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Abstract—This paper introduces an empirical approach to
dispatch resources in real-time power system operation with
growing levels of uncertainties emerging from intermittent and
distributed energy resources in the supply and the demand side.
It is shown that by taking empirical data of specific sizes, the
dispatch results can lead to a quantifiable and rigorous bound
on the risk of violating constraints at the implementation stage.
In particular, we formulate the look-ahead real-time economic
dispatch problem using the scenario approach. This approach
takes empirical data as input and guarantees a tunable proba-
bility of violating the constraints according to the input data size.
By exploiting the structure of the economic dispatch, we show
that in the absence of transmission constraints, the number of
samples that is required by the theory does not grow with the
size of the problem. In the more general case with transmission
constraints, it is shown that the posterior bound on the risk of
dispatch can be quantified and can be much smaller than the risk
bound before solving the dispatch. Numerical examples based
on a standard test system suggest that the scenario approach
can provide a practically attractive solution with theoretically
rigorous properties for risk-limiting power system operations.

Index Terms—Chance constrained programming, economic
dispatch, electricity market, renewable generation, robust op-
timization, scenario approach.

I. INTRODUCTION

Increasing levels of uncertain distributed generation re-
sources are being integrated into electric power systems. These
new resources of energy are distributed both in the supply and
the demand side. Wind generation and utility-scale solar farms
are two examples of these resources on the supply side, and
roof-top solar PVs is an example of these resources on the
demand side. For instance, wind power currently comprises
22% of total generation capacity in Electric Reliability Council
of Texas (ERCOT) and the record of the wind share in the total
energy production in any one hour reached 54% on October
27, 2017 [1]. ERCOT also plans to integrate 8.3-11.9% of solar
generation and retire a substantial portion of its coal generation
resources over the next decade [2]. Similar trends are also
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TABLE I: Nomenclature

Sets:
∆ The uncertainty set.
∆S Set of S scenarios which are randomly ex-

tracted from uncertainty set ∆, δs ∈ ∆S .
A Set of scenarios to be eliminated by any

arbitrary rule.
cgi Submitted energy offer curve of unit gi.
G,Gr Set of operating generators, set of renewable

generation resources, Gr ⊂ G.
X Set of feasible solutions for the scenario

problem (convex and closed), x ∈ X .
Parameters and constants:
ε, εk Risk parameter, risk parameter after discard-

ing k scenarios.
ε Upper bound of the risk parameter in the a-

posteriori stage.
ν?S Number of support constraints.
β Confidence parameter.
Bg Nodal generation incident matrix.
Bl Nodal load incident matrix.
d Number of decision variables in the scenario

problem X ⊂ Rd.
F , F Branches flow vector, branches capacity vec-

tor.
gi, lj Symbols of generator gi and load point lj .
Nb, Ng
Nl, Nk Number of buses, generators, loads and lines.
PTDFe Extended power transfer distribution factor

matrix.
pg Generation forecast error matrix, (pgi =

0 ∀gi /∈ Gr).
pl Load forecast error matrix.
Pn Nodal power injection matrix.
P̂l Load forecast matrix.
RUgi Upward ramp rate capacity of unit gi.
RDgi Downward ramp rate capacity of unit gi.
T Number of intervals of the LAED.
z Objective function.
Decision variables
Pg Power generation matrix.
Pgi Power generation for gi.

occurring elsewhere in the world. Operational planning such
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as unit commitment and dispatch will need to be revisited in
order to reliably absorb these new resources at an affordable
cost.

Due to the uncertainty and variability introduced by re-
newables, there has been a large body of literature devoted
to solving Optimal Power Flow (OPF) [3], [4]. At the day-
ahead stage, there has been a large body of literature applying
stochastic [5], [6] and robust [7], [8] optimization techniques
in unit commitment problems, which involve integer variables.
At the near real-time stage, there have been similar efforts
on improving the performance of economic dispatch, or the
optimal power flow problems. Among these efforts is look-
ahead economic dispatch (LAED), which employs a moving
window optimization to account for inter-temporal variations
in the near term [9]–[12]. The key idea is to extend the
optimization horizon from one-time interval to multiple time-
coupled intervals, allowing for early detection and better man-
agement of ramping/congestion related variations. However,
how to model uncertainty for such a problem is still under
exploration [13]–[18].

One can categorize the methods dealing with uncertainty
into two general approaches. The first class of methods, which
are categorized as robust optimization [19]–[21] try to address
any realization of uncertainty. However, robust optimization
guarantees feasibility only if realizations of uncertainty occur
inside the predefined uncertainty set or dynamically evolving
uncertainty set, and, second, the extent of introduced conser-
vativeness is generally unknown [22].

The second approach consists in finding a solution that satis-
fies the constraints with a predefined (usually high) probability
—chance-constrained programming (CCP). CCP often offers
a trade-off between the level of conservativeness of the results
and feasibility of the problem. CCP is NP-hard in general.
Methods to deal with CCP include: finding a deterministic
equivalent to the chance-constrained program [23], Big-M
approach [24], [25], robust counterpart [26], [27], and the
scenario approach [28], [29].

With the proliferation of sensors and computational power,
it is becoming increasingly desirable to obtain insights from
empirical data and observations. Scenario approach as a
sample-based optimization techniques has several features that
makes it desirable for operational decision making: (1) it is
driven purely by samples of empirical data; (2) it provides
theoretical guarantees on the risk of violating the constraints;
(3) it might be able to present a much tighter upper bound
on the risk after observing complexity of the solution, and
(4) it provides the option of dropping some realizations of
uncertainty or relaxing the constraints while keeping violation
probabilities within defined bounds.

The scenario approach deals with high levels of uncer-
tain resources and provides quantifiable risk levels at the
implementation stage. Much of the uncertainties arise from
the high penetration of distributed energy resources (DERs).
There have been a number of efforts to exploit the scenario
approach theory in the general field of optimization, control
[30], [31], and power system adequacy and security assessment
[32]–[35]. This work is an effort to exploit the potential of
the scenario approach theory for real-time scheduling and

dispatch with high level of renewable resource penetration.
In particular, the focus of the paper is on the scalability of the
scenario theory to the real-time power system operation which
will be discussed in great details in Section III.

The theoretical guarantees provided by the scenario ap-
proach can be a-priori (before collecting data) or a-posteriori
(after computing a solution x? based on the collected data).
Correspondingly, depending on the chosen type of guarantee,
the implementation of the scenario approach can be different.

Specifically, according to the a-priori results, it is possible
to determine the number of scenarios that are required to
attain a specified level of risk with high confidence. In this
case, the scenario algorithm consists of the following steps:
Step 1, specify the risk tolerance and the level of confidence
in the results; Step 2, acquire an adequate dataset of a size
that guarantees the risk and confidence levels; Step 3: Solve
the problem (finding x?) taking only the sampled scenarios
into account; and Step 4 (optional), eliminate a subset of
scenarios from the sample set, using any rule, resulting in
a new quantifiable risk parameter, but with a solution x?′ with
lower cost, z(x?′) ≤ z(x?) (trading risk for performance).

Along the a-posteriori approach, instead, the scenario al-
gorithm is run with a given dataset of any size. Then, after
computing the solution, one can analyze its complexity (de-
fined precisely in Section III), and, by studying the risk jointly
with the complexity, one can obtain a more clear knowledge of
the actual risk of the scenario solution. This process is called
Wait-and-Judge approach in [36]. It will be shown that this
can play a key role vis-a-vis the scalability of the scenario
approach method for bulk power systems applications.

The main contributions of this paper are as follows:

• A scenario approach-based formulation of LAED (Sc-
LAED) that provides a guarantee on the risk level for any
underlying distribution of uncertainty in the generation
and/or demand is proposed.

• Conditions on the size of the dataset are derived under
which the risk does not exceed a certain threshold with
high probability.

• To address scalability of scenario approach theory to the
real time power system operation, it is shown that there
are cases where the size of the dataset needed to guarantee
a risk threshold is independent of the size of LAED
(i.e. the number of generators). Moreover in general, it
is shown that the risk guarantees can be tightened to a
more precise upper bound a-posteriori by observing the
complexity of the Sc-LAED solution.

• Scenario reduction in Sc-LAED is also considered: one
can use any rule to eliminate scenarios and thereby
avoid overly conservative solutions, with measurable risk
parameter changes.

The rest of this paper is organized as follows. Section II
presents the formulation of the LAED. Section III presents
the methods and key theoretical results of the scenario-based
dispatch. Section IV presents case studies using a 2000-bus test
case. Conclusions and future work are presented in Section V.
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II. TAXONOMY OF LOOK-AHEAD ECONOMIC DISPATCH
UNDER UNCERTAINTY

A comparison between different LAED problem formula-
tions is presented in this section. State of the art approaches
in solving LAED are briefly discussed along with the proposed
formulation for the Sc-LAED. The results in the first decision
interval, e.g., t = 1 are binding and the decisions for future
intervals are considered as advisory and subject to change
during future dispatch intervals.

A. Deterministic, stochastic and robust LAED

The most common approach to look-ahead economic dis-
patch is a deterministic one (1). The dispatch aims at balancing
the deterministic forecasted demand with least cost while
satisfying the constraints. This type of dispatch uses the
least number of decision variables and/or constraints, and
it is naturally formulated as a linear programming problem.
Therefore it is easier to adopt in real-time market clearing
processes. However, it was not designed to take decisions
against forecast uncertainty:

min
Pgi

[t]
z =

T∑
t=1

Ng∑
i=1

cgi [t]Pgi [t] (1a)

s.t.
Ng∑
i=1

Pgi [t] =

Nl∑
j=1

P̂lj [t] ∀t = 1, 2, . . . T, (1b)

− F ≤ F [t] ≤ F , ∀t = 1, 2, . . . T, (1c)
RDgi ≤ Pgi [t]− Pgi [t− 1] ≤ RUgi (1d)
∀t = 1, 2, . . . T,∀i,

Pmingi [t] ≤ Pgi [t] ≤ Pmaxgi [t] ∀t = 1, 2, . . . T,∀i.
(1e)

Supply and demand balance is enforced by (1b). Inequalities
(1c), (1d), and (1e) are transmission flow limits, generator
ramp-up and ramp-down constraints, and offered minimum
and maximum generator capacities respectively for each inter-
val. Line flow limits are modeled as element-wise inequalities
in (1c), where F = PTDFe × Pn. PTDFe is the extended
power transfer distribution factor matrix with a zero column
vector inserted on the slack bus. Therefore the size of this
matrix at each time t is Nk ×Nb and Pn is the nodal power
injection matrix [37]. Pn can be calculated as (2). The forecast
errors for generation and load are not being considered in the
deterministic formulation and will be discussed in Subsection
II-B. Elements of incident matrices, Bg and Bl, for each node
n are as (3) and (4).

Pn = Bg(Pg + pg)−Bl(P̂l + pl) (2)

bgn,gi =

{
1 if gi

connected to−−−−−−−→
bus

n

0 otherwise

}
, (3)

bln,lj =

{
1 if lj

connected to−−−−−−−→
bus

n

0 otherwise

}
. (4)

In contrast to the deterministic approach, stochastic and
robust LAED consider the uncertainty for the non-binding time
intervals. Stochastic LAED minimizes the overall expected
cost of dispatch by incorporating the probability distribution
of the forecast error.

In robust LAED, an optimal solution is sought that is
feasible for all of the realizations of uncertainty in the system.
Therefore, if robust LAED finds a feasible solution, then the
problem is indeed feasible provided that the uncertainty set
considered in the model accurately reflects the underlying un-
certainty. In contrast to the stochastic approach, robust LAED
requires less information about the underlying uncertainty, but
can return conservative results. The robust LAED formulation
that we follow in this paper is based upon [17].

B. Scenario approach LAED

Sc-LAED is defined as in (5), where S scenarios,
δ1, . . . , δS , are extracted from an uncertainty set ∆ according
to a probability distribution P, and are simultaneously en-
forced [28], [38]. The main difference between the Sc-LAED
formulation and robust LAED is in their approach toward
uncertainty. While some robust LAED methods confine the
borders of the uncertainty set (e.g., at µ± 3σ), [17], [39], this
choice impacts on the robustness and the conservatism of the
results in a way that is difficult to quantify and deal with. On
the other hand, the scenario approach is a direct approach, that
is, data (the sampled scenarios) are used directly in (5), without
any preliminary design of the uncertainty set. Thus, in Sc-
LAED, the set of the uncertain values for which the constraints
are enforced is the set of the sampled scenarios, and, as we
shall see, there are theorems that show how the number of
sampled scenarios can be used to tune the probability that
the obtained solution is satisfied by the unobserved uncertain
values.

A crucial fact is that knowledge of the probability measure P
over scenarios is not required: all that is required is a historical
set of scenarios from the past that have already occurred.
This sets the scenario approach apart from classic stochastic
approaches where P is assumed to be known.

Note also that it is often the case that P is only implicitly
defined by a complex model of the reality. In this case, valid
scenarios (i.e., scenarios that are independent and identically
distributed (i.i.d.)) can be generated by simulations, e.g. by
resorting to statistical weather models [40]. The key theoretical
guarantee provided by the scenario approach is that there is a
rigorous upper bound on the level of risk associated with this
type of dispatch, along with specified confidence level. For
more discussion on the fundamental differences between the
scenario approach and other approaches the reader is referred
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to [41].

min
Pgi

[t]
z =

T∑
t=1

Ng∑
i=1

cgi [t]Pgi [t] (5a)

s.t.
Ng∑
i=1

Pgi [t] =

Nl∑
j=1

P̂lj [t], t = 1, (5b)

Ng∑
i=1

Pgi [t] ≥
Nl∑
j=1

P̂lj [t] + pδs [t]

∀δs ∈ ∆S ,∀t = 2, 3, . . . T, (5c)

− F ≤ F δs [t] ≤ F , ∀δs ∈ ∆S ,∀t = 1, 2, . . . T,
(5d)

RDgi ≤ Pgi [t]− Pgi [t− 1] ≤ RUgi
∀t = 1, 2, . . . T,∀i, (5e)

Pmingi [t] ≤ Pgi [t] ≤ Pmaxgi [t] ∀t = 1, 2, . . . T,∀i.
(5f)

We now consider (5) in more details. The role of con-
straints are the same as that discussed for (1), with two
differences. First the power balancing constraint is modeled
as an equality constraint for the binding (and deterministic)
interval, whereas it is modeled as an inequality for the non-
binding (and subject to the uncertainty) interval. The intent
of modeling (5c) as inequality is to have enough capacity to
respond to all unexpected changes in the load and generation
[17]. Second, (5c) and (5d) are scenario-dependent constraints.
pδs [t] in (5c) is the net forecast error of the load and inter-
mittent energy resources under scenario δs and is defined as:
pδs [t] =

∑Nl

j=1 p
δs
lj

[t] −
∑Ng

i=1 p
δs
gi [t], pgi = 0 ∀gi /∈ Gr.

For resources with time-varying upper bound on generation,
such as wind and solar, Pmaxgi [t] is the maximum sustained
limit of generation submitted by the resource at time t.

For simplicity, we rewrite (5) as (6), where (6b) represents
(5b, 5e, 5f) and (6c) represents (5c, 5d):

min
x∈X

z = cTx (6a)

s.t. f1(x) ≤ 0, (6b)
f2(x, δs) ≤ 0, ∀δs ∈ ∆S . (6c)

As we shall see, the number S of scenarios that guarantees
a certain risk level can be computed independently of the
underlying probability distribution of uncertainties, and mainly
depends on the level of risk that one is willing to tolerate
and the number of decision variables. If some scenarios cause
unacceptable increments in cost (or result in infeasibility vis-
a-vis dispatch), they can be removed from ∆S with controlled
and quantifiable increase on the risk parameter, ε. Also, after
finding a solution to (5), it can be shown that one can have
access to the upper bound on conservativeness of the resulting
solution. Further details on exploiting the scenario approach
theory for the purpose of solving (5) are discussed in Section
III.

Before a deeper investigation of the scenario theory, a
brief discussion about the impact of Sc-LAED on electricity
market nodal pricing might be desirable. Locational Marginal
Pricing is the main approach to define electricity prices and

transmission congestion costs in many wholesale markets. To
calculate the Locational Marginal Prices (LMPs) in Sc-LAED,
a process similar to ex-post LMP calculation known as the
pricing run in Independent System Operators (ISO) such as
PJM, ISO New England, and NYISO [42] should occur. The
inputs to the LMP calculation are the results from the Sc-
LAED binding interval and the subset of active transmission
constraints. Essentially the results for t = 1 from (5) are used
to find LMPs by solving a single interval problem. There are
different approaches to calculate the ex-post LMPs such as
[42]–[44]. The Appendix describes one of the most common
approaches based on [45], [46] for the structure of our problem
as (5).

Sc-LAED does not have a direct impact on markets clearing
before the real-time market. For instance, Financial Trans-
mission Rights (FTRs) allow market participants to hedge
against transmission congestion charges present in the day-
ahead market [47]. However, Sc-LAED might have an impact
on market participants profiting from the differences between
real-time and day-ahead prices. For instance, for the case
of virtual transactions. The value of these products depends
on the differences between day-ahead and real-time prices.
Without a detailed simulation study, it is difficult to comment
on the impact of Sc-LAED compared to conventional dispatch
in terms of impact on Virtual trading profit/loss.

III. COMPUTATIONAL ALGORITHM TO SOLVE THE
SCENARIO APPROACH ECONOMIC DISPATCH

The Sc-LAED approach prescribes to solve a convex op-
timization problem whose constraints depend on sampled
scenarios, which are expected to carry knowledge about the
future behavior of load, wind and solar resources. Precisely,
a set of scenarios ∆S ⊂ ∆ is obtained by sampling the
uncertainty set ∆, and the problem (6) is then solved for
the scenarios belonging to ∆S . Problem (6) is an instance of
what in the literature is called a Scenario Problem (or Scenario
Program, see e.g., [28], [29], [36]), and we will denote it by
SPS .

The central question that arises is therefore the following:
how much one can rely on ∆S as a representative of the
whole uncertainty set ∆, which includes all the possible (yet
unseen) realizations of the stochastic uncertainty? In order
to address this question in quantitative terms, we have to
define rigorously the risk of the solution x?S , as the probability
that this solution will turn out to be infeasible for another
realization of the stochastic uncertainty. This concept is made
precise by defining the violation probability of x?S as follows.

Definition 1 (Violation probability (or risk) of x?S ): Let x?S ∈
XS be the solution to SPS . Then the violation probability (or
risk) of x?S is denoted by V (x?S) and defined as

V (x?S) := P{δ ∈ ∆ : f2(x?, δ) > 0}, (7)

where we recall that P is the probability distribution over ∆
according to which the scenarios are sampled in an indepen-
dent and identically distributed way.

Clearly, the risk depends on the set of extracted scenarios,
and therefore it has a stochastic variability. Nevertheless, in
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[28] it was proven that there are conditions under which the
risk is distributed according to a beta distribution, irrespective
of the distribution of the sampling probability P. More in
general, the results in [28], and in following contributions,
allow one to compute upper-bounds to the risk that hold
true with high confidence. A crucial role in the theory of
the scenario approach is played by the concept of support
constraint, which is defined as follows.

Definition 2 (Support Constraint): The scenario-dependent
constraint corresponding to sample δs, s ∈ {1, 2, ...,S}, is
a support constraint for SPS , if its removal improves the
solution of SPS , i.e., if it decreases the optimal cost (6a).

We are now ready to state the main results of the theory of
the scenario approach and exploit them in the present context.
Subsections III-A and III-B focus on the a-priori evaluation
of the risk, where we use samples from the uncertainty set to
guarantee a certain level of risk with high confidence. Based
on the results in these two subsections and the analysis of the
Sc-LAED problem in the absence of congestion, we propose a
data-driven procedure that we call Algorithm 1. In Subsection
III-C, we consider the case when there is congestion and show
that, in spite of the high number of scenarios that are required
by the a-priori approach, it is still possible to make useful and
accurate claims on the risk after observing the complexity of
the obtained solution (a-posteriori evaluation). Conclusions are
drawn and a data-driven procedure that exploits a-posteriori
evaluation is proposed (Algorithm 2).

A. The a-priori scenario approach method

The main theorem in [28] is the following one.
Theorem 1: With the assumption that (6) returns a unique

solution, it holds that

PS{V (x?S) > ε} ≤
d−1∑
i=0

(
S
i

)
εi(1− ε)S−i, (8)

where PS is the probability distribution taken over δ1, . . . , δS ,
which is a product probability due to independence.
The right-hand side of (8) is the tail of a beta distribution
with parameters (d, S − d + 1). As S grows, the tail goes
exponentially to zero [28]. Fixing a small β, say β = 10−6,
one can easily find the smallest number of samples S such that∑d−1
i=0

(S
i

)
εi(1− ε)S−i < β holds true, so that the right-hand

side of (8) is less than the specified β. Then, one can claim
that with high confidence 1−β the risk V (x?S) of the scenario
solution with S scenarios is no larger than ε. Note that the
right-hand side of (8) does not depend on P. This is remarkable
and shows that, in order to guarantee that V (x?S) ≤ ε with
confidence 1− β, we do not need to know P.

A graphical representation of the roles of the risk parameter
ε and the confidence parameter β is shown in Fig. 1. The
cube on the left is ∆S , the set of all the possible S-tuples
of scenarios. A point in this cube can be identified with
an instance of ∆S , i.e., with a particular set of scenarios
{δ1, δ2, . . . , δS} that is obtained by randomly sampling S
scenarios from ∆ according to the probability distribution P.
For this sample ∆S , there is a set of feasible solutions χ
which does not violate any of the constraints for any of the

b£

c

x   c*Î

e£Feasible set

b

D

{ }1 2
, ,...,

S S
d d dD =

D
x
*

Fig. 1: Illustration of the scenario approach.

scenarios in ∆S . This is depicted in the middle of Fig. 1.
An optimal solution x?S is then determined for this set ∆S
of scenarios. The set of scenarios δ belonging to ∆ for which
f2(x?S , δ) > 0 (i.e. the constraint in (6) is violated) is called the
violation region and it is the region shaded black in the right
in Fig. 1. This region has probability V (x?S). We would like
this probability to be always smaller than the risk parameter ε.
However, V (x?S) has a variability as it depends on the sampled
scenarios ∆S through x?S , and it will happen that V (x?S) > ε
for certain samples ∆S that are in a bad set. Such bad set is
depicted as the black region in the cube on the left. Theorem
1 guarantees that, if the right-hand side of (8) is smaller than
β ∈ (0, 1), the bad set has a probability that is smaller than β
(with respect to the product measure PS ).

An explicit formula to find S, which returns a slightly more
conservative number of samples, is given below in (9), which
is taken from [48]. As can be seen, the number of samples
needed grows linearly with the dimension the optimization
being performed and 1

ε , but it is not as sensitive to β.
Lemma 1: Under the same conditions as Theorem 1, if

S ≥ 2

ε
(ln

1

β
+ d) (9)

then PS{V (x?S) > ε} ≤ β.
We now consider the structure of the Sc-LAED problem

more explicitly. It is remarkable that in (5), only (5c) and (5d)
consist of scenario dependent constraints defined by the net-
load forecast error at each bus. Eliminating (5d) (for now),
one can observe that at most T − 1 constraints can be active
and indeed be support constraints. This is due to the fact that
for each t = 2, . . . , T , the constraints in (5c) are half-spaces
with the same slope but different displacement, so that no
more than one can be active at the same time. Therefore,
the number of support constraints for (5) is no more than
T − 1 with probability one. In view of this fact, the same
formula in (8) can be applied by replacing d with T − 1,
see e.g. [49], [50]. This prevents the number of samples from
growing to very large numbers when congestion is not in the
picture. The reduction in the number of required samples in
this special case helps the scalability of the problem and shows
that the number of samples can be independent of the number
of generators and the number of buses in the system, and it
only depends on the number of look-ahead intervals T − 1, ε
and β.

For a general case, and for bulk power systems application,
satisfying (8) or (9) will require a large number of samples.
This is an instance of a well known issue in the literature
on the scenario approach, and several solutions are available
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that range from multiple steps or iterative procedures, see [51]
and references therein, to regularization schemes, [52]. Among
them, the recently proposed “wait and judge approach”, [36], is
of particular interest in the case of Sc-LAED, because it allows
one to compute the upper bound on the risk of the solution
as a function of the complexity of the obtained solution. In
this way, useful upper bounds can be obtained also when a
small amount of scenarios is available. This approach will be
discussed in III-C.

It is also important to remark that, in general, among the
sampled scenarios, there might be some extreme scenarios
that can lead to excessively conservative results in terms of
cost function. In the following subsection III-B, we show how
to eliminate such scenarios while taking under control the
increase in the risk bounds.

B. Sampling and Discarding Approach in Sc-LAED

The Sampling and Discarding Approach [29] is one tech-
nique in the scenario approach theory to trade risk for per-
formance. Essentially the cost of Sc-LAED is reduced by
eliminating scenarios of choice, but the price paid is an in-
crease in the guaranteed risk. Let A be the discarded scenarios
among those in ∆S , and let |A| be the cardinality of A. If the
following relation is satisfied,(

|A|+ d− 1

|A|

) |A|+d−1∑
i=0

(
S
i

)
εi(1− ε)S−i ≤ β, (10)

then the solution x?S−|A| that is obtained by removing the
scenarios in A from ∆S has a risk no larger than ε, with high
confidence 1− β.

Usually, the support constraints with highest improvement
in the cost of Sc-LAED are removed sequentially, by selecting
the scenarios with the highest Lagrange multipliers. However,
any other elimination rule is valid. For the stated result to
hold true, the number of scenarios to be discarded (|A|)
should be defined a-priori, while choosing |A| a-posteriori is
possible at the price of a (usually minor) degradation in the
overall confidence (typically, the confidence becomes 1−Kβ
instead of 1 − β, where K is the total number of values of
|A| that one is willing to accept; for a detailed discussion on
this point, see the discussion before equation (4) in [29]).

Combining the results of Theorem 1 and (10), a procedure
(Algorithm 1) is here proposed for the case when no
congestion is expected. The user inputs a desired risk
parameter ε0. As explained above, exploring alternative
solutions through scenario removal comes at the cost of
degrading the guaranteed risk. Hence, the user also sets a
modified risk parameter, ε̃ ≥ ε0, which is still acceptable for
practical purposes and that should be preferred to ε0 only if
the gain in terms of cost function is significant. Similarly,
a desired confidence parameter β0 is specified together
with a degraded confidence parameter β̃ ≥ β0 that is still
acceptable for practical purposes. These parameters together
determine how many scenarios can be safely removed before
a solution is returned by the algorithm, that is, they allow

the system operator to trade risk for performance in a safe way.

Algorithm 1 for Sc-LAED in the absence of congestion
1) INPUT: ε0, ε̃, β0, β̃, T
2) Compute S that satisfies (9) when ε, β, d in (9) are

replaced by ε0, β0, T − 1 respectively.
3) for i = 1, 2, . . .

a) Find a valid εi that satisfies inequality (10) where
d and |A| in (10) are replaced by T − 1 and i
respectively.

b) if (εi > ε̃ or (i+ 1)β > β̃), then go to step 4.
4) Sample S scenarios and compute x?S by solving (6).
5) if (cTx?S is satisfactory or i = 1) then OUTPUT: x?S ,

its guaranteed risk ε0 and the confidence (1− iβ0); else
6) for k = 1, . . . , i− 1

a) Remove the worst k scenarios from δ1, . . . , δS in
(6) and compute the solution x?S−k with S − k
scenarios.

b) If (cTx?S−k is satisfactory or k is equal to i− 1),
then OUTPUT: x?S−k, its guaranteed risk εk and
the confidence (1− iβ0).

C. The a-posteriori scenario approach method

Convex optimization in dimension d has, at most, d support
constraints [38], [53]. For the class of fully supported problems
(when a problem in dimension d has exactly d support con-
straints with probability one), strict equality holds instead of
inequality in (8). However, in many engineering applications,
the problem being solved is not a fully supported problem.
For instance, as discussed in Sc-LAED, when the system is
not congested the number of support constraints is always far
less than the number of decision variables. In this subsection,
we study V (xS) jointly with the complexity of the solution,
defined below as ν?S for the general case where transmission
constraints are considered.

Definition 3 (Complexity): ν?S , the complexity of the solution
x∗S to SPS , is the number of the support constraints for SPS .

Complexity in Sc-LAED consists of the (at most T − 1)
support constraints corresponding to the generation adequacy
constraint in (5c) plus possibly some support constraints for
(5d), which cannot be predicted before solving (5).

The relation between risk and complexity was first studied
in [36]. The results of [36] provide an upper bound on the risk
after computing the solution. See Theorem 2 below.

Theorem 2: For program (6) with S > d, for any τ =
0, 1, 2, ..., d, the polynomial (11) below, with t as variable has
one and only one solution in (0, 1).

β

S + 1

S∑
i=τ

(
i

τ

)
ti−τ −

(
S
τ

)
tS−τ = 0. (11)

We denote this solution by t(τ). Defining ε(τ) = 1 − t(τ)
under the assumption of non-degeneracy and uniqueness of
the solution [36], it holds that

PS{V (x?S) ≤ ε(ν?S)} ≥ 1− β. (12)

The results after observing ν?S support constraints, compared
to the original bound from [28] for the Synthetic Texas
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Fig. 2: Upper bound on the risk for S = 2000, d = 1088.
The vertical axis denotes values of V (x?S), and horizontal axis
denotes values of ν?S . The distance between the black dotted
line and the red curve is the improvement on the risk bounds
provided by Theorem. 2.

System [54] with T = 2 in (5), are showed in Fig. 2. When
ν?S � d, the results improve significantly. This allows one
to make significant claims on the risk even when the number
of sampled scenarios is relatively small. For example, for the
setting described in Fig. 2, an upper bound of ε = 0.5967 is
obtained by using Theorem 1 with S = 2000. On the other
hand, with the same number of scenarios, observing ν?S = 18
allows one to claim ε(ν?S) = 0.0262 as an upper bound thanks
to Theorem 2.

The following Algorithm 2 exploits Theorem 2 to compute
upper bounds on the risk of the scenario solution when
congestion is expected, so that d cannot be replaced by T−1 in
Theorem 1, and the number of scenarios S cannot be increased
to the values required by Theorem 1. In this algorithm S is
supposed to be given and typically it accounts for existing
computational/data collection limitations.

Algorithm 2 for Sc-LAED when congestion is expected

1) INPUT: S, β
2) Compute ε̄(τ), τ = 0, . . . , d according to Theorem 2.
3) Sample S scenarios and solve (6); obtain x?S and count

the number of support constraints ν?S .
4) OUTPUT: x?S and the upper bound on the risk ε̄(ν?S).

In conclusion, Algorithm 1 is the choice when the system
operator does not expect congestion in the next T intervals.
On the other hand, when congestion is in the picture, the a-
posteriori approach (Algorithm 2) should be employed.

Considering that, in real life, the LAED problem is solved
several times along a time horizon, one can try to guess ν?S for
a new instance of Sc-LAED based on the past solutions, so as
to adjust S accordingly. For example, ν?S [t−1], i.e., the number
of support constraints at the previous time step, can be used
as a starting estimate for the number of support constraints
at time t. When ν?S [t − 1] � ν?S [t] and S samples are not
sufficient to guarantee the desired risk level, one might sample
new scenarios according to an iterative algorithm. Iterative
schemes in this line of thought are the subject of ongoing
research.
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Fig. 3: Comparison of the Dispatch Cost during the peak hours
of the day using different methods.
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Fig. 4: V (x?S) for two different scenario settings.

IV. CASE STUDY

In this section, we test the proposed approach on a 2000-
bus synthetic grid on a footprint of Texas [54]. This system
consists of 544 generation units, with a portfolio of 367 gas,
39 coal, 4 nuclear, 25 hydro, 87 wind and 22 utility scale
solar power plants. Nodes with wind/solar resources are where
uncertainty exists. This can be generalized to DER aggregation
and participation into the wholesale electricity market. 432 of
these units are active during the study period (default setting
in [54]). Its transmission network consist of 3206 transmission
lines. Installed wind capacity is about 13% of the peak load,
and installed solar capacity is less than 1% of the net load.
MATPOWER [55] is used to obtain PTDF of the synthetic
grid and confirm the accuracy of the base case modelings.
Where data was not given (such as the ramping capabilities
of the units), the modifications were performed according to
[10], [39]. In addition load and wind profiles were adapted
from these references.

The optimization is performed for a 24 hour period (96
intervals). T in (5) is two, meaning that there is one deter-
ministic and binding, and one uncertain, non-binding interval.
For efficient illustration, in each of the following subsections,
the focus will be on some different windows of the 96 intervals
during a day. It is assumed that generators bid linearly into the
real-time market. The uncertainty on each uncertain resource
is distributed according to Gaussian distribution with mean µ
equal to the nominal forecast and with standard deviation σ
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Fig. 5: Sampling and discarding results: trading risk for performance. Left: Violation probability (Monte Carlo estimate with
10000 samples) located below εk. Right: Binding interval cost reduction in one interval after elimination of k scenarios.

defined as the normalized standard deviation of the wind/solar
forecast. A scenario is obtained by sampling the uncertainty
instances from these distributions in an independent fashion.
Information on the scenario generation mechanism was pro-
vided here for the sake of comparison only, and it must be
remarked that the adopted method does not require that the
underlying probability distribution be known. Deviations from
forecasted values enter the net load scenarios as negative load.
The confidence parameter β = 10−6 is used throughout the
case study. The decision of each dispatch method is tested
using 10000 independent scenarios extracted from the same
uncertainty set.

This case study is divided into two parts. The focus of
the first part is on the ramping events due to renewable
integration in the system, illustrating the algorithm suggested
in Subsections III-A and III-B with d = 1 in the absence of
congestion in the system. The second part extends the original
scenario theory to the results shown in Subsection III-C in
the presence of line constraints. It is shown that by using
the results in (12) it is possible to start with a sample size
with almost no guarantee on the results and reach a very high
confidence in the results by analyzing the complexity of the
solution.

A. Extreme ramping test: Scenario vs deterministic and robust
LAED

To simulate how different methods respond to the possibility
of an extreme ramping event, we increased the wind/solar
penetration threefold while increasing the load in the system
by 18%. σ for each uncertain resource is 0.07µ, where we
recall that µ is the forecast of wind and solar resources. A
full Gaussian distribution is used to generate the scenarios for
the scenario approach. Following the robust methodology in
[17], we truncated the Gaussian distribution at µ± 3σ for the
robust method.

The simulation is performed for two different sizes of sce-
narios, and compared to the deterministic and robust methods.
The scenario sizes are 2000 and 10000, which correspond to
ε = 0.0083 and 0.0017 respectively using (8). As discussed in

Section II, the decision for the first interval is binding and the
future interval is advisory. Therefore in Fig. 3, we compare
the dispatch cost of the binding interval (where there is no
uncertainty) using different approaches. We show peak hours
in Fig. 3 because the system is more vulnerable to ramping
events during these hours. As can be seen, the robust method
has a clear offset in terms of the binding dispatch cost while
the deterministic method carries the least cost of dispatch.
However, the increment in the dispatch cost using the scenario
method is small compared to the robust method. It should be
noted that the generated sets of 2000 and 10000 scenarios are
generated independently. Therefore there can be a few cases
where the dispatch cost is higher with 2000 scenarios than
with 10000.

Violation probabilities in the scenario approach are as ex-
pected and shown in Fig. 4. The robust method maintained the
zero violation probability, while scenario LAED allowed some
violations, but kept this violation below the corresponding ε.
The V (x?S) for the deterministic LAED is 0.5029 for the hours
shown in Fig. 4. Therefore, the scenario method successfully
confines V (x?S) ≤ ε with a cost much smaller than the robust
method.

Some extreme scenarios that can lead to conservative results
might be included when samples are being collected randomly.
We used 10000 scenarios in the previous section and dropped
up to 100 of them. As mentioned in Section III-B, the discard-
ing strategy can be using any arbitrary rule. In this case, we
discard the constraints whose removal maximizes the reduction
of dispatch cost. As shown in Fig. 5 (right), when scenarios are
being dropped, the performance, which in this case is the cost
of the binding interval, is being improved. The performance
improvement is traded for risk. Fig. 5 (left) shows V (x?S−k)
and εk after dropping k ∈ [1, 100] scenarios. The values of
εk extracted from (10) are the values of the transparent plane
depicted above the observed violation probabilities.

Trading risk for performance can be particularly helpful if
dropping the first few scenarios significantly reduces the costs,
as in the case of the first few scenarios in Fig. 5 (right).
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Fig. 6: �: Number of observed support constraints, ♦: viola-
tion probability (Monte Carlo estimate with 10000 samples)
and ?, the upper bound on the violation probability based upon
the complexity.

B. Risk and complexity: Considering all constraints in the Sc-
LAED

In this subsection, both network and ramping constraints are
considered. Therefore it is no longer possible to know the exact
number of support constraints prior to solving the problem. To
be able to use the original line constraints in [54], we do not
change wind and solar penetration in this section. However, to
cause congestion, we changed the load by 5% at all nodes. The
argument is that by making a guess that the number of support
constraints is low, we can start with a very large ε, solve the
problem, and by observing the results update our knowledge
of ε. In this case we solved the problem with 870 scenarios,
which is slightly more than the number of decision variables
(which is 864). This leads to ε = 0.9996. This means that
V (x?S) can vary from 0 to 0.9996, so that Theorem 1 provides
almost no information about V (x?S). However, an a-posteriori
upper bound for V (x?S) can be found by Theorem. 2.

For instance, when 3 constraints of support are observed in
Sc-LAED, meaning that their removal changes the solution,
the claim “0 ≤ V (x?S) ≤ 0.0282” can be delivered.

For the test case, a-posteriori results for the first 50 intervals
of a day are summarized in Fig. 6. As can be seen, the
observed number of support constraints (blue �) is small,
although congestion exists. The number of support constraints
for this study varies between one, two and, for some intervals
three, which is much smaller than d = 864 (while the a-
priori results in [28] are for a fully supported problem, i.e.,
ν?S = 864 with probability one). Using Theorem 2, one can
rigorously define an upper bound on the risk of dispatch for
these intervals. Our knowledge about the upper level of V (x)

gets much sharper as shown by the black stars in Fig. 6
(compare V (x) ≤ 0.9996 with the results). 10000 samples for
each interval were used to estimate the violation probability:
the resulting estimates are all within the theoretical bounds
and are represented by the red ♦ in Fig. 6.

V. CONCLUSION

In this paper, the scenario approach for solving uncertain
economic dispatch is introduced. It is shown that this approach
does not require any knowledge of the underlying uncertainty
distribution, yet yields a quantifiable level of risk in real-time
economic dispatch. It is shown how the risk can be evaluated
according to a-priori and a-posteriori mathematical results.
Scalability of the problem is considered in both the a-priori
and a-posteriori stages.

In the a-priori stage, it is shown that disregarding conges-
tion, the number of samples needed does not increase with
the size of the system. This fact bears several benefits: first,
it makes the process of collecting i.i.d. samples practical;
second, it avoids both an overly conservative solution as well
as high computational burden. Moreover, pessimistic scenarios
can be neglected with controllable degradation of the violation
probability.

In the a-posteriori stage, the risk of constraint violation can
turn out to be much smaller than general a-priori, promising
future scalability of the Sc-LAED for a congested case.
The case study on a realistic power system suggests that
scenario based LAED could provide a reliable solution with
quantifiable bound on the conservativeness of the results.

There is a need for more rigorous investigations of the
correlation between the number of constraints of support and
design parameters in Sc-LAED. Therefore, our future work
will be mainly focused on the a-posteriori stage, where a
procedure to start from a few scenarios and progressively aim
towards desired ε based on the observed number of support
constraints, will be developed.

Practically speaking, the scenario approach strikes a good
trade-off between deterministic and robust optimization-based
dispatch. The ISO could potentially adopt scenario approach
as a natural step to manage uncertain DERs while keeping a
tunable risk level at the ex-post stage. It could have direct ben-
efits to both real-time and intra-day decision making process.
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TABLE II: Appendix Nomenclature

Sets:
CL+/CL− Set of positively/negatively congested lines.
Parameters and constants:
P̂gi Decision input from binding interval of Sc-

LAED.
ρ Energy balance equation shadow price.
%max Shadow price corresponded to a positively

congested lines.
%min Shadow price corresponded to a negatively

congested lines.
ς Shadow price for generation capacity con-

straint.
Decision variables:
Pgi Power generation for gi.

APPENDIX A
SC-LAED LOCATIONAL MARGINAL PRICING

min
Pgi

[t]
z =

Ng∑
i=1

cgiPgi (13a)

s.t.

ρ

Ng∑
i=1

Pgi =

Ng∑
i=1

P̂gi (13b)

%max

Nb∑
j=1

PTDF$
+

e P$
+

n ≤ F$+ , ∀$+ ∈ CL+, (13c)

%min

Nb∑
j=1

PTDF$
−

e P$
−

n ≥ −F$− , ∀$− ∈ CL−,

(13d)

ς P̂mingi ≤ Pgi ≤ P̂maxgi ∀i = 1, 2, . . . , Ng. (13e)

The presented LMP calculation process is based on equa-
tions (1) to (5) in [45]. For simplicity, here we have assumed
loss-less system. In the following optimization problem, a hat
symbol represents the input to the problem from the Sc-LAED.
The objective is to minimize total generation cost (13a). (13b)
is energy balancing constraint to satisfy the same demand as
(5b). For a set of positively and negatively congested lines
in (13c) and (13d) return shadow prices corresponding to
the line constraints. Capacity constraint of each generator
embedded with its incremental ramping up ∆Pmaxgi and down
∆Pmingi limit of such generator is shown in (13e), where
P̂maxgi = P̂gi + ∆Pmaxgi and P̂mingi = P̂gi + ∆Pmingi .

The Nb × 1 vector of nodal LMP can be reached by (14).
1Nb

is a Nb × 1 all ones column vector, and %maxκ and %minκ

are Nl×1 column matrices containing %max and %min on the
rows corresponding to a positively or negatively congested line
respectively.

LMP = ρ(κ)× 1Nb
− PTDF ′e × (%maxκ − %minκ ) (14)

REFERENCES

[1] “ERCOT quick facts,” (Date last accessed 30-September-2018).
[Online]. Available: https://goo.gl/x7cCXc

[2] “2016 LTSA update,” (Date last accessed 30-September-2018). [Online].
Available: https://goo.gl/9fo9FD

[3] P. P. Varaiya, F. F. Wu, and J. W. Bialek, “Smart Operation of Smart
Grid: Risk-Limiting Dispatch,” Proceedings of the IEEE, vol. 99, no. 1,
pp. 40–57, 2011.

[4] R. Entriken, P. Varaiya, F. Wu, J. Bialek, C. Dent, A. Tuohy, and
R. Rajagopal, “Risk limiting dispatch,” in 2012 IEEE Power and Energy
Society General Meeting, July 2012, pp. 1–5.

[5] L. Wu, M. Shahidehpour, and T. Li, “Stochastic Security-Constrained
Unit Commitment,” IEEE Transactions on Power Systems, vol. 22, no. 2,
pp. 800–811, 2007.

[6] A. Papavasiliou, S. S. Oren, and R. P. O. Neill, “Reserve Requirements
for Wind Power Integration: A Stochastic Programming Framework,”
IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2197–2206,
2011.

[7] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adaptive
Robust Optimization for the Security Constrained Unit Commitment
Problem,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp.
52–63, 2013.

[8] N. Zhang, C. Kang, Q. Xia, Y. Ding, Y. Huang, R. Sun, J. Huang, and
J. Bai, “A convex model of risk-based unit commitment for day-ahead
market clearing considering wind power uncertainty,” IEEE Transactions
on Power Systems, vol. 30, no. 3, pp. 1582–1592, May 2015.

[9] D. Ross and S. Kim, “Dynamic Economic Dispatch of Generation,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 6,
pp. 2060–2068, 1980.

[10] Y. Gu and L. Xie, “Early detection and optimal corrective measures
of power system insecurity in enhanced look-ahead dispatch,” IEEE
Transactions on Power Systems, vol. 28, no. 2, pp. 1297–1307, 2013.

[11] Z. Li, W. Wu, B. Zhang, and H. Sun, “Efficient Location of Unsatisfiable
Transmission Constraints in Look-Ahead Dispatch via an Enhanced
Lagrangian Relaxation Framework,” vol. 30, no. 3, pp. 1–10, 2014.
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