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MOMENTS OF RUNOFF COEFFICIENT AND PEAK DISCHARGE ESTIMATION IN URBAN 
CATCHMENTS 
 
GIANFRANCO BECCIU1, ALESSANDRO PAOLETTI1   
 
Abstract:  A study of  hydrologic losses in urban catchments is presented, on the basis of rainfall-runoff data of events 
recorded in 21 urban experimental catchments. Interest was mainly focused on runoff coefficient, usually used in simple 
conceptual models for discharge estimation in the design of drainage networks. This coefficient shows characteristics 
that are typical of random variates and that are usually neglected. From analysis of experimental data its probability 
distribution function was found to be approximately normal and simple relationships for estimation of main moments 
were developed. These relationships can be used in problems concerning reliability analysis and risk design of drainage 
networks. A modification of the rational method, taking into account the randomness of runoff coefficient to achieve a 
correct estimation of risk level of design discharges, is then proposed for urban catchments.  
 
 
1. Introduction 
 

Estimation of hydrologic losses is a key factor in the design of urban storm drainage networks. In many cases, 
when small and simple networks are concerned, the design is carried out by means of the so-called rational formula Q = 
C i A, proposed more than a hundred years ago by Kuichling [1889]. The runoff coefficient C, ratio between the peak 
discharge Q and the inflow rate i A averaged on the time of concentration of the catchment, takes simultaneously into 
account the effects of hydrologic losses and of attenuation of peak flow rates due to the rainfall-runoff transformation. It 
is often useful to adopt a conceptual scheme in which the two effects are separated, introducing a coefficient ϕ, ratio 
between the net and gross rainfall depths evaluated at the end of a storm event, to account only for hydrologic losses, 
and a "model" coefficient ε, to account for the dynamics of hydrologic response. Following this scheme, the term runoff 
coefficient is here used for the coefficient ϕ, according to one of its common definitions [Chow et al, 1988]. If the 
hydrologic losses are considered as a constant percentage of rainfall intensities during the event, as usual in urban 
catchments where the losses are often related to an invariant rate of pervious area, the rational formula can then be 
written in the notation:    
 
 Q = ϕ  i(td) ε A           (1) 
 
where   Q = peak discharge  [m3/s] 
  A = catchment area [m2] 
  ϕ = runoff coefficient [-]   
  ε = coefficient ( ε ≤1) depending on the net rainfall-runoff model characteristics2 [-] 
  i(td) = average rainfall intensity [m/s] 
  td = rainfall intensity averaging time, depending on the net rainfall-runoff model characteristics [s] 

  
 In the traditional use of the rational formula it is assumed that, among all the parameters on which Q depends, 
only the average rainfall intensity i(td), supposed uniform on the catchment, is a random variable and, consequently, that 
Q and i(td) have the same probability distribution [McPherson, 1969]. In engineering practice, in fact, the runoff 
coefficient ϕ is usually evaluated in a deterministic way on the basis of catchment characteristics and, sometimes, also 
of rainfall event. Analysis of real events showed, however, that the return periods of rainfall and runoff for individual 
storm events may be quite different, as pointed out by several researchers in the last decades [see e.g Hiemstra and 
Reich, 1967].  For this reason, in design problems, relatively high values of ϕ are often chosen, with the intention of 
taking into account, in a simplified way, a sort of statistical trend of this coefficient to increase with the importance of 
the rainfall event [ASCE-WEF, 1992]. The more sophisticated distributed models, on the other hand, usually employ 
procedures based on infiltration (Horton, SCS-CN, Green-Ampt, Philips, etc.) and depression storage modeling. In this 
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2 If the catchment is supposed to perform as a linear hydrologic system and a constant hyetograph of duration tp is considered, the coefficient ε is the 
maximum of the function: 
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where u(τ) is the IUH (Instantaneous Unit Hydrograph). Under the same hypotheses the design peak discharge Qmax(T) for a chosen return period T is 
defined as the maximum value of Q, corresponding to the duration tp for which the product i(tp)⋅ε(tp) is maximum.  
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way, although being estimated in a deterministic way, the hydrologic losses are made to decrease in percentage with the 
importance of the rainfall event, while the corresponding values of runoff are made to increase.  
 The numerous data available nowadays from experimental urban catchments show, however, that a sure 
correspondence of high values of ϕ with high values of rainfall depth cannot be identified in real events. This result is 
surely affected by measurement errors, both of rainfall depths, especially due to the uncertainty of its spatial 
distribution, and of flow measurements in sewers. However, the scatter of data seems too high to be explained only in 
this way (see Fig. 1). It seems, then, that the values of the runoff coefficient are significantly influenced by factors 
which are independent from rainfall characteristics. Some of these factors are known, even though of difficult 
determination, as the antecedent moisture conditions of catchment surfaces, some are probably unknown, as, for 
instance, the effective infiltration rate in urban surfaces usually defined as "impervious". It is then clear that the great 
variability of runoff coefficient values can’t be satisfactorily explained inside a deterministic framework and that is 
more convenient to consider this coefficient as a random variable.  
 Even though this hypothesis has been suggested by many authors in the last forty years [Chow,1957 and 1959; 
Schaake et al., 1967; Becciu and Paoletti, 1994 and 1997], being the natural consequence of recognizing the random 
nature of the conditions of the catchment, to which the hydrologic losses are related, the randomness of the runoff 
coefficient is usually ignored or empirically taken into account in engineering practice. This approach is not justified 
both because it can result in significant errors in estimating the risk related to design discharges and because the 
increase of complication is really small, being sufficient to estimate the main moments of ϕ. In this paper the rainfall-
runoff data of 319 events recorded in 21 experimental urban catchments set up in 10 countries of Europe and America 
are analyzed to get simple relationships for the estimation of moments µϕ and σϕ of runoff coefficient. A new procedure 
for the application of the rational method, using these relationships, is then proposed. 
 
2.  Hydrologic losses in urban catchments. 
 
 In Table 1 the main characteristics of the catchments and events used in this study are reported. For 12 urban 
catchments data were taken from Maksimovic and Radojkovic [1986], for other 8 (Italian) from Calomino and Paoletti 
[1994]. The data of the Baggio catchment in the city of Milano, Italy, which was recently set up by the Authors, are yet 
unpublished.  
 As can be seen the experimental values of runoff coefficient ϕ vary greatly for the same catchment and are 
almost always less than its impermeability ratio Imp, defined as the ratio between the so-called impermeable areas 
connected to the drainage system and the overall area (see Fig. 1). Moreover, the runoff coefficient ϕ is often well 
below Imp even when the rainfall event is characterised by significant periods of high intensity and by a considerable 
total rainfall depth, meaning that losses in “impermeable” areas are not negligible as usually assumed. It has to be noted 
that the estimation of Imp may be very uncertain, being related to the accuracy of survey of surfaces characteristics, 
including their effective connection to the drainage network. The levels of this accuracy are probably different for the 
21 catchments considered in this study, even if they should be high in any case, due to the fact that these catchments are 
experimental sites.  
 It has to be noted that while the values of runoff coefficient are so variable and seem independent from rainfall 
characteristics, the observed values of the hydrologic loss L, defined as the part of rainfall depth h that does not produce 
runoff in the drainage system, show a certain relation to the characteristics of both the catchment and the rainfall (see 
Fig. 2). It seems more convenient, then, to search firstly for an estimation model of L. The relevant number of factors 
affecting the hydrologic losses makes it very difficult to achieve an estimation by a detailed analysis of each of them, 
also taking into account the great difficulty to get, in the practical applications, all the data that are needed. The 
estimation problem has, then, to be afforded at the catchment scale, starting from general considerations on the nature of 
the phenomenon.  
 Firstly, it can be noted that hydrologic losses show a different behavior during rainfall, so that often the initial 
losses are distinguished from those happening afterwards. In the initial phase of a meteoric event, rainfall is almost 
completely lost to evaporation, filling of depression storages and wetting of surfaces; consequently the runoff amounts 
are almost to zero. Afterwards, a second phase begins, in which infiltration into the ground becomes prevalent. In this 
phase, the losses go on generally increasing, but with decreasing increments, for the infiltration velocity decreases 
tending to an asymptotic limit.  
 According to this scheme and also to the general trend of the experimental data shown in Fig. 2, the hydrologic 
balance of a rainfall event seems to be expressible, in terms of loss depth L,  by equations of the following form: 
 
 L = h  if h ≤ Lo 
             (2) 
 L = Lo + α hβ if h > Lo       
 
where Lo is the maximum value of initial losses, h is the total rainfall depth and the term αhβ corresponds to the losses in 
the second phase (the dimensions of all terms are [L]). The observed trend of experimental data and also known 
considerations on the progressive soil saturation, suggest that the exponent β should have a value lower than one.  
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Catchment name Catchment 

area 
A  

[ha] 

Impermeability 
ratio 
Imp 

n° events Rainfall depth 
range 
 [mm] 

ϕ  range  

Luzzi (1) (2) 1.89 0.913 25 1.4 − 22.6 0.46 − 0.81 
Parco d'Orleans (2) 14.29 0.700 14 2.4 − 30.9 0.18 − 0.34 
Malvaccaro (2) 8.10 0.850 23 3.1 − 23.8 0.31 − 0.69 
Cascina Scala (2) 11.35 0.650 32 4.6 − 53.6 0.17 − 0.73 
Mulinu Becciu (2) 13.34 0.444 6 4.0 − 8.6 0.24 − 0.36 
Fossolo (2) 40.71 0.748 9 2.8 − 87.4 0.04 − 0.39 
Merate (2) 21.90 0.420 31 1.4 − 62.8 0.01 − 0.84 
Casal Palocco (2) 28.21 0.380 10 3.4 − 50.4 0.17 − 0.54 
Baggio (3) 199.44 0.291 7 11.0 − 49.0 0.10 − 0.14 
Malvern (1) 23.33 0.338 24  3.0 − 37.6 0.22 − 0.41 
East York (1) 155.84 0.393 13  1.5 − 24.3 0.21 − 0.48 
Pompano Beach (1) 16.49 0.059 6  7.0 − 33.3 0.04 − 0.18 
Sample Road (1) 22.96 0.186 6  6.5 − 57.2 0.12 − 0.24 
Munkerisparken (1) 6.42 0.318 8  2.6 − 14.5 0.28 − 0.36 
Livry Gargan (1) 253.50 0.326 38  1.5 − 28.9 0.06 − 0.28 
Clifton Grove (1) 10.60 0.403 19  1.0 − 6.7 0.13 − 0.23 
St. Marks Road (1) 7.32 0.456 14  2.4 − 13.6 0.21 − 0.35 
Miskolc (1) 25.24 0.158 6  4.3 − 26.0 0.15 − 0.41 
Vika (1) 9.90 0.965 13  1.2 − 14.2 0.54 − 0.87 
Porsoberg (1) 13.00 0.397 7  1.4 − 11.0 0.12 − 0.21 
Miljakovac (1) 25.50 0.349 8  2.6 − 19.5 0.13 − 0.25 

 
Table 1 -  Main characteristics of experimental catchments and events used in the study: (1) from Maksimovic and 

Radojkovic [1986]; (2) from Calomino and Paoletti [1994]; (3) catchment recently set up in the city of 
Milano.  
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Fig. 1 -  Observed values of ratio between runoff coefficient ϕ and percentage of impermeable areas Imp in the 

experimental catchments of Table 1: a) all events; b) blow up of graph for events with h≤20 mm. 
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Fig. 2 - Observed values of loss depth in the experimental catchments of Table 1: a) all events; b) blow up of graph for 

events with h≤20 mm. 
 
 
 Before going on with the estimation of parameters Lo, α and β, it has to be highlighted that the term αhβ, even 
if it has been stated empirically, approximates well the total infiltration losses estimated by any Hortonian model, 
provided that the rainfall intensity is always greater than the infiltrability. In fact, from a well-known approximated 
solution of Richards equation on monodimensional vertical percolation flow in unsaturated porous media, the 
infiltrability f can be expressed as [Philip, 1969]: 
 

 f(t) = 1
2

 s t−1/2  +  C    (3) 

 
where s is the so-called sorptivity, having dimensions [L⋅T−1/2], and C is a factor that, but for very small times t, is 
almost equal to the hydraulic conductivity K of the soil and has dimensions [L⋅T−1]. The integral of equation (3), that is  
 
 L(tp) = s tp

 1/2  +  K tp ,    (4) 
 
expresses the depth L globally infiltrated at the end of a rainfall event of duration tp and intensity always greater than 
infiltrability. If the well known relationship h = a tp

 n, between the duration tp and the total rainfall depth h, is assumed, 
the equation (4) can be written in the form: 
 
 L(h) = a−1/(2n) Sh1/(2n)  +  a−1/n Kh1/n    (5) 
 
which can be very well fitted, for whatever set of values of the parameters a, n, S and K, by the equation L = αhβ.  
 Analysing the experimental data, a very clear functional relationship between loss depth L and rainfall depth h, 
of the type of equation (2) can be observed in all catchments (see Fig. 3). In some cases a certain scatter of data around 
this theoretical trend was observed, so equation (2) really explains an average behavior, that is expresses the 
relationship between the mean loss depth and the rainfall depth. Then, it can be written that: 
 
 µL = Lo + αhβ             (6) 
 
 The optimal values, in terms of minimization of square errors, for the parameters Lo, α and β, are reported in 
Table 2, together with the values of correlation coefficient r2 that are in all cases significantly high (0.839 ≤ r2 ≤ 0.999). 
In Fig. 3 the best and worst correlation cases are shown. 
 These first results prove that, at least in the range of experimental data, the model expressed by equation (6) can 
be regarded as sound. Nevertheless, the found values of parameter β, even if always not much different from unity, are 
in some cases greater than one, in contrast with the above made considerations. The reason of this inconsistency has to 
be searched in the set of data available for the parameter calibration: many of them are extracted from medium-small 
events and only few from important ones for which the concavity of the L−h relationship is expected to show itself. To 
increase the weight of greater events, the analysis was then repeated on the subset of 111 events with at least 10 mm of 
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total rainfall depth, obtaining the results reported in the last four columns of Table 2. In this analysis were excluded the 
data of the catchments in which had been recorded less than three events with the chosen characteristics (at least 10 mm 
of total rainfall depth). Results of this second analysis show, in most cases, a reduction of correlation coefficient r2, due 
to the greater scatter of the observed points (L , h) when events with greater h are considered (see, for example, the case 
of Malvaccaro catchment in Fig. 3). This fact can be explained with the reduction of the number of events considered in 
the analysis, in some cases significant (e.g., for East York catchment, the number of events changes from 13 to 4). In 
fact, it is known that the average deviation of a random variable from its mean shows an increment when the dimension 
of the sample is reduced [Kottegoda & Rosso, 1997]. Also the strange value of  β = 1.40 for St. Marks Road catchment 
is to ascribe to the small number of available data: in this case only three events, two of which with very similar 
characteristics, satisfy the condition of h ≥ 10 mm and so were used for the fitting of equation (6).  
 
 

 All events Events with h ≥ 10 mm 
Name of the catchment Lo 

[mm] 
α β r2 Lo 

[mm] 
α β r2 

Luzzi  0.00 0.30 1.07 0.871     
Parco d'Orleans 0.00 0.81 0.96 0.998 0.00 0.78 0.98 0.998 
Malvaccaro  0.00 0.70 0.88 0.839 0.00 0.75 0.85 0.548 
Cascina Scala 0.00 0.72 0.93 0.920 0.00 0.57 1.00 0.738 
Mulinu Becciu 0.00 0.71 0.99 0.979     
Fossolo  0.00 1.05 0.88 0.993 4.90 0.52 1.00 0.978 
Merate 0.15 0.79 0.92 0.858 0.00 0.93 0.87 0.457 
Casal Palocco  0.00 0.60 1.08 0.992 0.00 0.82 0.98 0.989 
Baggio 0.00 0.95 0.98 0.999 0.00 0.95 0.98 0.999 
Malvern 0.00 0.71 0.99 0.987 0.00 0.90 0.91 0.953 
East York 0.15 0.63 0.96 0.946 0.15 1.31 0.70 0.690 
Pompano Beach 0.00 1.16 0.91 0.996 0.00 1.25 0.89 0.997 
Sample Road  0.50 0.74 1.01 0.995 0.50 0.74 1.02 0.997 
Munkerisparken 0.00 0.70 0.98 0.997     
Livry Gargan 0.10 0.82 1.00 0.997 0.10 0.87 0.98 0.993 
Clifton Grove 0.00 0.87 0.94 0.994     
St. Marks Road 0.00 0.75 0.97 0.986 0.00 0.25 1.40 0.988 
Miskolc 0.50 0.62 1.04 0.951 0.50 0.76 0.97 0.871 
Vika 0.00 0.21 1.19 0.941     
Porsoberg  0.20 0.74 1.03 0.999     
Miljakovac 0.35 0.64 1.07 0.992     

 
Table 2 - Optimal values of parameters of equation (6). 
 
 
 Taking into account that equation (6) is intended to express an average behaviour of the phenomenon, it seems 
acceptable to assume, in the range of the experimental data, a linear approximation of it (β =1). Moreover, observing 
that the values of initial losses Lo shown in Table 2 are always very small and in most of cases null, it is also assumed 
that, within the above mentioned intent and limits, Lo = 0. Then, the mean total depth of losses can be expressed by the 
very simple linear relationship: 
 
 µL = αh              (7) 
   
 According to this very simplified model, the new values of parameter α were estimated again. These values are 
shown in Table 3, together with the mean deviation between the model and the experimental data. In Fig. 3 are shown, 
for comparison, the functions (6) and (7) for the two catchments having the best and worst fitting for eq. (6) with all 
events. As it can be seen the results are almost as good as those obtained with equation (6) and are very similar both 
when all events and events with h≥10 mm are taken into account. The values of α are variable, but are always less than 
unity, as it was expected because it must be µL ≤ h.  
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 All events Events with h ≥ 10 mm 
Name of catchment α mean square error 

[mm] 
α mean square error 

[mm] 
Luzzi  0.36 0.92   
Parco d'Orleans  0.73 2.37 0.73 1.63 
Malvaccaro  0.51 1.32 0.50 2.22 
Cascina Scala  0.58 1.78 0.58 4.26 
Mulinu Becciu 0.70 0.17   
Fossolo 0.63 3.59 0.63 5.13 
Merate 0.67 3.86 0.67 1.14 
Casal Palocco 0.74 0.92 0.74 3.89 
Baggio 0.89 3.45 0.89 1.81 
Malvern 0.68 1.35 0.68 3.09 
East York 0.57 1.79 0.55 1.02 
Pompano Beach 0.85 1.15 0.85 1.49 
Sample Road 0.80 1.43 0.80 1.51 
Munkerisparken 0.66 0.80   
Livry Gargan 0.83 0.74 0.83 0.46 
Clifton Grove 0.79 0.29   
St. Marks Road 0.71 0.33 0.71 1.67 
Miskolc 0.74 1.85 0.74 1.64 
Vika 0.33 0.79   
Porsoberg 0.81 0.51   
Miljakovac 0.81 0.80   

 
Table 3 - Optimal values of parameters α of equation (7) and mean square error of fitting. 
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Fig. 3 - Relationships between L and h (equations (6) and (7)) for the catchments of Malvaccaro (worst case) and 
Porsoberg (best case). 
 
 
 A relationship between α and the characteristics of the catchments was searched, finding a clear correlation with 
the impermeability ratio Imp (Fig. 4). From regression analysis, the relationships were found: 
 
 α = 0.92 − 0.49Imp r2 = 0.673 (all events)  (8a) 
 
 α = 0.87 − 0.36Imp r2 = 0.505 (events with h ≥ 10 mm) (8b) 
  
In conclusion, equations (7) and (8) can be combined to give the relationships 
 

µL = 0 + 0.7 h0.88 

µL= 0.5 h 

µL = 0.2 + 0.74 h1.03 

µL= 0.81 h 
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 µL = (0.92 − 0.49Imp)h [mm] (all events) (9a) 
  
 µL = (0.87 − 0.36Imp)h [mm] (events with h ≥ 10 mm) (9b)
  
 From these equations it can be deduced that the hydrologic losses in percentage of the rainfall depth, range, on 
average, in the two cases, between 43% and 51% in the paved areas (Imp=1) and between 87% and 92% in the 
permeable areas (Imp=0). The average value of the standard errors of rainfall losses from the mean expressed by 
equations (9), evaluated in each catchment, is 1.44 mm in the case of all events and 2.23 mm in the case of events with 
h≥10 mm. In Fig. 5 the comparison, for the data of all catchments, between the observed values of L and µL, estimated 
with equations (9), is reported.  
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Fig. 4 - Regression between observed values of α and Imp: a) all events; b) events with h ≥ 10 mm. 
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Fig. 5 -  Comparison between the observed values of L and µL, estimated with equations (9): a) all events; b) events 

with h ≥ 10 mm. 
 
 
In conclusion, it can be noted that these results show that, on average, the hydrologic losses in the so-called 

impermeable areas are significant and that the permeable areas give their contribution to the discharges in the drainage 
network. Moreover, it can be noted that the differences between the results obtained in the case with all the events and 
in that with events h ≥ 10 mm are not so significant.  
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3.  Probability distribution and moments of runoff coefficient 
 
 Empirical probability histograms of runoff coefficient are approximately bell-shaped. The hypothesis of 
normal probability distribution was tested with the Pearson’s goodness-of-fit test. Five classes were chosen for 
catchments with at least 10 events and four classes for the others, obtaining that the hypothesis was not rejected at the 
0.05 level of significance for all catchments. In Table 4 the main sample statistics of runoff coefficient and the non-
exceedance probability of the statistic X2 are reported3. In Fig. 6 the theoretical and observed probability density 
functions of runoff coefficient for the cathments of East York and Vika, the two cases of lower and higher value of  the 
function F(X2), are reported. 
 

Catchment Mean 
obs. ϕ 

Standard 
deviation of 

obs. ϕ. 

Skewness 
obs. ϕ. 

F(X2) 

Luzzi 0.655 0.113 -0.313 0.95 
Parco d'Orleans 0.240 0.048 0.199 0.63 
Malvaccaro 0.450 0.104 0.562 0.29 
Cascina Scala 0.378 0.143 0.877 0.64 
Mulinu Becciu 0.297 0.041 0.317 0.59 
Fossolo 0.206 0.123 0.362 0.62 
Merate 0.276 0.211 0.948 0.42 
Casal Palocco 0.262 0.107 2.246 0.78 
Baggio 0.120 0.020 0.124 0.90 
Malvern 0.305 0.047 0.319 0.51 
East York 0.366 0.085 -0.299 0.96 
Pompano Beach 0.095 0.056 0.894 0.93 
Sample Road 0.191 0.046 -0.542 0.68 
Munkerisparken 0.328 0.029 -0.819 0.78 
Livry Gargan 0.152 0.042 0.305 0.78 
Clifton Grove 0.184 0.037 0.012 0.54 
St. Marks Road 0.281 0.044 0.223 0.81 
Miskolc 0.260 0.090 0.893 0.84 
Vika 0.704 0.100 -0.099 0.18 
Porsoberg 0.168 0.032 -0.374 0.60 
Miljakovac 0.190 0.045 -0.075 0.92 
Average values 0.291 0.074 0.274 0.684 

 
Table 4 – Mean sample statistics of runoff coefficient and non-exceedance probability of X2 statistic (Pearson’s 

goodness-of-fit test). 
 
As known, the normal distribution is completely defined by the two main moments µ and σ2, that is the mean 

and the variance. Taking into account that between the mean of runoff coefficient and the mean of loss depth holds the 
relationship  

µϕ = α
µ

−=− 11
h
L       ,          (10) 

it can be obtained, from equations (9), that 
 
 µϕ = 0.08 + 0.49Imp = 0.57Imp + 0.08 (1 − Imp)  (all events) (11a) 
 
 µϕ = 0.13 + 0.36Imp = 0.49Imp + 0.13 (1 − Imp)  (events with h≥10 mm) (11b)
   

                                                           
3  As known, the variate  
 

∑
=

−
=

k

i i

ii
e

eo
X

1

2
2 )(  

   
where k is the number  of classes and oi and ei are the observed and expected frequency  for the ith class, has a Chi-square distribution with k – s – 1 
degrees of  freedom, where s is the number of parameters of the distribution estimated from the sample. 
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Fig. 6 - Theoretical and observed probability density functions of runoff coefficients for the catchments of East York (a) 

and Vika (b). 
 
 
 In other words, the mean runoff coefficient of paved areas ϕimp ranges between 0.49 and 0.57, while the same 
coefficient ϕper for the pervious areas ranges between 0.08 and 0.13. From the analysis of the deviations between 
observed values of the runoff coefficient and their mean estimated by these relationships, average values of  0.118 (for 
all 319 data) and 0.111 (for event with h≥10 mm) were obtained. It can be noted that these deviations increase with the 
impermeability ratio, as can be seen in Fig. 7. The dispersion of the values is, however, considerable. In Table 5 the 
values of the coefficient of variation for each catchment, that is the ratio between the mean standard error of estimation 
(evaluated as the mean square difference between the observed values of the runoff coefficient and their estimated mean 
µϕ) and the estimated µϕ, are reported: as can be seen in both cases the mean value of this coefficient is about CVϕ = 
0.40. Taking into account the average CVϕ values from Table 5, the following relationships can be deduced (Fig. 7): 
 
  σϕ = 0.39(0.08 + 0.49Imp) = 0.03 + 0.20Imp = 0.23Imp + 0.03 (1 − Imp) (all events)   (12a) 
 
 σϕ = 0.40(0.13 + 0.36Imp) = 0.05 + 0.14Imp = 0.19Imp + 0.05 (1 − Imp)     (events with h ≥ 10 mm)              (12b)
    
 In Fig. 8 the comparison, for the data of all events, between the observed values of ϕ and µϕ, estimated with  
equations (11), together with the confidence limits of 95%, that is the lines of equation µϕ ± 1.96σϕ, is reported.  
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Fig. 7 - Estimated and observed standard deviations of runoff coefficient: a) all events; b) events with h ≥ 10 mm. 



 10 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Imp

µ
ϕ

Obs. runoff coeff.

Mean obs. r. coeff.
µϕ (1)

µϕ − 1.96σϕ (1)

µϕ + 1.96σϕ (1)

µϕ (2)

µϕ + 1.96σϕ (2)

µϕ − 1.96σϕ (2)

 

Fig. 8 - Observed values of runoff coefficient, with their means for each catchment, and relationships between 
estimated µϕ, with their confidence limits (95%). 

 
 
 

 All events Events with h ≥ 10 mm 
Name of catchment CVϕ CVϕ 
Luzzi  0.303  
Parco d'Orleans  0.456 0.318 
Malvaccaro  0.229 0.256 
Cascina Scala  0.353 0.405 
Mulinu Becciu 0.125  
Fossolo 0.604 0.436 
Merate 0.712 0.779 
Casal Palocco 0.375 0.198 
Baggio 0.481 0.544 
Malvern 0.281 0.299 
East York 0.430 0.650 
Pompano Beach 0.478 0.476 
Sample Road 0.252 0.154 
Munkerisparken 0.377  
Livry Gargan 0.417 0.368 
Clifton Grove 0.373  
St. Marks Road 0.164 0.131 
Miskolc 0.788 0.588 
Vika 0.306  
Porsoberg 0.416  
Miljakovac 0.309  

Average  0.392 0.400 
 
Table 5 - Values of coefficients of variation. 
 
 
 
 
 

(1) all events 
(2) events with  h ≥ 10 mm 
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4. Estimation of design discharges 
 
 Considering both rainfall intensity and runoff coefficient ϕ as random variables, equation (1) should be written 
in the following more proper form: 
 
 Q(T) = A ε q(T)           (1b) 
 
where q = ϕ⋅ i(td) is a product of two random variables and T is the return period of peak discharge. According to the 
general expression of moments of a function of random variables  [Kottegoda and Rosso, 1997], the main moments of 
the peak discharge can be expressed as functions of the corresponding moments of i(θ) and ϕ, obtaining the following 
equations:  
 
 ( )ϕϕϕ σσρµµεµ iiiQ A +=  (13a) 
 

 
( ) ( )[ ]{

( )( )[ ] ( ) ( )[ ]}ϕϕϕ

ϕϕϕϕϕϕϕϕ

µϕµµµϕµµ

µϕµσσρσσµµρσµσµεσ

−−+−−+

+−−+−++=

22

222222222222

22

2

iii

iiiiiiiiQ

iEiE

iEA
                                             (13b) 

 
where µQ, µi, µϕ and σQ, σi, σϕ are the means and the standard deviations of peak discharge, rainfall intensity and runoff 
coefficient, ρiϕ is the correlation coefficient between i(td) and ϕ and  E[..] is an operator denoting the average value. If 
ϕ and i(td) are supposed to be independent, that is ρiϕ = 0, equations (13) can be written in the following simpler form: 
 
 ϕµµεµ iQ  A=            (14a) 

  
 ( )222222222

ϕϕϕ σσσµσµεσ iiiQ A ++=         (14b) 
 
  With regards to the correlation coefficient ρiϕ in equations (13), it can be pointed out that the analysis of real 
events in urban catchments shows a very low value of this coefficient [Chow, 1957; Shaake et al., 1967, Merkle, 1968]. 
In Table 6 the correlation coefficients ρiϕ  for the averaging times of 10, 15, 20, 25 minutes and for the total rainfall 
duration, calculated for the 32 events recorded in the catchment of Cascina Scala4, having the larger set of available and 
complete rainfall-runoff data among the 21 considered catchments, are reported as an example. As can be seen, the 
ρiϕ values are in any case so small that it seems sound to assume no significant correlation. This can probably be 
explained by the fact that, in urban catchments, the variability of runoff coefficient from one event to another is mainly 
due to factors, like antecedent conditions of catchment surfaces, which are independent from rainfall characteristics. 
Similar results are obtained also in natural catchments when rainfall-runoff single events are analyzed. However, if, in 
these catchments, rainfall-runoff data are analyzed on annual basis, a certain correlation between average values of 
runoff coefficient and average annual rainfall is sometimes observed, even if also in this case the only significant factor 
on which runoff coefficient seems to depend is the type of soils [Titmarsh et al., 1995]. If, then, the correlation between 
runoff coefficient and rainfall intensity is neglected (ρiϕ,=0), equations (14) result, which are more convenient to be 
used for estimating the moments of peak discharges.  
 
 

 ρiϕ 
 

Mean intensities of events 0.101 
Maximum intensities of 10 min duration  0.012 
Maximum intensities of 15 min duration 0.009 
Maximum intensities of 20 min duration 0.009 
Maximum intensities of 25 min duration 0.001 

 
Table 6 - Values of coefficients of correlation ρiϕ between runoff coefficients and the mean rainfall intensity of the 

events and between runoff coefficients and the maximum values of rainfall intensity corresponding to the 
averaging times of 10, 15, 20 and 25 minutes, for the 32 events recorded in the catchment of Cascina Scala.  

 
 
 

                                                           
4 The concentration time of the catchment is about 19 minutes. 



 12 

 In design problems usually the level of risk is expressed in terms of return period T and annual maxima of peak 
discharge Qmax are considered. In this case the moments of rainfall intensity and runoff coefficient in the right parts of 
equations (14) have to be referred to the events for which these annual maxima occur. As a detailed knowledge of 
rainfall intensity and runoff coefficient for a convenient number of events with the annual maxima of peak discharge is 
usually not available, these moments are normally unknown. It is then of great interest to transform these equations in 
order to express them in terms of moments µimax and σimax of the annual maxima of rainfall intensity, which are usually 
available, and of moments µϕ and σϕ of runoff coefficient relating to all events in the available observation period, 
expressed in equations (11) and (12).  
 If the following symbols are introduced 
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the moments of the annual maxima of peak discharge µQmax  and σQmax can be derived from equations (14) as: 
 
 ϕϕµµ µµεµµεµµ imaxiQQmax AK AKK

QQ 1===   (15a) 

 
 ( )22

max
2
2

2
max

22
2

22
max

2
3

22222
ϕϕϕσ σσσµσµεσσ iiiQQmax KKKAK

Q
++==   (15b) 

 
 The values of parameters K1, K2, K3 depend on the probability distributions of discharges and rainfall intensities. 
These distributions are different, but usually are supposed to be of the same type [Eagleson, 1978; Salas, 1993]; in a 
first approximation, then, it can be assumed a value equal to one for the parameters K1 and K2. The parameter K3 
depends also on the characteristics of the stochastic processes of discharges and rainfall intensities. In the hypothesis 
that both these processes are Poissonian and homogeneous with the same mean number λ of events per year and that the 
maxima of both peak discharge and rainfall intensity have an Extreme Value of the first type probability distribution 
function, this parameter can be expressed as : 
 

 K3 = 
577.0)ln(

645.1maxmax
+

==
λQ

Q

i

i
CV

CV
CV

CV
        (16) 

 
where the CV = σ/µ  are the coefficients of variation of the variables. Even if λ can be in theory any real number greater 
than zero, it seems reasonable for this kind of processes to consider λ ≥ 2. As K3 decreases with λ from K3=1 for λ ≅ 2, 
a conservative hypothesis is to adopt K3=1 when not enough information is available to perform the estimation of this 
parameter with the (16). In fact, from equation (15b) it results that σQmax increases with K3. Assuming K1 and K2 equal 
to one, equations (16) can be simplified in the approximated form: 
 
 ϕµµεµ maxmax iQ  A=  (17a) 
 
 ( )22

max
2
max

222
max

2
3

222
max ϕϕϕ σσσµσµεσ iiiQ KA ++=  (17b) 

 
Equations (17) can be used to define the distribution of the annual maxima of peak discharge and then to estimate the 
design discharge Qmax(T). A different formulation of the rational formula is then possible to achieve, according to the 
following general relationship:  

 
Qmax (T) = µQmax  f(T, σQmax) = ε  A  µimax µϕ  f(T,σimax ,σϕ)      (18) 
 

The form of the function f depends on that of the probability distribution the design discharge is supposed to follow. If 
this form is such that the quantile can be expressed as ξ(T) = µ + σ KT , where KT  is an increasing function of the return 
period T, and equations (17) are taken into account, equation (18) becomes:  
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Qmax(T) = 





 +++=+ 22

max
2
max

22
3maxmaxmax 1 ϕϕϕµµεσµ CVCVCVCVKK AK iiTiTQQ   (19) 

 
where CVϕ and CVimax  are the coefficients of variation of ϕ and of annual maxima of rainfall intensity. Equation (19) 
can also be written in the following form: 
  
 Qmax(T) = )()( max TiTKA ϕϕµε         (20) 
 
where the coefficient Kϕ  is given by the equation: 
   

            Kϕ = 
max

22
max

2
max

22
3

1

1
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iiT

CVK

CVCVCVCVKK

+

+++ ϕϕ
       (21) 

 
Equations (20) and (21) can be used to estimate the design discharge for a chosen return period once the function KT is 
defined, that is once a certain probability distribution is assumed for Qmax. For example, if this distribution is the Normal 
or the Log-Normal, KT is the standard normal deviate. If the probability distribution of Qmax is supposed to be, 
accordingly to a common practice in hydrology, EV1, KT becomes the so-called frequency factor and is defined by the 
relationship [Chow, 1951]: 
 

 KT  = 













 −−⋅−−

T
11lnln779.045.0         (22) 

 
In Fig. 9 the relationship (21) between Kϕ and CVimax is reported for some return periods T, considering the expression 
(22) for KT  and assuming, according to the results reported in the previous paragraph, CVϕ = 0.4 and K3 = 1. As can be 
seen, equation (20) corresponds to the rational formula (1) if the runoff coefficient is expressed as the product ϕ =µϕ Kϕ. 
Equation (21) shows that the coefficient Kϕ increases with T and is greater than or equal to one when KT ≥ 0, that is 
when T is greater than about 2 years. 
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Fig. 9 - Relationship Kϕ  - CVimax for some return periods T , assuming CVϕ = 0.4 and K3 =1. 
 
 
 As can be seen from equation (17b), the random variability of the runoff coefficient makes the variance of design 
discharge to be greater than that of rainfall intensity and consequently makes Qmax(T) increase, other parameters being 
equal. This means that neglecting the randomness of runoff coefficient (CVϕ=0), assuming the same return period for 
design discharges and rainfall intensities, may lead to incorrect estimates of design discharge or, that is the same, of its 
return period. In particular, a constant value of ϕ greater than µϕ causes an overestimation of design discharges for low 
return periods (about 2 years). This may happen, for example, when ϕ = Imp is chosen, according to a common 
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engineering practice, as relationship (11a) gives estimates of µϕ lower than Imp, except for catchments with small values 
of this parameter (Imp ≤ 0.16). Analogously, considering a constant value ϕ =µϕ results in an underestimation of design 
discharge for return periods higher than 2 years. 
 More correct estimates of design discharge Qmax(T) can be obtained using the proposed form (20) of the rational 
formula, in which the runoff coefficient ϕ =µϕ Kϕ is expressed as a function of the return period of Qmax. It has to be 
noted that in the engineering practice, values of runoff coefficient increasing with the design return period are 
sometimes used, trying to account empirically for its variability. In these cases, however, the real return period 
associated to the design discharge Qmax remains uncertain.  

To give an example, the design discharges Qmax were calculated, for different return periods, for the catchment 
of Baggio, whose IDF curves were available (td = 15 min, µimax = 19.4 mm, CVimax = 0.32), using equation (1) with ϕ 
=µϕ, and equations (20) and (21) with K3=1. Results, reported in Table 7, show differences in the estimations of Qmax 
varying from about – 4% for T=2 years to 25% for T= 100 years. 

 
 
 

T 
[years] 

KT Kϕ Qmax(T) 
eq. (1) 
[m3/s] 

Qmax(T) 
eq. (20) 
[m3/s] 

Difference 
[%] 

2 -0.164 0.964 5.846 5.635 -3.7 
5 0.718 1.122 7.589 8.511 10.8 

10 1.303 1.191 8.744 10.416 16.1 
50 2.590 1.295 11.284 14.608 22.8 

100 3.134 1.325 12.358 16.380 24.6 
 
Table 7 - Comparison between estimates of Qmax performed with equation (1) and (20) for the catchment of Baggio 

(CVϕ =0.4, µimax = 19.4 mm, CVimax = 0.32, K3=1). 
 
 
 
5. Conclusions 
 
 The analysis of rainfall-runoff data of 319 events recorded in 21 urban experimental catchments throughout the 
world highlighted the need to consider the runoff coefficient as a random variable. The probability distribution of this 
parameter has proved to be normal and the two simple relationships (11a) and (12a) for the estimation of its mean and 
variance, depending on the impermeability ratio of the catchment, were proposed. It is important to highlight that these 
relationships show a good agreement with experimental data, even if these data were recorded in catchments that are 
very different both for urbanization characteristics and for climatic contexts.   
 Equation (17b) shows that the random variability of the runoff coefficient makes the variance of design 
discharge to be greater than that of rainfall intensity and consequently makes Qmax(T) to increase, other parameters 
being equal. This means that assuming a constant value of runoff coefficient, according to the usual engineering 
practice, leads to estimates of design discharge whose return period may be sensibly different from that of rainfall 
intensities from which they are obtained. In most of cases this error causes an underestimation of Qmax(T) for high return 
periods and an overestimation for low ones (T< 2 years).   
 In conclusion, it seems important to take into account the randomness of runoff coefficient to achieve more 
reliable estimates in design and reliability analysis of drainage networks [Yen, 1970]. The proposed modification of the 
rational formula, expressed in equation (20), together with relationships (11a) and (12a) for estimation of mean and 
variance of runoff coefficient, can be considered a simple and useful tool to be used for achieving this task.  
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