,

1975) & (Morino and Kuo, 1974) and developed in the Department of Aerospace Science and Technology of Politecnico

di Milano. The tool solves linearized subsonic compressible flow both in steady and unsteady conditions. The program

can exploit the power of modern multi-core CPU, both using external libraries for linear algebra (OpenBlas, Plasma (The

University of Tennessee)) and OpenMP during the definition of the matrices. Figure 6 shows some test cases for the

steady solution (full aircraft Figure 6 left) and on a single wing with oscillating flap (Figure 6 right).

Figure 5 Aerodynamic Mesh

Aeroelastic models

As previously introduced, PyAERO couples the structural and the aerodynamic models coming from PyGFEM by RBF

(Radial Basis Functions) interpolations. Regarding the structural model, at the moment PyAERO works using as input an

eigenvalue solution computed by Abaqus.

It imports all the grids definition (used to couple the structural model with the aerodynamic one), the modal displacements,

all the modal information and the nodal mass and stiffness matrices. The definition of the aeroelastic coupling between

structural and aerodynamic models becomes very simple taking advantage of the automatic definition of both the models

by PyGFEM. The structural model is divided in different parts each described by different sets and the same partition is

reflected also on the aerodynamic mesh. In this way, to define an interface element between structural and aerodynamic

mesh, the user must specify only the part name (of the structural model) the body name (of the aerodynamic model) and

Figure 6 SUnPaM results: steady solution (left), unsteady solution (imaginary and real part, right)

Figure 7 Aeroelastic coupling sets, aerodynamic (left) and structural (right)

the two set of the structural model describing the upper and lower surface. Using this information the solver is able to

compute the interfaces matrices to get displacements and velocities on aerodynamic mesh and forces on the structural

one.

Aeroelastic solvers

As introduced PyAERO provides different aeroelastic solvers in order to be able to perform all the analysis requested

during the preliminary sizing of an aircraft.

Trim Solution
PyAERO solves the Trim problem using a classical approach, therefore assuming a steady solution on the deformable

motion and considering a steady approximation of the aerodynamic. The trim problem can be written as:

𝑴𝑴𝒖̈𝒖 + 𝑲𝑲𝑲𝑲 = 𝑭𝑭𝟎𝟎 + 𝒒𝒒∞𝑸𝑸𝒔𝒔𝒔𝒔𝒖𝒖 + 𝒒𝒒∞𝑸𝑸𝒔𝒔𝒔𝒔𝒖𝒖𝒙𝒙

where 𝑴𝑴 and 𝑲𝑲 are the mass and the stiffness matrices, 𝒖𝒖 is the vector of nodal displacements, F0 is the vector of initial

nodal forces, 𝑞𝑞∞ is the dynamic pressure, 𝑸𝑸𝒔𝒔𝒔𝒔 is the steady approximation of aerodynamic forces due to nodal

displacements and 𝑸𝑸𝑠𝑠𝑠𝑠 is the steady approximation of aerodynamic forces due to mechanical flight degree of freedom 𝒖𝒖𝑥𝑥

(like α, β, p, q, r, etc.). Given the complexity of the structural model the nodal displacements u are described using a

modal bases:

𝒖𝒖 = 𝑼𝑼𝑼𝑼

Where U is the modal base and q are the modal amplitudes. The modal bases is defined considering also the six rigid

degrees of freedom, described in physical coordinates. Replacing the approximation of 𝒖𝒖 in the trim Equation:

𝑴𝑴𝑴𝑴𝒒̈𝒒 + 𝑲𝑲𝑲𝑲𝑲𝑲 = 𝑭𝑭𝟎𝟎 + 𝒒𝒒∞𝑸𝑸𝒔𝒔𝒔𝒔𝑼𝑼𝑼𝑼 + 𝑞𝑞∞𝑸𝑸𝑠𝑠𝑠𝑠𝒖𝒖𝑥𝑥

To improve computation performances PyAERO computes directly (using SUnPAM) the aerodynamic matrix 𝑸𝑸�𝑠𝑠𝑠𝑠 = 𝑸𝑸𝒔𝒔𝒔𝒔𝑼𝑼.

Thanks to the orthogonality properties of eigenvector, scaling the last Equation by 𝑼𝑼𝑻𝑻 it is possible to get:

�𝑴𝑴
𝑟𝑟 0

0 𝒎𝒎𝑙𝑙� �𝒒̈𝒒𝑟𝑟𝒒̈𝒒𝑙𝑙
� + �0 0

0 𝒌𝒌𝑙𝑙� �
𝒒𝒒𝑟𝑟
𝒒𝒒𝑙𝑙 � = �

𝑭𝑭0𝑟𝑟

𝑭𝑭0𝑙𝑙
� + 𝑞𝑞∞ �

𝑸𝑸�𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 𝑸𝑸�𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟

𝑸𝑸�𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 𝑸𝑸�𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙
� �
𝒒𝒒𝑟𝑟
𝒒𝒒𝑙𝑙 � + 𝑞𝑞∞ �

𝑸𝑸�𝑠𝑠𝑠𝑠𝑟𝑟

𝑸𝑸�𝑠𝑠𝑠𝑠𝑙𝑙
�

𝒖𝒖𝑥𝑥

Where 𝑴𝑴𝑟𝑟 is the global barycentric mass matrix, 𝒎𝒎𝑙𝑙 is the diagonal modal mass matrix associated to flexible modes, 𝒌𝒌𝑙𝑙 is

the diagonal stiffness matrix. Under the hypothesis of steady solution of the deformable part, the problem has 2nr + nl + nx

degrees of freedom with nr + nl equations, where nl, nr and nx are the number of modes, the number of rigid degrees of

freedom (six) and the number of flight mechanics degrees of freedom. The six unknowns 𝒒𝒒𝑟𝑟 can be neglected considering

that the gravity center position and the rotation around x axis (speed direction) do not give aerodynamic loads, while the

pitch and yaw rotation are already described by α and β angle of the flight mechanics set. Therefore the number of

unknowns is nr + nl + nx with nr + nl equations. This means that to have a close problem the user must fix nx unknowns.

Once the trim problem is solved, using 𝑸𝑸�𝑠𝑠𝑠𝑠 and 𝑸𝑸𝑠𝑠𝑠𝑠 it is possible to compute the nodal aerodynamic loads. Moreover,

knowing the rigid accelerations and the nodal mass matrix, it is also possible to compute the inertia nodal loads. In this

way for every trim conditions the user can export the corresponding nodal loads to compute the corresponding stress

solution.

Flutter
PyAERO includes a dedicated well know (MSC.NASTRAN) & (Harder et al., 1979) p-k futter solver in order to get the best

compromise between solution robustness and time efficiency. The utter problem can be written as:

�𝑠𝑠2𝑴𝑴 + 𝑠𝑠𝑪𝑪 + 𝑲𝑲− 𝑞𝑞∞𝑸𝑸𝑞𝑞𝑞𝑞(𝑀𝑀𝑀𝑀𝑀𝑀ℎ, 𝑝𝑝)�𝒒𝒒 = 0

Where 𝑴𝑴, 𝑪𝑪 and 𝑲𝑲 are the modal mass, damping and stiffness matrices and p is the complex reduced frequency:

𝑝𝑝 =
𝑠𝑠𝑠𝑠

2𝑉𝑉∞
= 𝑔𝑔 + 𝑘𝑘

Being c the reference cord and 𝑉𝑉∞ the flight speed.

The aerodynamic matrix is computed at different pure harmonic reduced frequencies. The p-k method considers the 𝑸𝑸𝑞𝑞𝑞𝑞

matrix as the sum of the real part 𝑸𝑸𝑞𝑞𝑞𝑞
𝑅𝑅 and the imaginary part 𝑸𝑸𝑞𝑞𝑞𝑞

𝐼𝐼 . Considering the imaginary part it is possible to write:

𝑞𝑞∞ 𝑸𝑸𝑞𝑞𝑞𝑞
𝐼𝐼 =

𝜌𝜌
2
𝑉𝑉∞2 𝑸𝑸𝑞𝑞𝑞𝑞

𝐼𝐼 𝑘𝑘
𝑘𝑘

=
𝜌𝜌
4
𝑐𝑐𝑉𝑉∞

 𝑸𝑸𝑞𝑞𝑞𝑞
𝐼𝐼

𝑘𝑘
 𝜔𝜔 ≃

𝜌𝜌
4
𝑐𝑐𝑉𝑉∞

 𝑸𝑸𝑞𝑞𝑞𝑞
𝐼𝐼

𝑘𝑘
 𝑠𝑠

Using this approximation, the flutter equation can be approximated by:

�𝑠𝑠2𝑴𝑴 + 𝑠𝑠 �𝑪𝑪 +
𝜌𝜌
4
𝑐𝑐𝑉𝑉∞

 𝑸𝑸𝑞𝑞𝑞𝑞
𝐼𝐼 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑘𝑘)

𝑘𝑘
� + 𝑲𝑲 − 𝑞𝑞∞𝑸𝑸𝑞𝑞𝑞𝑞

𝑅𝑅 (𝑀𝑀𝑀𝑀𝑀𝑀ℎ, 𝑘𝑘)�𝒒𝒒 = 0

The problem now is defined by pure real matrices and can be solved by normal eigenvalue algorithm. The solution must

be iterate on the different eigenvalues to get the correct 𝑸𝑸𝑞𝑞𝑞𝑞 approximation at the correct reduced frequencies k. Figure 8

shows a flutter diagram on the AGARD 445.6 wing test (Yates et al., 1963) & (Yates, 1987) performed for validation

purpose.

Dynamic Response
The dynamic modal problem in frequency domain can be described by:

�𝜔𝜔2𝑴𝑴 + j𝜔𝜔𝑪𝑪 + 𝑲𝑲− 𝑞𝑞∞𝑸𝑸𝑞𝑞𝑞𝑞(𝑀𝑀𝑀𝑀𝑀𝑀ℎ, 𝑘𝑘)�𝒒𝒒 = 𝑭𝑭(𝜔𝜔)

Where 𝑭𝑭(𝜔𝜔) can be both deterministic and stochastic vector of forces.

At the moment in PyAERO the user can simply define deterministic gusts, prescribed control surfaces motions and nodal

forces. Once the reduced modal problem is solved, the software is able to compute nodal responses on the structural

model both in term of displacements and forces. The user can ask as output displacements, velocities, accelerations, total

force on specific set of nodes, total force on a part and nodal forces. Moreover the user, to save memory, can chose to

get the wanted output only at a fixed time step. To write the problem in the time domain, a state space aerodynamic

model must be computed starting from the frequencies database of 𝑸𝑸𝑞𝑞𝑞𝑞(𝑀𝑀𝑀𝑀𝑀𝑀ℎ, 𝑘𝑘).

PyAERO takes advantages of the modern techniques developed in our department in the last years (Ripepi and

Mategazza, 2013) & (Ripepi, 2014). The aerodynamic model in time domain can be described by:

𝒙̇𝒙𝐴𝐴(𝑡𝑡) = 2
𝑉𝑉∞
𝑐𝑐

 𝑨𝑨𝐴𝐴𝒙𝒙𝐴𝐴(𝑡𝑡) + 2
𝑉𝑉∞
𝑐𝑐

 𝑩𝑩𝐴𝐴𝒒𝒒(𝑡𝑡)

𝒇𝒇𝐴𝐴(𝑡𝑡) = 𝑞𝑞∞ �𝑪𝑪𝐴𝐴𝒙𝒙𝐴𝐴(𝑡𝑡) + 𝑫𝑫0
𝐴𝐴𝒒𝒒(𝑡𝑡) +

𝑐𝑐
2𝑉𝑉∞

𝑫𝑫1
𝐴𝐴𝒒̇𝒒(𝑡𝑡) + �

𝑐𝑐
2𝑉𝑉∞

�
2
𝑫𝑫2
𝐴𝐴𝒒̈𝒒(𝑡𝑡)�

Figure 8 Flutter: Agard 445.6 wing Test

Where 𝑥𝑥𝐴𝐴(𝑡𝑡) is the aerodynamic state, 𝑨𝑨𝐴𝐴, 𝑩𝑩𝐴𝐴,𝑪𝑪𝐴𝐴,𝑫𝑫0
𝐴𝐴 ,𝑫𝑫1

𝐴𝐴 & 𝑫𝑫2
𝐴𝐴 are the matrices of the aerodynamic state space model,

𝒇𝒇𝐴𝐴(𝑡𝑡) is the vector of the aerodynamic force acting on the structural modal coordinates.

Coupling the aerodynamic system and the structural one:

𝑴𝑴𝒒̈𝒒(𝑡𝑡) + 𝑪𝑪𝒒̇𝒒(𝑡𝑡) + 𝑲𝑲𝑲𝑲(𝑡𝑡) = 𝒇𝒇𝐴𝐴(𝑡𝑡) + 𝒇𝒇𝐺𝐺(𝑡𝑡)

Where 𝒇𝒇𝐺𝐺(𝑡𝑡) is the vector of gust loads. The aeroelastic model becomes:

�
𝒙̇𝒙𝐴𝐴
𝒒̇𝒒
𝒒𝒒
� = �

2𝑉𝑉∞/𝑐𝑐𝑨𝑨𝐴𝐴 2𝑉𝑉∞/𝑐𝑐𝑩𝑩𝐴𝐴 0
0 𝐼𝐼 0

𝑞𝑞∞𝑴𝑴� −1𝑪𝑪𝐴𝐴 𝑴𝑴�−1𝑲𝑲� 𝑴𝑴� −1𝑪𝑪�
� + �

0
0

𝑴𝑴�−1
� 𝒇𝒇𝐺𝐺

Defining:

𝑴𝑴� = 𝑴𝑴− 𝑞𝑞∞ �
𝑐𝑐

2𝑉𝑉∞
�
2
𝑫𝑫2
𝐴𝐴

𝑪𝑪� = 𝑪𝑪 − 𝑞𝑞∞
𝑐𝑐

2𝑉𝑉∞
𝑫𝑫1
𝐴𝐴

𝑲𝑲� = 𝑲𝑲− 𝑞𝑞∞𝑫𝑫0
𝐴𝐴

For what concerning the gust input 𝒇𝒇𝐺𝐺, at the moment PyAERO uses a hybrid approach that combines the Fourier-

transform and the time-domain approaches, presented by Karpel et al. (2005). The purpose of this approach is to obtain a

time-domain state-space model without performing rational approximation to the spiral gust columns. The Fourier

transform of the gust profile is computed, than the modal loads 𝒇𝒇𝐺𝐺(𝜔𝜔) are defined in the frequency domain. At this point

the term𝒇𝒇𝐺𝐺(𝑡𝑡) is computed by mean of inverse Fourier transform.

Application

A test case involving all the different capabilities of the framework just described is reported. The test case is based on a

CPACS model of a transport aircraft courtesy of Dieter Kohlgrueber (DLR) used for the development of the models and

analysis reported in (Scherer et al., 2013). Table 1 summarizes the principal data of the model.

Table 1 mass and geometry properties

M [kg] Ixx [Kgm2] Iyy [Kgm2] Izz [Kgm2] Ixz [Kgm2] S [m2] c [m] b [m]

48475 961948.5 1895684. 2768967. -133950.7 122.4 4.2 16

Structural and aerodynamic models

The structural model is composed by 21 parts, 29945 nodes and 40969 elements. Figure 9 depicts some views of the

model and the detail of the wing fuselage interface. Figure 10 shows different views of the aerodynamic mesh used both

for steady and unsteady analysis. The total number of panels is approximately 20000. The aeroelastic model is defined

using the first 25 normal modes of the aircraft. Figures 11 show the first three deformable normal modes of the model,

comparing the shape on the structural mesh and on the aerodynamic one.

Figure 9 Structural Model

Figure 10 Aerodynamic model

Trim Analysis

Six different trim analysis (all at sea level) are presented:

• 2 Level flight conditions at Mach 0.3 and Mach 0.5,

• 2 Pull-up conditions (nz = 2:5) at Mach 0.3 and Mach 0.5,

Figure 11 First three elastic modes, structural and aerodynamic meshes

• 2 Sideslip conditions with b = 10deg at Mach 0.3 and Mach 0.5.

For all the conditions the nodal loads are computed and exported in Abaqus format. These loads are then used to perform

a static analysis in Abaqus to get the stress solution. Tables 2 and 3 report the principal stability and control derivatives,

for the rigid and for the elastic model, Table 4 reports the trim solutions (rigid and elastic model) for the level flight

conditions, Table 5 reports the trim solutions for the pull-up conditions and Table 6 reports the solutions for the sideslip

analysis (angles in degree and accelerations in [m/s2]). Figure 12 shows the displacement solution and the Von-Mises

stress distribution for the different load cases.

Table 2 stability and control derivatives, rigid model

Mach 𝑐𝑐𝑙𝑙α 𝑐𝑐𝑀𝑀α 𝑐𝑐𝑙𝑙𝛿𝛿𝑒𝑒 𝑐𝑐𝑀𝑀𝛿𝛿𝑒𝑒 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝐿𝐿𝐿𝐿 𝑐𝑐𝑁𝑁𝑁𝑁 𝑐𝑐𝑦𝑦𝛿𝛿𝑟𝑟 𝑐𝑐𝐿𝐿𝛿𝛿𝑟𝑟 𝑐𝑐𝑁𝑁𝛿𝛿𝑟𝑟 𝑐𝑐𝐿𝐿𝛿𝛿𝑎𝑎2

0.3 5.65 -1.876 0.455 -1.895 -0.66 0.255 -0.259 -0.304 0.082 -0.336 0.167

0.5 5.896 -1.973 0.47 -1.976 -0.68 0.26 -0.274 -0.315 0.0849 -0.349 0.172

Table 3 stability and control derivatives, elastic model

Mach 𝑐𝑐𝑙𝑙α 𝑐𝑐𝑀𝑀α 𝑐𝑐𝑙𝑙𝛿𝛿𝑒𝑒 𝑐𝑐𝑀𝑀𝛿𝛿𝑒𝑒 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝐿𝐿𝐿𝐿 𝑐𝑐𝑁𝑁𝑁𝑁 𝑐𝑐𝑦𝑦𝛿𝛿𝑟𝑟 𝑐𝑐𝐿𝐿𝛿𝛿𝑟𝑟 𝑐𝑐𝑁𝑁𝛿𝛿𝑟𝑟 𝑐𝑐𝐿𝐿𝛿𝛿𝑎𝑎2

0.3 5.67 -1.868 0.455 -1.895 -0.662 0.254 -0.26 -0.305 0.082 -0.337 0.167

0.5 4.74 -1.484 0.504 -1.636 -0.649 0.244 -0.243 -0.29 0.0956 -0.327 0.0999

Table 4 level flight trim solutions

Mach = 0.3 𝛼𝛼 [𝑑𝑑𝑑𝑑𝑑𝑑] 𝛿𝛿𝑒𝑒 [𝑑𝑑𝑑𝑑𝑑𝑑] Mach = 0.5 𝛼𝛼 [𝑑𝑑𝑑𝑑𝑑𝑑] 𝛿𝛿𝑒𝑒 [𝑑𝑑𝑑𝑑𝑑𝑑]

Rigid 4.95 -5.694 Rigid 0.535 -1.20

Elastic 4.92 -5.64 Elastic 1.245 -2.016

Table 5 pull up trim solutions

Mach = 0.3 𝛼𝛼 [𝑑𝑑𝑑𝑑𝑑𝑑] 𝛿𝛿𝑒𝑒 [𝑑𝑑𝑑𝑑𝑑𝑑] Mach = 0.5 𝛼𝛼 [𝑑𝑑𝑑𝑑𝑑𝑑] 𝛿𝛿𝑒𝑒 [𝑑𝑑𝑑𝑑𝑑𝑑]

Rigid 15.09 -16.13 Rigid 4.03 -4.84

Elastic 15.02 -16 Elastic 5.73 -6.30

Table 6 Sideslip trim solutions

Mach = 0.3 𝛼𝛼 𝛿𝛿𝑒𝑒 𝛿𝛿𝑎𝑎2 𝛿𝛿𝑟𝑟 𝑦̈𝑦 Mach = 0.5 𝛼𝛼 𝛿𝛿𝑒𝑒 𝛿𝛿𝑎𝑎2 𝛿𝛿𝑟𝑟 𝑦̈𝑦

Rigid 4.95 -5.70 -11.56 -7.59 -1.17 Rigid 0.535 -1.20 -11.31 -7.74 -3.30

Elastic 4.95 --5.64 -11.517 -7.60 -1.17 Elastic 1.245 -2.013 -17.65 -7.059 -3.21

Dynamic Analysis
Before running the dynamic responses, the flutter analysis is computed at Mach 0.5. The analysis is performed with fixed

movable surfaces. Figure 13 shows the flutter diagram. Once checked that the model has no instabilities, different

dynamic analysis are performed, two of them are reported:

1. Discrete gust condition, 𝑣𝑣𝑔𝑔 = 15(1 − cos(3𝜋𝜋𝜋𝜋)) [𝑚𝑚/𝑠𝑠], Mach=0.5;

2. Elevator rotation, 𝛿𝛿𝑒𝑒 = 15 sin(2𝜋𝜋𝜋𝜋) [𝑑𝑑𝑑𝑑𝑑𝑑], Mach=0.5.

Figure 12 Trim deformations and Von-Mises stress distributions

Level flight, pull-up and sideslip for Mach 0.3 (left) and Mach 0.5 (right)

The output requested are:

• The wing root internal loads,

• The horizontal tail root internal loads,

• The internal loads of the fuselage section after the wing.

All the internal loads are computed trough the summation of forces technique.

For each solution, two time steps are selected; for the gust analisys the first one corresponds to the time when the load

factor reaches the maximum value and the second one when the bending moment of the wing is maximum. For the

elevetor manouver the first time step corresponds to the time when the banding moment on the horizontal tail is minimum

and the second one when the bending moment of the wing is maximum. In these time steps the nodal loads, both

aerodynamic and inertial ones (computed using the nodal mass matrix) of the whole aircraft are exported and an Abaqus

steady solution is executed.

Figures 13 - 16 show the time history of the outputs for the gust analysis and Figure 17 shows the deformations and the

Von-Mises stress obtained at the two selected time steps.

Regarding the elevator maneuver, Figure 18 - 21 report the time history of the outputs and Figure 22 shows the

deformations and the Von-Mises stress obtained at the two selected time steps.

Figure 13 Flutter Diagram at Mach = 0.5

Figure 15 Gust Condition: CG responses

Figure 14 Gust Condition: Wing root responses

Figure 16 Gust conditions: Horizontal tail responses

Figure 18 Gust conditions: Fuselage responses

Figure 17 Gust condition: deformation and Von-Mises stress for maximum load factor (left) and maximum wing

bending moment (right)

Figure 19 Elevator Manouver: CG Responses

Figure 20 Elevator Manouver: Wing root responses

Figure 21 Elevator Manouver: Horizontal tail responses

Figure 22 Elevator Manouvre: Fuselage responses

Conclusion

This work shows the definition of a new framework designed to be able to perform all the different analysis of the

preliminary design managing quite big databases both for structural and for aerodynamic models. The tool is able to

communicate with Abaqus in a very easily why, in order to take advantage of one of the most powerful CAD/CAE

software. As shown by the test case, the tool at the moment is able to define complete and complex models and to

perform different aeroelastic simulations to get responses and loads useful for the aircraft design. Different new features

are programmed both for the mid-term and for the long-term time. Regarding the mid-term:

• At the moment is under development the coupling of the aeroelastic state space model with the multi-body solver

MBDyn (Masarati, 2014), in order to be able to compute landing conditions and therefore landing loads on the

whole aircraft;

• The second feature that will be added is a smart tool able to define all the load cases and analysis requested by

the regulations (EASA-CS23 and EASA-CS25) starting from few inputs, like the aircraft class and the flight

envelope.

Regarding the long-term development:

• A tool able to identify the design load cases for the different structures once all the load cases are defined and

computed;

• Knowing the design load cases the sizing process can be defined trough an optimization problem. Different

optimization tools are under study to identify the best solution and approach.

Acknowledgments

The authors are very grateful for the help given by Dieter Kohlgrueber (DLR) both for the CPACS model he

Figure 23 Elevator Manouver: deformation and Von-Mises stress for minimim bending

moment on the horizontal tail (left) and maximum wing bending moment (right)

provided us and used for the test cases shown in the paper, and for the help given to understand the fuselage and

the wing-fuselage interface CPACS parameterization.

References

Cavallaro,sh R. (2008). A code for surface modeling and grid generation coupled to a panel method for aerodynamic
configuration design. Master’s thesis, Universitá degli Studi di Pisa.

Daoud, F., Petersson, O., Deinert, S., and Bronny, P. (2012). Multidisciplinary airframe design process: Incorporation of
steady and unsteady aeroelastic loads. In 12th AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference and 14th AIAA/ISSM.

Deinert, S., Petersson, O., Daoud, F., and Baier, H. (2013). Aircraft loft optimization with respect to aeroelastic lift and
induced drag loads. In 10th World Congress on Structural and Multidisciplinary Optimization.

DLR (2013). Cpacs – a common language for aircraft design: http://code.google.com/p/cpacs/.
Dorbath, F., Nagel, B., and Gollnick, V. (2011). A knowledges based approach for automated modelling of extended wing

structures in preliminary aircraft design. In 60. Deutsche Luft- und Raumfahrtkongress.
Dorbath, F., Nagel, B., and Gollnick, V. (2012). Implementation of a tool chain for extended physics-based wing mass

estimation in early design stages. In 71th Annual Conference of Allied Weight Engineers, Inc.
Harder, R. L., Rodden, P., and Bellinger, E. D. (1979). Aeroelastic addition to nastran. CR 3094,NASA.
Hurlimann, F. (2010). Mass Estimation of Transport Aircraft Wingbox Structures with a CAD/CAE-Based Multidisciplinary

Process. PhD thesis, ETH Zurich.
Karpel, M., Moulin, B., and Chen, P. C. (2005). Dynamic response of aeroservoelastic systems to gust excitation. Journal

of Aircraft, 42(No. 5).
Klimmek, T. (2013). Development of a structural model of the crm configuration for aeroelastic and loads analysis. In

IFASD 2013, International Forum on Aeroelasticity and Structrual Dynamics.
Ledermann, C., Ermanni, P., and Kelm, R. (2006). Dynamic cad objects for structural optimization in preliminary aircraft

design. Aerospace Science and Technology, Vol. 10.
Ledermann, C., Hanske, C., Wenzel, J., Ermanni, P., and Kelm, R. (2005). Associative parametric cae methods in the

aircraft pre-design. Aerospace Science and Technology, Vol. 9.
Maierl, R., Petersson, O., and Daoud, F. (2013). Automated creation of aeroelastic optimization models from a

parameterized geometry. In IFASD 2013, International Forum on Aeroelasticity and Structrual Dynamics.
Masarati, P. (2014). Mbdyn - free multibody dynamics simulation software: www.mbdyn.org.
Moerland, E., Zill, T., Nagel, B., Spangenberg, H., Schumann, H., and Zamov, P. (2012). Application of a distributed mdao

framework to the design of a short- to medium-range aircraft. In Deutscher Luft-und Raumfahrtkongress.
Morino, L., Chen, L.-T., and Suciu, E. O. (1975). Steady and oscillatory subsonic and supersonic aerodynamics around

complex configurations. AIIA Journal, Vol. 13(No. 3).
Morino, L. and Kuo, C.-C. (1974). Subsonic potential aerodynamics for complex configurations: A general theory. AIIA

Journal, Vol. 12(No. 2).
MSC.NASTRAN. Aeroelastic analysis user’s guide.
Osterheld, C. M., Heinze, W., and Horst, P. (2000). Influence of aeroelastic effects on preliminary aircraft design. In ICAS.
Parrinello, A. and Mantegazza, P. (2010). Independent two-fields solution for full-potential unsteady transonic flows. AIAA

Journal, Vol. 48.
Parrinello, A. and Mantegazza, P. (2012). Improvements and extensions to a full-potential formulation based on

independent fields. AIAA Journal, Vol. 50.
Ricci, S. (2013). Neocass suite homepage: http://www.neocass.org/.
Ripepi, M. (2014). Model Order Reduction for Computational Aeroelasticity. PhD thesis, Politecnico di Milano.
Ripepi, M. and Mategazza, P. (2013). Improved matrix fraction approximation of aerodynamic transfer matrices. AIAA

Journal, 51(No. 5).
Rocca, G. L. (2011). Knowledge Based Engineering Techniques to Support Aircraft Design and Optimization. PhD thesis,

Technische Universiteit Delft.
Scherer, J., Kohlgruber, D., Dorbath, F., and Sorour, M. (2013). A finite element based tool chain for structural sizing of

transport aircraft in preliminary aircraft design. In CEAS 2013.
Tarkian, M. and Tessier, F. J. Z. (2007). Aircraft parametric 3d modelling and panel code analysis for conceptual design.

Master’s thesis, Division of Machine Design, Linkoping University Institute of Technology.
The University Of Tennessee. Plasma homepage: http://icl.cs.utk.edu/plasma/.
Vescovini, R. (2011). Analytical formulation for buckling and post-buckling analysis and optimization of composite

stiffened panels. PhD thesis, Politecnico di Milano.

Werner-Westphal, C., Heinze, W., and Horst, P. (2008). Multidisciplinary integrated preliminary design applied to
unconventional aircraft configurations. Journal of Aircraft, Vol. 45(No. 2).

Yates, E. C. J. (1987). Agard standard aeroelastic confgurations for dynamic response i—wing 445.6. NASA, TM 100492.
Yates, E. C. J., Land, N. S., and Foughner, J. T. (1963). Measured and calculated subsonic and transonic flutter

characteristics of a 45deg swepteback wing planform in air and in freon-12 in the langley transonic dynamics tunnel.
NASA, TN D-1616.

	FronteRivista
	TRAVL_01-16
	Abstract
	Introduction
	Aero-structural models generation: PyGFEM module
	Loads and aeroelasticity: PyAERO module
	Application
	Conclusion
	Acknowledgments
	References

