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Introduction: Solar sailing

Solar sails are a type of low-thrust propulsion system that takes advantage of the

Solar RadiationPressure (SRP) to accelerate a probewith the aid of a highly reflecting

surface.

IKAROS (JAXA) NanoSail-D2 (NASA) LightSail (Plan Soc)

315 kg, 196 m 2 4 kg, 10 m 2 3 kg, 32 m 2
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Introduction: SRP and drag acceleration

I There is vast literature on how to use SRP and drag for misson design. The

techniques rely strongly on active attitude control either for fixing it or to

minimize/maximize SRP effect.

I Examples: Active vs passive deorbiting strategies.

Inwards spiralling Outwards spiralling
Decrease semi-major axis Increse eccentricity
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Avoiding attitude control: Auto-stabilizing sail

Q : Can we find a shape of the sail that is auto-stabilizing?

R : Yes!

Quasi-Rhombic Pyramid (QRP) shape

Ceriotti et al. (2014)

STABLE Sun-pointing orientation

Deployable baloon

Ceriotti et al. (2014)

Ceriotti et al. (2014)
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Goals and assumptions

The Sun-pointing attitude is known to be locally stable, but there is a lack of infor-

mation on a more global point of view.

GOAL

1. Provide a simplified deterministic model to study attitude stability

properties globally, and to be able to predict long-time behaviour.

2. Identify the most relevant physical parameters and perform a

sensibility analysis.

ASSUMPTIONS: planar motion

1. Ecliptic obliquity set to 0.

2. Solar radiation pressure constant in a vicinity of the Earth, and its

direction is the Sun-Earth vector.

This reduces to a 6D problem: 2D for attitude, 6D for orbit, when adding SRP, J2 and
atmospheric drag accelerations
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Geometry of the sail structure

Since we restrict ourselves to planar motion, we consider a Sail structure consisting

of two panels. The bus is added in the bisecting plane of the two panels. Denote

the aperture angle α and the distance between centres of mass of the sail and bus

d .

Fb : the body frame. A, B and C inertia moments of the spacecraft.

3D view
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SC1: α=30◦, d =0m
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SC2: α=45◦, d =2.9m
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Attitude dynamics

The rotation dynamics of the spacecraft is fully explained using a single Euler an-

gle, ϕ ∈ [0, 2π) and the Euler equations reduce to ϕ̈ = M3/C , where M3 are the

torques:

1. SRP: Torque due to each panel:

M±
SRP,3 =

As
M

pSR

2

(
a1,1(η)σ1σ2 ± a2,0(η)σ2

1 ± a0,2(η)σ2
2

)
2. Atmospheric drag: Torque due to each panel:

M±
drag,3 =

As
M

ρv2
relCD
4

(
b1,1ν1ν2 ± b2,0ν

2
1 ± b0,2ν

2
2

)
,

where b1,1 = a1,1(0), b2,0 = a2,0(0), and b0,2 = a0,2(0).
3. Gravity gradient (GG): Assuming symmetric bus

MGG,3 =
3µ

r3E
(B − A) γ1γ2

where uS = (σ1, σ2, σ3)
>, uE = (γ1, γ2, γ3)

> and urel = (ν1, ν2, ν3)
> are sunlight,

position of the spacecraft and relative velocity wrt atmosphere in Fb .
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Attitude dynamics for SRP and GG torques
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Attitude dynamics for SRP and GG torques

Consider fixedKeplerian orbit dynamics, circular aparentmotionof the Sun, anomaly

λ, the adimensionsl attitude dynamics of SRP and gravity-gradient torques in a ro-

tating frame are given by

λ̃′ = t?n�, M̃ = t?n, ϕ̃′ = Φ̃,

Φ̃′ =


σ1σ2 − a2,0(η)

a1,1(η)σ
2
1 −

a0,2(η)
a1,1(η)σ

2
2 if ϕ̃ ∈ (−π + α,−α)

2σ1σ2 if ϕ̃ ∈ (−α, α)
σ1σ2 +

a2,0(η)
a1,1(η)σ

2
1 +

a0,2(η)
a1,1(η)σ

2
2 if ϕ̃ ∈ (α, π − α)

0 otherwise

← SRP

+ t2?
3µ

r3
D(α, d)

C γ1γ2. ← gravity-gradient

To be understood as

Φ̃′ =


σ1σ2 − a2,0(η)

a1,1(η)σ
2
1 −

a0,2(η)
a1,1(η)σ

2
2 if only left panel faces sunlight

2σ1σ2 if both panels face sunlight

σ1σ2 +
a2,0(η)
a1,1(η)σ

2
1 +

a0,2(η)
a1,1(η)σ

2
2 if only right panel faces sunlight
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Phase space: unperturbed motion

The phase space of the unperturbed motion resembles that of a pendulum. In fact,

in |ϕ̃| < α it is a mathematical pendulum. It has three equilibria: two unstable H±
and a stable one, E , the sun-pointing direction.
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Stability of the Sun-pointing attitude

Necessary stability condition: a1,1(η) > 0. Conditions on d and α, not on A/M.

Given α aperture angle⇒ constraint on minimum d

a1,1(η) > 0 ⇔ d >
wM
2mb K(α, η), K(α, η) =

η cos(3α)− cosα
2η cos(2α) + η + 1

.

α [deg]

w
(m

b
+
m

s
)K

(α
,η
)/
(2
m

b
)
[m

]
w(mb +ms)K(α, η)/(2mb) [m] vs α [deg]

0

0

−25

−50
30 45 60 90

K(α, 0.2)
K(α, 0.3)
K(α, 0.5)
K(α, 0.7)
K(α, 0.8)
K(α, 0.9)

0)

Note that since η ∈ (0, 1) and α ∈ (0, π/2), K(α, η) < 0. Hence the bus can be

behind the centre of mass of the sail!.
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Phase space: perturbed motion. How to

The perturbed motion is a quasi-periodic perturbation: there are two additional

frequencies: n, n�.

Since n� � n, one is led to study the dynamics of the return-to-perigee map
(RTPM): Start motion in the perigee, plot every f = 2πk, k ∈ N or equivalently

t = 2π/n × k, k ∈ N.

Some orbits have been propagated starting at the perigee for different initial con-

figurations in (ϕ̃, Φ̃). Here we show results for a fixed Keplerian orbit, with altitude

5000 km (low MEO), e = 0.001.
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Results: deterministic vs complete

SC1

Deterministic model Complete ORB+ATT
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Attitude dynamics for DRAG and GG torques
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Attitude dynamics for DRAG and GG torques

The atmospheric drag case plus gravity gradient perturbation can be approached

similarly, but now the only-drag attitude dynamics depends on the orbit explicitly

via the air density ρ and the relative velocity vrel. Proceeding analogously as for the
SRP case the attitude dynamics read:

ϕ̂′ = Φ̂,

Φ̂′ =


ρv2

rel(ν1ν2 −
b2,0

b1,1
ν21 −

b0,2

b1,1
ν22) if ϕ̂ ∈ (−π + α,−α)

ρv2
rel(2ν1ν2) if ϕ̂ ∈ (−α, α)

ρv2
rel(ν1ν2 +

b2,0

b1,1
ν21 +

b0,2

b1,1
ν22) if ϕ̂ ∈ (α, π − α)

0 otherwise


− t2??

d
dt

(
1

1 + e cos f
df
dt

)
+ t2??

3µ

r3
D(α, d)

C γ1γ2.

Each line corresponding to only left, both or only right panels facing the atmosphere.
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Stability of the velocity-directed attitude

Atmospheric drag attitude has to be studied together with the orbit dynamics, but

there is also a necessary stability condition related to that of SRP: b1,1 > 0. These
are conditions on d and α, not on A/M:

b1,1 = a1,1(0) > 0 ⇔ d >
wM
2mb K(α, 0) = − wM

2mb cosα

Again, there are stable positions of the bus behind the centre of mass of the sail!.
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Results: complete orbit+attitude

Deorbiting from 500 km of altitude without attitude control.
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Oscillations around the sun-pointing attitude
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Attitude dynamics, fixed Keplerian orbit, 2 panels

The dynamics of the proposed solar sail when both panels face the sunlight can be

written, in adimensional variables (dropping the ·̃ notation){
ϕ′ = Φ,
Φ′ = − sin(2ϕ) + δ(1 + e cos f )3 sin (2(f + φ−  ϕ)),

, |ϕ| < α,

where

δ =
P(α, d)

a3(1− e2)3/2
.

Here P(α, d) accounts for the dependencies on physical parameters, and we have

used

2σ1σ2 = − sin(2ϕ),
2γ1γ2 = sin (2(f + φ−  ϕ)), φ = ω − λ.

The variables a, e, ω, f are Keplerian elements and λ is the anomaly of the apparent

motion of the Sun.
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Hamiltonian structure

The previous is a quasi-periodically perturbed mathematical pendulum that has the

conserved quantity

H =
Φ2

2
− 1

2
cos(2ϕ) + 1

2
δ(1 + e cos f )3 cos (2(f + φ−  ϕ)), |ϕ| < α.

FromH the dynamics of the sail is recovered via the usual

Φ′ =
∂H
∂ϕ

, ϕ′ = −∂H
∂Φ

.

Note that for δ = 0, the system is integrable and the dynamics is librational around

the sun-pointing direction and contained in

|ϕ| < α, |Φ| <
√
1− cos(2α).
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Motivation

For the two studied sail configurations the dynamics in |ϕ| < α seems to be close

to the integrable case δ = 0. Hence perturbation techniques may be applicable to

describe the dynamics close to the sun-pointing direction.

APPLICATION: To be used in a hybrid orbit and attitude propagator, as suggested by

Hatten & Russell (2017).

When the attitude dynamics can be considerd a perturbation problem each step of

the integrator would consist of

1. A step of the orbit propagation: from (a, e, f , ω)old at t to (a, e, f , ω)new at

t + h, h: stepsize.
2. Assuming (a, e, f , ω) fixed, after a triple averaging procedure onH, one

obtains the frequency ρ′′′ of ϕ′′′. Prediction: ϕ′′′
new = ϕ′′′

old + h′′′ρ′′′1.

1Triple prime: variables after triple averaging
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Step -1: Suitable variables for integrable part

The Unperturbed Hamiltonian, δ = 0:

H =
Φ2

2
− 1

2
cos(2ϕ) = −1

2
+

Φ2 +
√
2
2
ϕ2

2
+
∑
k≥2

(−1)k

(2k)! (2ϕ)
2k .

Introducing Poincaré variables Φ =
√
2ω0Θ cos θ, ϕ =

√
2Θ/ω0 sin θ, ω0 =

√
2

and neglecting−1/2,H reads

H =
√
2Θ +

∑
k≥2

(−1)k

(2k)! (2Θ)k sin2k θ.

This is suitable for treatment as perturbation series: Introduce ``book-keeping" pa-

rameter σ = O(Θ) with numerical value σ = 1 and rearrange

H =
∑
k≥0

σk

k! Hk ←
Lie-Deprit method to get rid of dependency

on θ up to order N of convenience
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Step 0: Arrangement of the Hamiltonian

Study of the full problem

1. Introduce conjugate momenta to τ (time) and λ: T and Λ, where

dτ
dt =

∂H
∂T = 1,

dT
dt = −∂H

∂τ
= −∂H

∂f
∂f
∂τ

.

``Extended Hamiltonian": H̃ = H+ T + n�Λ.

2. Expand perturbation term using

cos (2(f + φ−  ϕ)) = cos (2(f + φ)) cos(2ϕ) + sin (2(f + φ)) sin(2ϕ)

and write it in Poincaré variables.

3. Find a suitable arrangement as before,

H̃ =
∑
k≥0

σk

k! H̃k , σ = O(Θ?),

for systematic treatment.
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Step 0: Arrangement of the Hamiltonian

I After expanding sin(2ϕ) and cos(2ϕ) half-integer powers ofΘ appear, hence,

here δ = O(Θ1/2).
I We have freedom to assume δ = O(Θ2ν).

H0 =
√
2Θ, H1 = T , H2 = n�Λ−

2

3
Θ2 sin4 θ, H3 = 0,

Hl = Kc
(−1)l1

(2l1)!
25l1/2−1Θl1 sin2l1 θ +

(−1)l2+1

(2l2)!
25l2/2−1Θl2 sin2l2 θ, even l

Hl = Ks
(−1)l3

(2l3 + 1)!
25l3/2+1/4Θl3+1/2 sin2l3+1 θ, odd l ,

where

K{c,s} = δ(1 + e cos f )3{cos, sin} (2(f + φ)) ,

and

l1 =
l + 2

2
, l2 =

l − 2ν

2
, and l3 =

l − 1− 2ν

2
.
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Steps 1,2,3: Average wrt θ,τ (or f ), λ
Up to order N we average wrt θ, τ (or f ), λ in three different applications of the

Lie-Deprit method. Note this implies assuming no resonances!. Notation: variables

and functions involved, ·′ → ·′′ → ·′′′.

Some remarks:

θ After averaging resp. θ all odd terms of the previous arrangement vanish, but

Ks does not disappear! For computational reasons: re-arrange to fill blank

spots.

τ Put T at order 0. Recall df /dt = n(1 + e cos f )2/(1− e2)3/2. If e <
√
2− 1

it is convenient to use (1 + e cos f )−2 =
∑

k≥0(−1)k(k + 1)ek cosk f . Also to

expand (1− e2)3/2 around e = 0.

λ Put n�Λ at order 1. Each step then consists of computing

H ′′′
l =

1

2π

∫ 2π

0

H̃ ′′
l dλ, W ′′

l−1 =
1

n�l

∫ (
H̃ ′′

l − H ′′′
l

)
dλ,

where H̃ ′′
l is the lth term in the intermediate Hamiltonian of the procedure.
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Computational aspects

First tests can be done in Mathematica. But since we are dealing with perturbation
series, one may have to go to high orders so it is better to have ways to

1. Handle periodic functions: Fourier series symbolic manipulator.

1.1 Averages are stored as independent term.

1.2 Derivatives and Integrals consist of shifting and indices and multiplying by scalars.

1.3 etc.

2. Handle polynomials of n variables. Here n ≥ 4.

Good, free solution: PARI/gp calculator.
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A perturbation problem?

P
(α

,d
)
a
−
3

[-
]

(a− RE)× 10−6 [m]

P (α, d) a−3 [-] vs altitude [m]
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◦, d = 0

Magnitude of δ as a function of altitude

Note that the value of δ has to be small compared to θ so that this procedure is

applicable.

1. Advantage: this method provides the averaged frequency ρ as polynomial in

Θ′′′, δ and e→ Easy to evaluate.

2. Disadvantage: High orders far from sun-pointing direction.
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Summary and conclusions

In this work we have considered a simplified QRP sail structure and we have been

able to

1. Provide a deterministic model for the attitude dynamics considering SRP +

gravity gradient torques.

2. Detect regions of stable motion around the sun-pointing orientation.

3. Validate the results with a complete orbit and attitud propagator taking into

account SRP and J2 accelerations.
4. Translated the study to the drag + gravity-gradient torque attitude dynamics,

directly on the orbit+attitude complete model.

5. Provided a perturbation scheme to study the frequency of oscillations close to

sun-pointing attitude.

As Future work:

1. Translating this work to the 3D QRP of Ceriotti et al. (2014), maybe assuming

spin around some axis of inertia as Felicetti et al. (2016).

August 28, 2018 Astrodynamics at UA 29 / 30



Thanks a lot for your attention!

The research leading to these results has received funding from the Horizon 2020

Program of the European Union’s Framework Programme for Research and Innova-

tion (H2020-PROTEC-2015) under REA grant agreement number 687500 – ReDSHIFT.


