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Factory-level performance evaluation of buffered multi-state 

production systems 

Abstract: This paper proposes a performance evaluation model for production 

systems considering: i) the need of a factory-level performance metric tracking 

system effectiveness and ii) the need of ex-ante performance evaluation models for 

buffered multi-state systems. Potentialities of Overall Equipment Effectiveness 

(OEE) calculation approach and reliability analysis methods are combined. Indeed, 

even if OEE is widely adopted in the industrial practice, including different 

inefficiency factors, its use for supporting asset-related decision-making has got 

two main pitfalls. Firstly, it is limited to equipment level without considering the 

typical complexity of production systems. Secondly, it is traditionally computed 

through ex-post analysis of data, being not sufficient for decision-making at the 

beginning of the asset lifecycle. Conversely, in the reliability theory, different 

modelling methods are proposed for multi-state systems performance evaluation. 

Nevertheless, they usually focus on reliability/availability computation, lacking 

specific consideration of buffers and not measuring the inefficiency factors that 

may affect a system, relevant for practitioners. The combination of the two 

approaches is proposed, with the purpose to develop a simulation-based 

performance evaluation model for buffered multi-state production systems and to 

compute the Overall Factory Effectiveness (OFE). The model is applied in a 

manufacturing company to support evaluating improvement scenarios of an 

existing plant. 
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1. Introduction 

The evaluation of the performance of production assets is the basis of every 

improvement action supporting informed decision-making about the best 



corrective/preventive actions to be carried out along the asset lifecycle (from the 

Beginning of life, through the Middle of life, until its End of Life). 

Looking at the industrial practice, the most popular approach that is used by 

companies  for performance evaluation of production systems comes from Total 

Productive Maintenance (TPM) and is about the evaluation of the Overall Equipment 

Effectiveness (OEE) [1,2]. OEE was introduced by [3] as the reference Key 

Performance Indicator (KPI) used to attempt revealing production systems related 

hidden losses and controlling the effect of improvement actions [3,4]. The OEE 

calculation is computed using ex-post data collected from the real system and it is 

defined as a measure of total equipment performance, that is, the degree to which the 

equipment is doing what it is supposed to do [5]. It is a three-part analysis tool for 

equipment performance based on its availability (A), performance (P), and quality rate 

(Q) of the output.  

Even though the OEE has become increasingly popular and has been widely 

used as a quantitative tool essential for measurement of productivity, several limitations 

still exist and are identified in the literature [1,6]. In particular, the main acknowledged 

pitfalls of OEE are the following: 

(1) OEE is only limited to productivity behavior of individual equipment [7–11]. 

(2) OEE is calculated as an aggregated information based on detailed information 

mostly created at the shop floor level [12]. 

Concerning the first disadvantage, [10] have pointed out that the gains in OEE, while 

important and ongoing, are insufficient because no machine is isolated. It is, therefore, 

necessary to focus one’s attention beyond the performance of individual equipment 

toward performance of the factory. The ultimate objective of any factory is to have a 

highly efficient integrated system and not brilliant individual equipment [4]. This 



insufficiency of OEE has led to modification and enlargement of the original OEE to fit 

a broader perspective as deemed important in the production systems. As reviewed by 

[1,13], several studies have tried to expand the application scope of OEE from 

individual equipment to the entire processes/factories, like: Overall Fab Effectiveness 

(OFE) by [4,10], Overall Throughput Effectiveness by [8], Overall equipment 

effectiveness of a manufacturing line by (OEELM) [14] and Overall line effectiveness 

(OLE) by [15]. Nevertheless, according to [1], ‘the OFE metric are in the development 

stage’. The underpinning condition is that, to measure performance and to 

systematically perform diagnostics at the factory level, quantitative metrics consistent 

with a manufacturing system modelling technique capturing equipment 

interconnectivity information is essential [8]. 

Concerning the second disadvantage, two main consequences derive from it. On 

one side, it means that the results of improvement actions can only be observed directly 

on the real system but are not usually predicted in advance in the moment in which 

those actions are chosen. In fact, OEE typically supports ex-post analysis and is not 

used to support decision-making at all stages of the system lifecycle (like, for example, 

to support decision about system design). On the other side, being a cumulated function 

over a monitoring period, the OEE does not point out the variability of a manufacturing 

process. This is seen as a major limitation because variability is one of the main causes 

of waste [16,17]. To solve this issue, [16] proposed a stochastic OEE calculation 

deriving the probability density function of the OEE starting from the probability 

density function of the main determinants of waste. Nevertheless, this approach is still 

limited to individual equipment, linking back with the first enunciated drawback. 

Concluding, despite the widely recognized relevance by practitioners of OEE 

calculation for considering the so-called hidden losses related to system inefficiency, 



several limitations for it to be used as an ex-ante computed performance metric to 

support lifecycle decision-making when dealing with complex production systems still 

exist. In fact, when evaluating the performance of a production system, it must be 

considered that production systems are a typical example of multi-state systems (MSSs) 

[18]. A multi-state system is composed by multi-state components, which can perform 

their tasks within a range of performance levels varying from perfect functioning to 

complete failure [19–21]. A good overview of the historical developments in the context 

of MSSs theory has been provided by [22]. MSS reliability evaluation methods are 

based on four different approaches [23]: extension of Boolean model [24], stochastic 

process approach [18], Monte Carlo simulation [25,26] and Universal Generating 

Function (UGF) method [27]. These approaches take into account the characteristics of 

multi-state systems, i.e. i) that the system structure may be very complex (with different 

abstraction levels; vast array of units, components, etc.); ii) that the components have a 

range of potential failure modes and follow various failure distributions; and iii) that the 

failure modelling may be complicated because based on various (functional, technical) 

dependencies between the components [28]. In general, such approaches are defined 

Operations research-based methods (OR-based methods), which are oriented to rigorous 

mathematical modelling leading to a deep understanding of the behaviour of the system 

[29]. Nevertheless, they usually focus on reliability/availability computation, lacking 

specific consideration of buffers (see for example, [25]) and not measuring the 

inefficiency factors that may affect a system, relevant for practitioners. 

It is evident that there is a significant difference in how OR-based approaches 

address the performance evaluation process with respect to a metric-based approach like 

the OEE calculation. In fact, OR-based methods rely on a model of the system on which 

it is possible to perform experiments in order to predict how the system will reasonably 



respond to specific factors, while the metric-based approaches rely on a computation 

that is done using ex-post data coming from the components of the real system. On the 

other side, metric-based approaches allow tracking the overall effectiveness of a 

production equipment by addressing its specific cause in terms of inefficiency factors 

(A, P and Q). This is a relevant issue for practitioners in manufacturing domain and 

should be considered in performance evaluation models. 

The objective of this work is to investigate the possibility to combine the 

theoretical background that lies behind these different methodologies. In fact, the 

founding idea is that the performance evaluation process should be approached using 

the modelling perspective, distinctive of Operations Research techniques, but, at the 

same time, taking into account the holistic orientation typical of the OEE metric, which 

aims to monitor and control all the main production losses that can negatively affect the 

valuable time of the equipment. At the same time, this research is based on three 

requirements to be fulfilled, established considering the manufacturing domain, that are: 

i) the necessity to push the performance evaluation towards a factory-level orientation; 

ii) the need for addressing performance evaluation of buffered multi-state production 

systems; iii) the need to propose a method to calculate the performance metric through 

an ex-ante modelling approach. The effort in merging those two approaches, together 

with the will to fulfil these requirements, have resulted into the creation of a simulation-

based performance evaluation model that aims to compute the OFE (Overall Factory 

Effectiveness) and WIP (Work in progress) of a buffered multi-state production system. 

In particular, the simulation model has been created with a modular approach based on 

specific building blocks in order to facilitate the possibility to use it to evaluate a wide 

range of applications. 



Section 2 provides an overview on the proposed model, describing its scope of 

application, the theoretical background and proposed development. Section 3 describes 

the performance evaluation model as the integration of two components: states 

generators and system model. Section 4 presents an application case where the model 

has been applied in a manufacturing company for analysing the performance of a 

section of its buffered multi-state production system, thus evaluating alternative 

scenarios of configuration and management. Section 5 concludes the paper. 

2. Performance evaluation model proposition  

2.1. Scope of application 

The aim of the model presented in this work is to compute a factory-level performance 

metric such as OFE, under the modelling perspective typical of OR-based methods, 

such as stochastic process approach, Monte Carlo simulation or UGF method, as 

previously defined according to the literature background.  

On the one hand, the holistic consideration of different kinds of inefficiency that can 

characterize the behaviour of an equipment are well expressed by a metric like the OEE. 

Besides, OEE is a widely used metric in industry and, for this reason, it is worthy 

proposing a method for its estimation by extending its scope of application, i.e. at 

factory-level and for buffered production systems. On the other hand, advantages of 

experiments based on mathematical models, i.e. OR-based methods, over real system-

based experiments are many. In fact, they allow identifying precisely cause-effect 

relations (input-output links) that can lead to a deeper what-if analysis, and they enable 

a pro-active decision making process through the conduction of experiments on systems 

that might not even exist yet at the moment of analysis, or that would be too expensive 

if conducted on the real system. These advantages can be exploited in practice when 



estimating performances of a system at its Beginning of Life stage, with the purpose to 

support the decision-making process through estimations of future performance (OFE) 

along the whole asset lifecycle (e.g. as asset-related decision, this is needed when 

choosing among different design alternatives). In the literature it is in fact assessed that 

‘developing a methodology using a metric like OFE to perform what-if scenario 

analysis to facilitate new factory design, is one of the potential future research 

development in this area’ [8]. The same is valid at the Middle of Life stage of a system 

for evaluating reconfiguration or management alternative solutions (e.g. as asset-related 

decision, this is needed when choosing the installation of a new equipment, or changing 

the maintenance plans, etc.). 

Therefore, this paper proposes a simulation-based OFE metric evaluation model 

that enables calculating the performance metric through an ex-ante modelling approach. 

The final aim is to get to a model that can be used in practice to support the asset-related 

decision-making process through scenario analysis and the possibility of estimating the 

future value of the OFE of a production system through ex-ante analysis. The following 

Table 1 summarizes the main characteristics of the proposed solution with respect to the 

traditional OEE metric. 

Table 1. Comparison between the traditional OEE computation and the proposed 

modelling solution 

 Calculation at 

production system level 

Estimation through ex-ante 

analysis based on modelling 

Traditional OEE  No No 

Simulation-based OFE  Yes Yes 

2.2.Theoretical background and proposed development 

The developed performance evaluation model is based on the reliability theory approach 

based on Combined UGF and Stochastic Process [30]. This OR-based approach is 



originally proposed by the authors as a good solution for engineering applications. In 

particular, the three pillars of such approach are the following: 

• the system structure is modelled using a Reliability Block Diagram (RBD) logic: 

each component of the system is a block of the diagram and can be connected 

using the usual RBD operators (series, parallel, stand-by); 

• each component can have its own multi-state evolution and can be studied both 

with an individual Markov or Semi-Markov process; 

• the derivation of the system function is based upon the UGF, which combines 

the behaviour of the components using an analytic approach. 

An example of an UGF model of a Multi-state system (MSS) is the one in Figure 1. 

Element 1 and 2 are two states components, while Element 3 is a multi-state 

component; the three elements are modelled with their respective state-space diagram. 

Then, in the system structure modelled as RBD, the individual functions of Elements 1 

and 2 are combined using the parallel operator and the result is combined with Element 

3 using the series operator. The advantages of the proposed approach are: i) 

simplification of the MSS model building; instead of building a complex model for the 

entire MSS, one should build n separate, relatively simple models for system’s 

elements; ii) simplification of the process for solving a system of equations; instead of 

solving one high-order system of differential (for Markov process) or integral (for semi-

Markov process) equations, one must solve n low-order systems for each system’s 

element [30]. 

Figure 1. Multi-state system structure and state-space diagrams for the system’s 

elements by (Lisnianski 2007). 



 

Nevertheless, two main limits still affect the opportunity to apply this formalism to a 

broader range of use: 

• If the state of the component has a non-exponential sojourn time the resolution 

of the Markov-Chain needs to be based upon Semi-Markov process; in this last 

case the resolution of the individual chain gets more complex especially if the 

analyst is interested in the dynamic evolution of the performance rather than in 

its steady-state condition [19]; 

• the use of UGF cannot account for decoupling elements between the 

components of a system, that is instead a common characteristic of production 

systems – i.e. buffers stocking materials as decoupling elements between two 

machines in a production system – that plays a relevant role on the propagation 

of the effect of a failure along the entire system [31]. 

Thus, in this work the use of discrete event simulation is proposed in order to emulate 

the modelling framework of Combined UGF and Stochastic Process method, aiming to 

overcome the two issues introduced above (generic distributions for sojourn time and 

buffer presence). This approach allows modelling situations where transition rates are 



not constant and a buffer is placed between components.  

Overall, the objective of the performance evaluation model is to compute the 

Overall Factory Effectiveness (OFE) and the work in process (WIP) of the production 

system. OFE has been defined starting from the definition given by [8] of the Overall 

Throughput Effectiveness (OTE) by extending the unit-based interpretation of the 

Nakajima’s conventional OEE [3]. OTE is shown in Equation (1).  

OTE = 
  good product output from factory [units]

theoretical attainable product output from factory in total time [units]
   (1) 

Moving the metric into a simulation context, considering that the simulation model is 

built in order to compute the actual product output that the system is able to complete 

during the simulation horizon, the final definition of OFE is shown in Equation (2). 

OFE =  D × 
  actual product output from factory during simulation time[units]

THsystem[units/t.u.] ∙ simulation lenght [t.u.]
    (2) 

where:  

• THsystem is the theoretical throughput of the system based on the bottleneck 

equipment working in the state of the maximum throughput (ideal condition); 

• D is a deterministic coefficient that accounts for the deterministic time losses 

that are given as an input for the OFE calculation, since we suppose they are 

known by the analyst at the time he/she wants to compute the system 

performance (example: scheduled maintenance time, R&D time, engineering 

time and set-up time); D can be computed analytically as the loading time 

divided by the calendar time; 

• the actual product output from factory is an effect of the stochastic performance 

losses in the different equipment within the system; in particular, failure leading 



to fault states and downtimes, idling and minor stoppage, as well as working 

states at reduced speed, have been considered as the different types of stochastic 

losses to be quantified in the system. To this end, the observation period (hence 

the simulation time) does not include deterministic losses (already accounted by 

D). 

3. Performance evaluation model 

3.1. Model overview 

The idea of the proposed model is about implementing the theory based on UGF and 

Stochastic Process method, relying on the potentialities of numerical analysis given by 

simulation. The developed simulation-based performance evaluation model is made up 

by two main modelling elements: 

• States generators, which aim to generate a sequence of states for each machine 

(i.e. equipment) of the system; 

• System model, which aims to model the dynamic interaction between the 

elements component of the system, i.e. machines (i.e. equipment) and buffers.  

Figure 2 provides a graphical visualization of the links between the two parts of the 

simulation model, and summarizes the input variables needed to run the simulation 

model and the output variables.  

Figure 2. Proposed performance evaluation model logical scheme 
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The input variables for each states generator are the state-space diagram that 

drives the state evolution of each machine, and the time to failure / to repair (TTF, TTR) 

distributions of the machine. The input variables for the system model are the capacity 

of the buffers, and the system configuration in terms of logical interconnections among 

the machines, built in the layout to allow the system functionality of material flow 

processing. In particular, typical connections among components in a production system 

– i.e. series, redundancy (active/partially loaded/passive), and assembly/disassembly – 

can be modelled. 

Thus, the objective of the performance evaluation model is to allow the 

calculation of the OFE and WIP of a generic production system. It results from 

modelling and simulation capabilities built in the model: 

• the real production system is modelled in terms of a system model (created by 

combining “machine building blocks”, in the remainder MBBs) and n states 

generators (one for each MBBs); 

• Monte Carlo simulation is used to simulate the states transition mechanism for 



each machine (each MBB) in the system, relying on the states generators 

modelling; 

• the system model and states generators are implemented in a discrete event 

simulation model; the simulation model is run to compute the OFE and the 

buffers level (WIP). 

Figure 3 focuses on the simulation process steps, remarking the role of system model 

and states generators as modelling elements informing them. This is illustrated more in 

detail in the following sections (section 3.2 and 3.3) before concentrating on simulation 

modelling and running (section 3.4). 

Figure 3. Simulation process steps and modelling elements 
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state of each system’s component, starting from an initial one, evolves and changes over 

time due to specific events occurring. Each event coincides with a state transition.  

State-space diagrams are defined for representing and modelling state transitions 

for multi-state system [19]. 

In the classical Markov chain approach, the transitions are viewed under a “rate-

based” perspective; in our model, a “time-based” view was used in order to exploit the 

discrete event simulation framework to introduce the states generator behaviours as a 

“mirror” of the components (machines) in the real system, operated in the time domain. 

In fact, it would be easily understandable from a practical perspective, as it is well 

aligned with the monitoring practice of extant, real systems. While doing so, we aimed 

that the states generators also modelled sojourn times with non-exponential distribution, 

being flexible for the generic needs arising from real cases where the transition rates are 

not necessarily constant. Computationally speaking, in our model, as normally 

occurring within a discrete event simulation framework, a transition takes place when a 

certain time is expired (i.e. the time related to the next event scheduled, based on the 

Monte Carlo generation, in the simulation clock). Therefore, for example, assuming that 

a state-space diagram is built as the one shown in Figure 4, there are three possible 

states and every transition is enabled. All in all, this means that each machine within the 

system is modelled as a repairable multi-state component with minor and major failures 

and repairs. 

Figure 4. Example of a state-space diagram according to the “time-based” view 
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In general, the number of states and the generic sojourn time distributions can be 

defined when modelling each component (machine) of the system by extending the 

state-space diagram as required. The state evolution’s dynamic is modelled by Monte 

Carlo simulation mechanism based on the “time-to” distributions (Time To Failure 

(TTF) and Time To Repair (TTR) distributions) that drive the transitions. To this regard 

it is worth remarking that, as different states can be considered in the state-space 

diagram, we may have more TTF and TTR distributions to model the transitions from 

and to states, wherein only one down state is the fault state with no functionality at all 

provided by the component (machine), while other degraded states are also seen as fault 

states, but with some performance level still available – however degraded – for their 

functionality: overall, this allows to implement a range of performance levels, varying 

from perfect functioning to complete failure/fault state. Last but not least, it is also 

relevant to underline that the “time-to” distributions needed in input are conditional 

distribution because they depend, in term of distribution shape and parameters, on the 

current state of the machine.  

 



3.3.System model 

The creation of the system model is based on the combination of “machine building 

blocks” (MBBs), which represent the elementary parts of a system.  

A MBB represents a machine (i.e. the equipment) and at the same time allows to 

control the dynamic of both upstream and downstream buffer of that machine, in case 

they exist. This means that the model of a n machines system will be made up by n 

MBBs. Different types of MBB are defined depending if: i) upstream buffer exists and 

ii) downstream buffer exists. In this concern, the modelling through proper MBBs 

allows controlling the dynamic of the inbound production flows in the buffer/outbound 

production flows from the buffer. 

Moreover, the logical connections among MBBs allowing system functionality 

is modelled. In particular, a functional-logic system modelling approach expresses 

MBBs interrelationship based on the following possible connectors: series, redundancy 

(active/partially loaded/passive), and assembly/disassembly, all relevant for a 

production system. Thus, specific modelling archetypes have been defined to support 

setting the simulation model based on existing connections among the MBBs. For 

example, an archetype was defined for total redundancy connection of two MBBs, in 

which a “decide” block is to be introduced (with a “n-ways by chance” condition based 

on equal probabilities) when setting the system model up in order to govern the input 

flow splitting among the MBBs (in fact, total redundancy means that all components 

share the same load right from the start until one of them fails). In the specific case of 

passive redundancy connection archetype, based on an Operation Dependent Failures 

modelling approach [32], an algorithm for modification of the states generators of the 

MBBs involved was also defined. In fact, in this specific connection, downgrading state 

changes (i.e. failures as transitions towards downgraded states) of the 

equipment/machine in stand-by to the main one can happen only during the fault state 



of the latter, while upgrading state changes (i.e. repairs) can happen at any time (both 

when the standby machine is active or not). Thus, the random number extraction for 

failure in the states generator of that MBB can only take place during the main 

component/machine downtime, while random extraction for repairs can always occur. 

3.4. Simulation modelling and running  

Once the production system under analysis is represented through the modelling of the 

states generators (guiding the states transitions for each equipment/machine) and of the 

system model (controlling the interrelationships among the equipment/machines from a 

logical point of view), the simulation model can be finally built up in a software 

environment. In this work, Arena software (https://www.arenasimulation.com/) was 

chosen to implement the discrete event simulation model. Within this simulation 

environment, both the states generators and the system model have been translated 

according to the software language.  

Concerning the states generators, an example of the model built in Arena is 

presented in the following Figure 5. The figure shows the representation of the states 

diagram in Arena and its related states generation algorithm. The “create” block 

generates the unique entity (dummy entity) to track the state evolution; “branch” blocks 

are introduced to control the state transitions; eventually, the “delay” blocks are used to 

implement the transitions accordingly with the “time-based” view of the model. 

Figure 5 Example of implementation of states generator through Arena software 

 



 

The final output of the states generator is a sequence of states over time of the 

specific related machine in the model. 

Concerning the system model, an Arena solution for the model of each of the 

required MBBs has been defined, making them available as building blocks that can be 

combined according to the possible logical interrelationships (series, parallel, partial 

loaded redundancy etc.) that connect, depending on the specific layout/configuration, 

the different equipment/machines in a system. 

Once the model is built in the simulation environment, usual steps to prepare the 

simulation experiments are to be done. The ramp up length, the simulation length and 

the number of replications have to be set before running the simulation (to achieve 

consistent results, in a non-terminating simulation [33]). The procedure proposed by 

[34] can be used for deciding the ramp up length; the statistical MSPE (mean squared 

pure error) procedure can be used for defining the simulation length and the sequential 

procedure proposed by [33] can be used for the determination of the number of 

replications. 

Once the simulation is run and validated, the OFE and buffer level (i.e. WIP 

level) are computed as the output of the analysis. Concerning the model validation, 

more details are provided within the context of the application case. 
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4. Application Case 

4.1. Introduction 

The proposed performance evaluation model has been implemented in the production 

system of a company in the mechanical sector. The system produces an assembly 

according to the production flow presented in Figure 6.  

Figure 6. Reference section of the production system layout (application case) 

 

Equipment1 (eq1) is a feeding robot used to automate the operation of metal 

sheets loading of the following equipment. Equipment2 and Equipment3 (eq2 and eq3) 

constitute an integrated sub-system that is able to punch, shear and bend the metal sheet 

automatically. A subsequent buffer decouples this part of the system from Equipment4 

(eq4), which is an assembly robot that combines the processed metal sheets with the 

metal brackets fed by Equipment5 (eq5), which performs folding operation on the raw 

brackets entering the system. 

In the current practice, the company has started collecting data from the shop 

floor, thus keeping the OEE of each of the equipment of the plant under control to guide 

improvement decisions. Nonetheless, the plant is a new installation, thus, a complete 

knowledge of the OEE of all equipment is not actually available. Furthermore, no 

performance metric at the factory-level is calculated. Last but not least, there is no 

performance evaluation model that accurately estimates the performance of the 

production equipment through an ex-ante approach in order to support configuration 

and management decisions. Configuration / reconfiguration and management are 

eq1 eq2 eq3
Buffer

eq4

eq5

OUT
IN

IN



currently based on rough capacity models, lacking of a proper capability to compute the 

systemic effect of stochastic events such as failures and other inefficiencies due to 

minor stoppages or reduced speed. 

The proposed model was applied in order to support decision-makers in the 

company to evaluate the performance of the system in terms of OFE and WIP at its 

current configuration, and to identify and evaluate alternative improvement scenarios. It 

is worth remarking that, in order to model the “as-is” scenario that represents a newly 

installed production system, reference data have been collected from similar equipment 

working in similar conditions and installed in already existing systems of the company, 

or from information provided by vendors. After modelling the “as-is” system – i.e. the 

new installation – and after computing the OEE of each single component and OFE, two 

alternative scenarios were identified. Each scenario was then evaluated by applying the 

model to the new solution and calculating the expected OFE that would result from the 

foreseen improvement actions. In particular, the two scenarios that were evaluated deal 

with: 

• an improvement of the critical equipment through a performance monitoring 

plan (scenario 1); 

• an increment of the buffer capacity (scenario 2). 

The decisions in each scenario were achieved based on a bottleneck-orientation, a well-

known concept in industrial engineering applications [17]. Therefore: 

• the equipment that result to have the lowest actual OEEs are the bottlenecks, i.e. 

the critical equipment; as such, they are worth of an improved performance 

monitoring plan (scenario 1); 

• the buffer capacity should be placed primarily to protect the bottlenecks from 



the variabilities generated by other equipment along the system (scenario 2). 

It is clear that scenario 1 can be achieved without changing the installation / 

configuration: it is a management decision. Scenario 2 is instead requiring a plant re-

configuration, as the layout should be changed to increment the space provided to the 

buffer capacity: this re-configuration was considered feasible (at some cost) by the 

company. 

4.2. Modelling and simulation set up 

The first step is about the modelling phase of the as-is system. Five states generators 

(one for each equipment) and one system model (made up by eq1, eq2, eq3, a buffer, 

eq4 and eq5) have been defined. MBBs were used in order to create the overall model 

and one states generator for each equipment was created representing the behaviour 

based on the available data. In particular, three equipment, out of five, present a multi-

state evolution, i.e. eq2, eq3 and eq5 (see Figure 7). Moreover, regarding the repair 

procedures, the state-space diagrams follow the following assumptions: 

• repairs are not possible while the equipment is working at a downgraded speed; 

they can take place only during the downtime; 

• repair brings the equipment to the good-as-new state (the maximum throughput 

state of the equipment). 

Figure 7 represents the state-space diagrams for Equipment eq2, eq3 and eq5, indicating 

the number of states for each equipment corresponding to the performance levels they 

can provide (indicated as percentages), and each possible transition specifying the 

specific Time To Failure (TTF) and Time to Repair (TTR) from one specific state and 

the other.  



Figure 7. States-space diagrams of Equipment eq2, eq3 and eq5 (application case)  
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reliability. Hence, the comparison of the simulation model output data with the output 

data collected from the actual system was not feasible in a complete and systematic 

way. To overcome this issue, comparison with experts’ opinion was done, as a pure 

quantitative validation was not possible [33]. Knowing similar equipment working in 

similar conditions as well as installed in already existing systems of the company, or 

information provided by vendors, was helpful as a reference for the experts’ opinion. 

Moreover, the validation was backed up by means of the use of rough estimates built on 

simple analytical expressions as well as data available on nominal and average values, 

especially concerning the bottleneck equipment/machines, as currently monitored by the 

company. Thus, the technical director responsible of the company was interviewed and 

the results of the simulation analysis were shown to him. The output of the simulation 

was in line with its expectations, also compared with the results of simple analytical 

estimates, the benchmarks from similar equipment and the information from the vendor. 

4.3. Scenarios comparison 

4.3.1. As-is scenario 

The output distribution of OFE, obtained by running the simulation model for the as-is 

scenario, is shown by the histogram in Figure 8; mean and standard deviation of OFE 

are shown as descriptive statistics. 

Figure 8. As-is scenario: OFE distribution 
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The performance at the equipment level has been recorded in the form of single 

equipment OEE (see Figure 9). Each OEE is computed based on the data from the states 

generators, thus, it represents the performance “in isolation” of the single equipment. As 

it was expected by the company itself based on its previous knowledge of the 

equipment, the two robots (eq1 and eq4) have the better performance in term of OEE; 

moreover, their Performance indicator P is 100 % because they are not MSSs. Eq2, eq3 

and eq5 have a significantly worst performance in terms of OEE compared to the 

robots: their performance in term of A is comparable to the one of the robots; 

nonetheless, their P is affected by the possibility to work at a lower speed than the ideal, 

as they are MSSs with downgraded states featuring a reduced throughput, this leads to 

the OEE decrease.  

Figure 9. As-is scenario: average OEE of individual equipment and OFE 
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to the assembly robot, i.e. eq4, now affected by material starvation: it has to wait for a 

sub-component fed by eq5, that has a poor performance “in isolation”. Overall, the good 

performance “in isolation” of eq1 and eq4 (the two robots) is negatively impacted by 

the poor performance “in isolation” of other equipment once the system is considered as 

integrated one. This results in a worst performance at the factory level.  

4.3.2. Scenario 1: improving the critical equipment through a performance 

monitoring plan 

Based on the analysis of the performance of the “as-is” scenario, the best candidates for 

scenario 1 are the equipment with the lowest OEE, i.e. eq3 and eq5 that represent two 

bottlenecks for the system. Hence, scenario 1 is about the evaluation of the effect of the 

introduction of a performance monitoring plan of eq3 and eq5, in order to plan a repair 

intervention before reaching an excessive performance decay. From a modelling point 

of view, modified state-space diagrams are introduced in the states generators for the 

two equipment in order to reflect the expected behaviour after the implementation of the 

monitoring plan (it is supposed that the two equipment do not transit through the 20% 

state anymore). The impact of this action can be quantified looking at changes in the 

system OFE which mean value increases substantially (Figure 10). Moreover, Figure 10 

shows how the improvement action would affect the distribution of individual OEE and 

the distance between the average individual OEE and the average OFE. 

Figure 10. Scenario 1: OFE due to the introduction of performance monitoring plan for 

eq3 and eq5  
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4.3.3. Scenario 2: incrementing the buffer capacity  

Scenario 2 analysis allowed evaluating the effect on OFE of the increment of the buffer 

capacity, which has got a capacity of 10 units maximum in the “as-is” case. The 

decision-maker identified such scenario since the buffer is placed after the eq3 (one of 

the two bottleneck of the system). Moreover, since the functioning of the assembly 

robot (eq4, placed after the buffer) is bounded from the subcomponent arriving from 

eq5 (the other bottleneck), a bigger decoupling power could also help to better isolate 

the two bottlenecks from each other. Two different increments of the buffer capacity are 

tested: to 50 and to 100 units. Figure 11 shows the obtained results from such 

experiment. 

Figure 11. Scenario 2: OFE and WIP in the as-is scenario with respect to scenarios 2 

where buffer capacity is increased to 50 units (scenario 2_1) or 100 units (scenario 2_2) 
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improvements are not effective as those achievable by a proper performance monitoring 

plan (i.e. scenario 1).   

5.  Discussion and conclusions 

This paper proposes the computation of a factory-level performance metric, i.e. OFE, 

through a simulation-based performance evaluation model able to merge the two 

perspectives of Operations research-based techniques and Metric-based approaches. The 

research was carried out considering different stakeholders in diverse domain. The 

summary of main scientific outcomes can be correspondingly presented as concluding 

remarks. 

• The performance evaluation model can be considered as an extension of the 

theory of UGF and stochastic process approach. It leads to an application of the 

theory in the manufacturing domain for buffered multi-state production systems. 

We believe that the application enriches the theory as it is considering a factory-

level performance metric to measure inefficiencies in the frame of a well-known 

metric used in the manufacturing domain (i.e. OEE). 

• The performance evaluation model extends the OEE theory, leading to the 

computation of the OFE considering the systemic effect of stochastic losses such 

as failures, minor stoppages, and reduced speeds. Under this perspective, it is a 

contribution in the manufacturing application field, with potential effect on 

practices of performance improvement. 

Furthermore, we identified practical hints for further development and application, 

referring to two different targets: i) to implement the performance evaluation model in 

simulation environment. In this concern, we believe that we have provided a model that 

can inform future implementation in correspondent libraries of existing commercial 



simulation tools. In fact, the proposed modelling elements (system model and states 

generators) are aimed to inform the implementation of the simulation that can be run in 

different simulation environment solutions; ii) to improve production engineering 

theories with stochastic modelling of performances. In this last field, the calculation of 

the OFE can support the analyst to evaluate the effect of potential improvement actions 

through an ex-ante estimation based on simulation. The proposed approach allows 

modelling multi-state systems made up of many components that can be coupled using 

various logical connections, with particular emphasis on buffered production systems.  

At the same time, it enables to include in the analysis all the potential losses that are 

traditionally considered within the OEE metric. The application of the model in a real 

industrial case proved its usefulness and applicability. Future research is required to 

better detail how the proposed solution could be adapted for multi-stage, multi-product 

system such as a job shop setting, by addressing the complexity characterizing such 

systems. 

Last but least, referring to the knowledge background, it is worth underlining that, 

within the scope of this research, UGF was selected as the methodology to be used to 

model system reliability, hence the simulation model was informed by UGF approach. 

Therefore, in terms of modelling method, it is worth to address future research on 

comparing this approach with the use of other approaches, such as Agent Based 

simulation, which appears to be suitable as well to solve the reliability modelling and 

simulation problem of large and complex systems [35]. 
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