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Stockbridge dampers are widely used to mitigate the vortex-induced vibrations of overhead electrical line conductors and of many
other cable or cable-like structures exposed to the action of wind. Aim of this work is to develop a simple, but accurate, mechanical
model of a Stockbridge damper to use in the assessment of such structures vibrations.Themodel is based on a beam-like description
of themessenger cable and on a nonlinear formulation of the cross sections cyclic bending behaviour. At the cross-sectional level, the
mechanical behaviour of themessenger cable is reproduced with the classic Bouc-Wen hystereticmodel, which has been recognized
as adequate to represent the local behaviour mainly controlled by interwire sliding processes.The Bouc-Wenmodel parameters are
identified from experimental results available in literature and used at the local (cross-sectional) level to characterize themechanical
behaviour of the messenger cable. The descending global behaviour of the Stockbridge damper compares very favourably with the
experimental results in terms of the impedance function at the clamp and allows for the confident use of the proposedmodel inside
the assessing process of full power lines. The important role of the end zones of the messenger cable is highlighted. In these zones,
a boundary layer like transition is found to occur for the bending stiffness of the messenger cable cross section. This largely affects
the global behaviour of the Stockbridge damper. The length of these zones complements the model parameters.

1. Introduction

Stockbridge dampers are widely used to mitigate the vortex-
induced vibrations of overhead electrical line conductors [1–
5], stay cables [6], and many other cable or cable-like struc-
tures exposed to the action ofwind, such as the counterweight
tension bars of cranes [7].

Invented by Stockbridge in 1925 [8] and subsequently
modified by many other researchers (see, e.g., [9]), these
dampers are cheap, reliable, and easy to install. The most
common type of Stockbridge dampers is made of a rigid
clamp, a short metallic strand, also known as “messenger
cable,” and two inertial bodies attached at the end sections of
the strand.The rigid clamp allows connecting the Stockbridge
damper along the span of a structural cable, to behave as a
secondary dynamic system providing additional dissipation
to the structure. Whenever the damper is actuated by the
motion of the clamp, the two sides of the messenger cables

basically behave as flexible cantilevers with lumped transla-
tional and rotational masses at their ends and two principal
vibration modes. The normal modes of the messenger cables
are, respectively, related to the translation and to the rotation
of the inertial bodies attached at their end sections (see, e.g.,
[10–12]).

Differently than classic, linearly damped, tuned mass
vibration absorber [13], the dynamic response of Stockbridge
dampers is nonlinear and hysteretic, due to the peculiar
bending behaviour of the messenger cable. Relative dis-
placements between the wires of the cable, indeed, can
occur during flexural vibrations, depending on the value of
the vibration amplitude. These internal sliding phenomena
are associated with frictional dissipation, which makes the
dynamic response of the damper inherently nonlinear. In
particular, both the damping and the dynamic stiffness of the
damper turn out to be a function of the vibration amplitude
of the support (i.e., the clamp); see, for example, [14].
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The nonlinear behaviour of the messenger cable is a
characteristic feature of the Stockbridge dampers, which
makes them a very attractive and effective option to mitigate
wind-induced vibrations of cable structures. The nonlinear-
ity, indeed, allows circumventing the detuning effects, typical
of linear tuned mass dampers, which can be due to time
variations both of the mechanical properties of the damping
device and of the operating conditions [15].

Notwithstanding the capital influence in determining the
global characteristics of the Stockbridge damper, however,
only few models can be found in the literature which
specifically address the issue of the characterization of the
hysteretic bending behaviour of the messenger cable.

Pivovarov and Vinogradov [16] modelled the messenger
cable as an equivalent single-degree-of-freedom system, with
restoring forces defined through the phenomenological hys-
teretic model proposed by Bouc [17]. As a major drawback,
the pioneering work by Pivovarov and Vinogradov allows
reproducing only a single mode of the messenger cable, due
to the single-degree-of-freedom assumption.

More recent formulations are based on the Euler-
Bernoulli beammodel to achieve a more realistic description
of the modal properties of the system. Sauter and Hage-
dorn [18, 19] modelled the messenger cable as a nonlinear
beam with a cross-sectional moment-curvature diagram
described through the Masing hysteretic model. The consti-
tutive parameters of the model are identified from the results
of static tests. The dynamic response of the system is then
studied by developing an ad hoc numerical procedure to cir-
cumvent numerical difficulties arising from the nonsmooth
character of theMasingmodel.The predictions of the numer-
ical model are compared with experimental results obtained
by testing a Stockbridge damper prototype mounted on a
shaker table, showing an encouraging agreement. Nonlinear
models based on finite element beam elements have been
adopted by Langlois and Legeron [14] and Barbieri et al.
[20, 21]. In both cases, phenomenological hysteretic models
are adopted and the constitutive parameters are identified
from the results of static or dynamic experimental tests.

A full-scale nonlinear finite element model based on 3D
solid elements has been recently developed by Luo et al. [22].
The 3D finite element approach allows introducing a detailed
model for the local contact conditions between the wires of
the messenger cables as well as between the clamp and the
messenger cable, allowing appreciating how these complex
local phenomena play a key role in the determination of the
overall dynamic characteristics of the Stockbridge damper. In
spite of their possible accuracy, however, full-scale nonlinear
3D finite elementmodels are challenging to setup and require
a very careful calibration, especially when in presence of
many nonlinear contact interfaces.

The aim of this work is to develop a simple, but accu-
rate, mechanical model of a Stockbridge damper to use in
the assessment of the vibrations of overhead electrical line
conductors or of other cable-like structures, exposed to the
action of wind.

The proposed model is based on a beam-like description
of the messenger cable and on a nonlinear formulation of the
cross sections cyclic bending behaviour.

At the cross-sectional level, the mechanical behaviour of
the messenger cable is reproduced with the classic Bouc-Wen
hysteretic model, which has been recognized as adequate to
represent the local behaviour mainly controlled by interwire
sliding processes. The parameters of the Bouc-Wen model
are identified from experimental results available in literature
and used to characterize the mechanical behaviour of the
messenger cable. The descending global behaviour of the
damper is comparedwith experimental results in terms of the
impedance function at the clamp.

On the global behaviour, an important role is played by
the end zones of the messenger cable, where a boundary
layer like transition is found for the bending stiffness of the
messenger cable cross section. The length of these zones
complements the model parameters.

2. Equations of Motion of
Stockbridge Dampers

Stockbridge dampers are typically composed of a metallic
clamp, a short stretch of a stranded steel cable, which is
also known as “messenger cable,” and two shaped inertial
bodies (see Figure 1(a)). The clamp is commonly made of
lightweight aluminium alloys and can be directly cast on the
messenger cable or attached to it through compression. In
both cases, the manufacturing process ensures the continuity
between the clamp andmetallic strand.The inertial bodies are
usually made of steel or Zinc-Aluminium alloys and can be
manufactured in different shapes, the most popular of which
are by far the “bell” and the “fork” shape [9]. As it is sketched
in Figure 1(a), the damper inertial bodies are connected to the
extremities of the messenger cable and can be characterized
by different sizes and inertial properties, for a given design
shape. As per the clamp, different strategies have been devised
by the producers to rigidly connect the damper inertial bodies
to the messenger cable (see, e.g., [22]).

Taking into account the manufacturing process, hence,
relative displacements at the interface sections 𝐴 𝑖 (𝑖 = 1, 2)
in Figure 1(a) can be assumed as strictly equal to zero, and, by
neglecting the mass of the messenger cable, the Stockbridge
damper can be modelled as a discrete dynamic system made
of three rigid bodies connected by means of two flexible
massless cantilevers.

As a matter of fact, the Stockbridge damper can be
regarded as a “tuned mass vibration absorber” [13], designed
to mitigate the effects of vortex-induced vibrations on the
overhead electrical conductors and their interconnected
equipment. The clamp of the damper rigidly follows the
motion of the vibrating conductor and is mainly subjected
to a planar motion, resulting from the superposition of the
vertical translation 𝑤𝑐(𝑡) and rotation 𝜑𝑐(𝑡) of the clamp,
where the symbol 𝑡 denotes the time (see also Figure 1(b)).
Due to the inherent flexibility of the messenger cable and
the kinematic constraint provided by the clamp, the two
sides of the damper basically behave as uncoupled planar
cantilevers, with inertial bodies at their ends providing
lumped translational and rotational masses, and subjected
to a motion of the support. Within this context, the motion
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Figure 1: (a) Schematic representation of a Stockbridge damper. (b) Kinematics of the damper.

of the 𝑖th (𝑖 = 1, 2) inertial body of the damper, as it is
customary in themodelling of Stockbridge dampers (see, e.g.,
[11]), can be completely described by specifying the vertical
displacement 𝑤𝐺𝑖(𝑡) of its centroid and the rotation 𝜑𝑖(𝑡). It
is also convenient to introduce for each side of the messenger
cable the relative transverse displacement, V𝑖(𝑡), of the tipwith
respect to the clamped sections 𝐴 𝑖.

Under the assumption of small displacements and rota-
tions, the vertical translation of the centroid of the 𝑖th inertial
body (see also Figure 1(b)) can be expressed as

𝑤𝐺𝑖 = V𝑖 − 𝑒𝐺𝑖𝜑𝑖 + 𝑤𝑐 + 𝜀𝑖𝑏𝑐𝜑𝑐, with: 𝜀𝑖 = (−1)𝑖−1 , (1)
where 𝑖 = 1, 2, 𝑒𝐺𝑖 is the distance between the centroid of the
𝑖th inertial body and the tip section 𝐵𝑖 of themessenger cable,
and 𝑏𝑐 is the characteristic length of the clamp highlighted in
Figure 1(a).

In the following, the dynamic response of the damper to
a generic input motion of the clamp will be investigated.

Accordingly, in Section 2.1 the equations of motion of
each inertial body of the damper are first derived for a
generic combination of translation (𝑤𝑐) and rotation (𝜑𝑐) of
the clamp. To this aim, a classic variational formulation for
nonholonomic discrete dynamic systems is adopted, in order
to properly account for the characteristic inelastic bending
behaviour of the messenger cable. Then, starting from the
knowledge of the motion of the damper inertial bodies,
general closed-form expressions to evaluate the forces acting
at the clamp of the damper are obtained in Section 2.2.

2.1. Equations of Motion of the Damper Inertial Bodies. Given
the motion of the clamp, the generic dynamic configuration

of the 𝑖th (𝑖 = 1, 2) inertial body of the Stockbridge damper
can be described by introducing two Lagrangian coordinates,
such as the relative displacement, V𝑖, with respect to the
clamped section (𝐴 𝑖) of the end section (𝐵𝑖) of the messenger
cable, V𝑖 and the rotation of the inertial body, 𝜑𝑖. Within
this context, the equations of motion of the damper inertial
body can be conveniently obtained by means of Hamilton’s
variational principle for non-holonomic discrete dynamic
systems (see, e.g., [23, 24]). By denoting as 𝑡1 and 𝑡2, two
generic time instants such that 𝑡2 > 𝑡1, the following
stationarity conditions hold true:

∫𝑡2
𝑡1

(𝛿𝑇𝑖 + 𝛿𝑊𝑖) 𝑑𝑡 = 0, (2)

where 𝛿𝑇𝑖 is the total variation of the kinetic energy of the
𝑖th inertial body, while 𝛿𝑊𝑖 is the work done by the restoring
forces exerted by the messenger cable on the 𝑖th inertial body
for a virtual variation of the Lagrangian coordinates V𝑖 and𝜑𝑖.

By accounting for both the translational (mass: 𝑚𝑖) and
the rotational inertia (mass moment of inertia with respect to
the centroid: 𝐼𝐺𝑖) of the 𝑖th inertial body of the damper, the
kinetic energy 𝑇𝑖 can be expressed as

𝑇𝑖 = 1
2𝑚𝑖𝑤̇

2
𝐺𝑖 + 1

2𝐼𝐺𝑖𝜑̇
2
𝑖 , (3)

where the dot denotes the derivative with respect to the time
and 𝑤𝐺𝑖 is the vertical displacement of the centroid (point 𝐺𝑖
in Figure 1(a)). By recalling the kinematic equation (1), the
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Figure 2: (a) Generalized restoring forces at the end sections of the messenger cables. (b) Dynamic equilibrium of the 𝑖th damper mass.

kinetic energy (3) can be also rewritten as a function of the
first time derivatives of the Lagrangian coordinates V𝑖 and 𝜑𝑖:
𝑇𝑖 (V̇𝑖, 𝜑̇𝑖) = 1

2𝑚𝑖 ((V̇𝑖 − 𝑒𝐺𝑖𝜑̇𝑖)
2

+ 2 (V̇𝑖 − 𝑒𝐺𝑖𝜑̇𝑖) (𝑤̇𝑐 + 𝜀𝑖𝑏𝑐𝜑̇𝑐) + (𝑤̇𝑐 + 𝜀𝑖𝑏𝑐𝜑̇𝑐)2) + 1
2

⋅ 𝐼𝐺𝑖𝜑̇2𝑖 .

(4)

The restoring forces acting on the 𝑖th inertial body and work-
conjugated to the Lagrangian coordinates V𝑖 and 𝜑𝑖 are the
shear force 𝐹𝑖 and the bending moment𝑀𝑖 acting at the end
section of the messenger cable, as it is schematically depicted
in Figure 2(a). Accordingly, the virtual work 𝛿𝑊𝑖 can be
expressed as

𝛿𝑊𝑖 = −𝐹𝑖 (V𝑖, 𝜑𝑖, 𝑡) 𝛿V𝑖 −𝑀𝑖 (V𝑖, 𝜑𝑖, 𝑡) 𝛿𝜑𝑖. (5)

It is worth noting that, due to the hysteretic bending
behaviour of the messenger cable, the shear force and the
bending moment which appear in (5) can be described,
in general terms, by means of two nonlinear and non-
holonomic functions of the Lagrangian coordinates, which
depend also on the past history of the problem. A suitable
model for these restoring forces will be detailed in Section 3.
By taking into account (4) and (5) and applying the funda-
mental lemma of the calculus of variations (see, e.g., [23]),
Euler-Lagrange’s equations of motion of the 𝑖th inertial body
can be easily derived from (2) as

𝑑
𝑑𝑡
𝜕𝑇𝑖
𝜕V̇ + 𝐹𝑖 (V𝑖, 𝜑𝑖, 𝑡) = 0

𝑑
𝑑𝑡

𝜕𝑇𝑖
𝜕𝜑̇𝑖 +𝑀𝑖 (V𝑖, 𝜑𝑖, 𝑡) = 0.

(6)

The equations above state the dynamic equilibrium between
the generalized restoring forces exerted by the messenger

cable on the damper inertial bodies and the generalized
inertia forces: 𝐹iner

𝑖 = (𝑑/𝑑𝑡)(𝜕𝑇𝑖/𝜕V̇) and 𝑀iner
𝑖 =

(𝑑/𝑑𝑡)(𝜕𝑇𝑖/𝜕𝜑̇𝑖), as it is schematically depicted in Figure 2(b).
By evaluating the derivatives of the kinetic energy (4), (6)

can be further rewritten in the following, more expressive,
engineering form:

𝑚𝑖V̈𝑖 (𝑡) − 𝑚𝑖𝑒𝐺𝑖𝜑̈𝑖 (𝑡) + 𝐹𝑖 (V𝑖, 𝜑𝑖, 𝑡)
= −𝑚𝑖𝑤̈𝑐 (𝑡) − 𝑚𝑖𝜀𝑖𝑏𝑐𝜑̈𝑐 (𝑡)

− 𝑚𝑖𝑒𝐺𝑖V̈𝑖 (𝑡) + (𝐼𝐺𝑖 + 𝑒2𝐺𝑖𝑚𝑖) 𝜑̈𝑖 (𝑡) + 𝑀𝑖 (V𝑖, 𝜑𝑖, 𝑡)
= 𝑚𝑖𝑒𝐺𝑖𝑤̈𝑐 (𝑡) + 𝑚𝑖𝑒𝐺𝑖𝜀𝑖𝑏𝑐𝜑̈𝑐 (𝑡) .

(7)

The motion of each inertial body of the damper, hence,
turns out to be controlled by a system of coupled nonlinear
second-order differential equations. It can be observed that
the coupling between the vertical displacement V𝑖 and the
rotation 𝜑𝑖 is due to both the linear inertial terms in (7) and
the nonlinear generalized restoring forces, 𝐹𝑖 and𝑀𝑖.
2.2. Generalized Forces Acting at the Damper Clamp. The
external force, 𝐹𝑐, and moment,𝑀𝑐, acting at the clamp and
work-conjugated to the imposed clamp displacement 𝑤𝑐 and
rotation 𝜑𝑐, can be evaluated through simple equilibrium
considerations, once themotion of each damper inertial body
has been determined by integrating the equations of motion
(7). Figure 3 shows a schematic representation of all the forces
acting on the clamp at a generic instant of time, that is, the
external force and moment, 𝐹𝑐 and𝑀𝑐, the shear forces and
bendingmoments exerted by each side of themessenger cable
on the clamp, and the generalized inertia forces due to both
the translational and the rotational inertia of the clamp: 𝐹iner

𝑐

and 𝑀iner
𝑐 . The latter can be expressed as 𝐹iner

𝑐 = 𝑚𝑐𝑤̈𝑐 and𝑀iner
𝑐 = 𝐼𝐺𝑐𝜑̈𝑐, where𝑚𝑐 and 𝐼𝐺𝑐 are, respectively, the mass of

the clamp and the mass moment of inertia with respect to its
centroid.
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By imposing the equilibrium of the clamp with respect
to both the vertical translation and the rotation, the external
force 𝐹𝑐 and moment𝑀𝑐 can be evaluated as

𝐹𝑐 = 𝐹iner
𝑐 − (𝐹1 + 𝐹2)

𝑀𝑐 = 𝑀iner
𝑐 +𝑀2 −𝑀1 + 𝐹2 (𝑙2 + 𝑏𝑐) − 𝐹1 (𝑙1 + 𝑏𝑐) .

(8)

By taking into account the equations ofmotion of the damper
inertial bodies (7), (8) can be further rewritten as

𝐹𝑐 = (𝑚1 + 𝑚2 + 𝑚𝑐) 𝑤̈𝑐 + (𝑚1 − 𝑚2) 𝑏𝑐𝜑̈𝑐 + 𝑚1V̈1
+ 𝑚2V̈2 − 𝑚1𝑒𝐺1𝜑̈1 − 𝑚2𝑒𝐺2𝜑̈2

𝑀𝑐 = (𝑚1𝑙∗1 − 𝑚2𝑙∗2 ) 𝑤̈𝑐 + (𝐼𝐺𝑐 + 𝑚1𝑏𝑐𝑙∗1 + 𝑚2𝑏𝑐𝑙∗2 ) 𝜑̈𝑐
+ 𝑚1𝑙∗1 V̈1 − 𝑚2𝑙∗2 V̈2 + (𝐼𝐺1 − 𝑚1𝑒𝐺1𝑙∗1 ) 𝜑̈1
− (𝐼𝐺2 − 𝑚2𝑒𝐺2𝑙∗2 ) 𝜑̈2,

(9)

where 𝑙∗𝑖 = 𝑙𝑖 + 𝑏𝑐 − 𝑒𝐺𝑖, 𝑖 = 1, 2.
Equations (9) allow us to clearly appreciate all the inertial

contribution to the generalized forces, acting at the clamp of
the damper, coming from the motion of the clamp and of the
damper inertial bodies.

For the special case of symmetric Stockbridge dampers,
which is often encountered in practical applications, the
general equations (9) can be rewritten as

𝐹𝑐 = (2𝑚𝑑 + 𝑚𝑐) 𝑤̈𝑐 + 2𝑚𝑑V̈𝑑2 − 2𝑚𝑑𝑒𝐺𝑑𝜑̈𝑑
𝑀𝑐 = (𝐼𝐺𝑐 + 2𝑚𝑑𝑏𝑐𝑙∗𝑑) 𝜑̈𝑐,

(10)

where𝑚𝑑, 𝐼𝐺𝑑, and 𝑒𝐺𝑑 are the relevant inertial and geometric
properties of the damper inertial bodies, 𝑙∗𝑑 is defined as 𝑙∗𝑑 =𝑙1 +𝑏𝑐 − 𝑒𝐺1 = 𝑙2 +𝑏𝑐 − 𝑒𝐺2, and V𝑑 and 𝜑𝑑 are, respectively, the
relative vertical displacement and the rotation of the damper
inertial bodies (V1 = V2 = V𝑑 and 𝜑1 = 𝜑2 = 𝜑𝑑, due to the
symmetry of the system).

3. Hysteretic Model of the Messenger Cable

The messenger cables are short segments of small-diameter
spiral steel strands, with total length typically in the range of
30–50 cm.They are made of wires with circular cross section,

twisted around a straight corewire, and grouped in one or two
concentric layers. The centerline of the external wires can be
modelled as a circular helix, wrapped around the centerline
of the strand, with radius 𝑅 and pitch 𝑃. The constant angle
between the tangent vector to the wire centerline and the axis
of the strand can be evaluated as 𝛼 = arctan(2𝜋𝑅/𝑃) and is
commonly referred to as the “lay angle” of the wire. Typical
values of the lay angle for messenger cables are in the range of
10∘–30∘. Different layers are typically made of wires wrapped
with opposite directions to enhance the stability of the cable
(see also [25], for further details on the geometric modelling
of spiral strands).

The wires of the messenger cable are clenched together,
such that even if the strand is axially unloaded each wire
is in radial contact with the ones belonging to an adjacent
layer or to the core (for the wires in the innermost layer).
This clenching effect can be recognized as a consequence
of two main causes: (1) the kinematic restraints provided
by the clamp and the damping inertial bodies; (2) the
residual radial contact stresses, which are induced by the
manufacturing process and depend both on the complex
sequence of operations involved in the winding of the helical
wires and on the viscoelastic phenomena characterizing the
subsequent storing of the strand (see, e.g., [25–27]). The
clenching forces between the wires play a major role on the
bending response of metallic strands, as it has been recently
shown, for example, in [25].

Whenever a strand is bent, an axial force gradient is
generated along the wires, giving them the trend to slip with
respect to the neighbouring ones. This relative displacement
is counteracted by friction forces, acting on the internal
contact surfaces between the wires belonging to adjacent
layers (or between the wires of the innermost layer and the
core). According to the classic Amontons-Coulomb friction
model, the interwire friction forces increase linearly with
the radial contact forces, which in slack cables only depend
on the previously discussed clenching effects due to the
residual stresses and to the boundary conditions. The axial
force gradient along the wires can be increased, up to the
point to overcome the value of the interwire friction forces,
by increasing the value of the bending curvature of the
strand. This leads to an unbalanced condition determining
the sliding of the wire and the freezing of the axial force
gradient (see, e.g., [25, 28]).

Figure 4 depicts a typical moment-curvature (𝑀-𝜒) for
the cross section of a metallic strand (see, e.g., [29]). A
physically sound interpretation of the nonlinear and non-
holonomic bending behaviour depicted in Figure 4 can be
obtained based on the simple but well-established [25, 28–30]
friction model previously described.

Initially, the friction forces are large enough to prevent
any relative sliding between the wires. Since all the wires of
the strand are stuck together, this limit kinematic condition
is usually referred to as the “full-stick” state of the strand.The
cross section behaves as a planar rigid body according to the
classic Euler-Bernoulli beam model and the tangent bending
stiffness (defined as 𝐸𝐼tan = 𝜕𝑀/𝜕𝜒) is at a maximum value,
that is, 𝐸𝐼tan = 𝐸𝐼max.
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Figure 4: Typical bending moment curvature diagram of metallic
strands.

By increasing the value of the bending curvature, the
wires progressively start to slip and the tangent stiffness 𝐸𝐼tan
of the cable gradually decreases up to reach the minimum
value:𝐸𝐼tan =𝐸𝐼min, when all thewires are in the slipping state.
In this limit condition, usually referred to as the “full-slip”
state, the strand basically reacts as a bundle of individually
bent wires to any increment of curvature.

Several expressions have been proposed in the literature
to evaluate the maximum and minimum value of the tangent
stiffness of metallic strands. Since they start from very similar
mechanical assumptions, most of them lead to very close
results (see, e.g., [28, 31]). The following expressions, previ-
ously developed by the authors in [28] to model the planar
bending of amultilayermetallic strand, will be adopted in this
work to obtain a theoretical estimate of the stiffness values
𝐸𝐼min and 𝐸𝐼max of the messenger cable:

𝐸𝐼min =
𝑚

∑
𝑗=0

𝑛𝑗cos3 (𝛼𝑗) 𝐸𝐼𝑤𝑗

𝐸𝐼max = 𝐸𝐼min +
𝑚

∑
𝑗=0

𝑛𝑗
2 cos3 (𝛼𝑗) 𝑅2𝑗𝐸𝐴𝑤𝑗,

(11)

where 𝑚 is the number of the layers; 𝑛𝑗 is the number of the
wires belonging to 𝑗th layer; 𝐸𝐴𝑤𝑗 and 𝐸𝐼𝑤𝑗 are, respectively,
the linearly elastic axial and bending stiffness of the cross
section of a wire belonging to 𝑗th layer, and 𝑅𝑗 and 𝛼𝑗 are
the radius and lay angle of layer 𝑗, respectively. The subscript
“0” is adopted for the variables which are referred to the wire
core of the strand.

It is worth noting that the limit values of the tangent
bending stiffness, 𝐸𝐼max and 𝐸𝐼min, of the cross section only
depend on the mechanical and geometric properties of the
wires. On the other hand, the nonlinear transition between
the full-stick and full-slip state in the bending moment-
curvature diagram of Figure 4 is controlled by the evolution
of the relative sliding between wires. A description of this
nonlinear transition branch can be obtained from physically
based discrete models of the strand; see, for example, [25,
28, 30]. Within these formulations, each wire of the strand

is individually modelled as a curved thin rod and the relative
sliding between the wires is studied starting from the solution
of the frictional stick-slip problem at the internal contact
surfaces.

The aforementioned discrete modelling approach can
only be fully exploited if a sufficiently accurate description
of the radial contact forces between the wires of the strand
is available. This normally cannot be achieved in the case of
messenger cables. In fact, reliable analytical estimates of the
radial contact forces between thewires of themessenger cable
are precluded by the lacking of knowledge on themanufactur-
ing process and past history of the strand, togetherwith all the
uncertainties inherently related to the mechanical modelling
of the local clenching effects in the neighbourhood of the
clamp and of the damper inertial bodies.

To circumvent these difficulties, a different, phenomeno-
logical, approach is adopted in this work to model the
hysteretic bending behaviour of themessenger cable. Accord-
ingly, the moment-curvature law is described by means of
the well-known Bouc-Wen hysteretic model (see, e.g., [32,
33]). The five-parameter formulation proposed by Ikhouane
et al. [34–36] is herein rewritten in a slightly modified
form, which allows for a more intuitive interpretation of
the physical meaning of the constitutive parameters of the
hysteretic model. By denoting 𝜒0 as the yielding curvature
of the approximate bilinear elastic-plastic model depicted in
Figure 4, the following equation can be introduced:

𝑀(𝜒 (𝑡) , 𝑡) = 𝐸𝐼min𝜒 (𝑡) + (𝐸𝐼max − 𝐸𝐼min) 𝜒0𝜂 (𝑡) , (12)

where 𝜂(𝑡) is a hysteretic nondimensional variable. The
evolution in time of the hysteretic variable is then described
through the following first-order differential equation:

̇𝜂 (𝑡) = 1
𝜒0 ( ̇𝜒 (𝑡) − 𝜎 󵄨󵄨󵄨󵄨 ̇𝜒 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜂 (𝑡)󵄨󵄨󵄨󵄨𝑛−1 𝜂 (𝑡)

+ (𝜎 − 1) ̇𝜒 (𝑡) 󵄨󵄨󵄨󵄨𝜂 (𝑡)󵄨󵄨󵄨󵄨𝑛) ,
(13)

where 𝜎 and 𝑛 are two parameters affecting the shape
of the nonlinear transition curve between the two linear
regions of the moment-curvature diagram in Figure 4. Some
restrictions on the values of the constitutive parameters of
the model are imposed by the physical properties of the
problem. Indeed, the stiffness terms (𝐸𝐼min and 𝐸𝐼max) and
the yielding curvature 𝜒0 are such that 𝐸𝐼max > 𝐸𝐼min > 0,
and 𝜒0 > 0 (see also Figure 4). Furthermore, to ensure
the stability and the thermodynamic admissibility of the
constitutive equations, the parameters 𝜎 and 𝑛 should satisfy
the following inequalities: 𝜎 ≥ 1/2 and 𝑛 ≥ 1 (see, e.g., [36]).

By assuming that each section of the messenger cable is
characterized by the hysteretic model defined in (12) and (13),
the relationship among the generalized displacements V𝑖 and𝜑𝑖 (with 𝑖 = 1, 2), at the end sections of the messenger cable,
and the work-conjugated generalized restoring forces 𝐹𝑖 and𝑀𝑖, (with 𝑖 = 1, 2) (i.e., the generalized forces exerted by the
messenger cable on the 𝑖th inertial body of the damper) can
be consistently defined with a straightforward application of
the Principle of Virtual Works (PVW).
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Figure 5: Schematic representation of the action of the restoring forces exerted by the messenger cable on the 𝑖th inertial body. 𝐹𝑖 and𝑀𝑖 act
on the 𝑖th side of the messenger cable.

To this aim, it is worth noting that the bending moment
distribution along the 𝑖th (𝑖 = 1, 2) branch of the messenger
cable can be evaluated from the statically determined scheme
depicted in Figure 5 (see also Figure 2). Referring to Figure 5
for notation, the following equation can be easily obtained:

𝑀(𝑠𝑖, 𝑡) = 𝑀𝑖 (𝑡) + 𝐹𝑖 (𝑡) 𝑙𝑖 (1 − 𝑠𝑖
𝑙𝑖 ) , 0 ≤ 𝑠𝑖 ≤ 𝑙𝑖. (14)

By neglecting the effects of the shear deformability and
considering a generic infinitesimal variation of the external
generalized forces acting at the tip of the cable (denoted in the
following as 𝛿𝐹𝑖 and 𝛿𝑀𝑖) along with a statically admissible
variation of the bendingmoment distribution (denoted in the
following as 𝛿𝑀(𝑠𝑖)), the application of the PVW leads to the
following equation:

V𝑖𝛿𝐹𝑖 + 𝜑𝑖𝛿𝑀𝑖 = ∫𝑙𝑖
0
𝜒 (𝑠𝑖) 𝛿𝑀 (𝑠𝑖) 𝑑𝑠𝑖. (15)

By taking into account (14) and recalling the arbitrariness
of the variations 𝛿𝐹𝑖 and 𝛿𝑀𝑖, (15) can be used to express
the tip displacement, V𝑖, and rotation, 𝜑𝑖, as a function
of the curvature distribution, 𝜒(𝑠𝑖), along the cable. Then,
by making explicit the dependency of the curvatures on
the generalized forces acting at the tip of the element, the
following equations can be derived from (15):

V𝑖 (𝐹𝑖 (𝑡) ,𝑀𝑖 (𝑡))
= 𝑙𝑖 ∫
𝑙𝑖

0
((1 − 𝑠𝑖

𝑙𝑖 )𝜒 (𝑠𝑖, 𝐹𝑖 (𝑡) ,𝑀𝑖 (𝑡))) 𝑑𝑠

𝜑𝑖 (𝐹𝑖 (𝑡) ,𝑀𝑖 (𝑡)) = ∫𝑙𝑖
0
(𝜒 (𝑠𝑖, 𝐹𝑖 (𝑡) ,𝑀𝑖 (𝑡))) 𝑑𝑠.

(16)

The above expressions can be used directly within a numeri-
cal incremental solution strategy, to evaluate the generalized
displacements V𝑖 and 𝜑𝑖, if the time history of the external
force, 𝐹𝑖(𝑡), and moment, 𝑀𝑖(𝑡), are provided in input.
In this work, the integrals (16) are evaluated numerically,
by means of a Gauss-Lobatto integration scheme. At each
integration point, the curvature is first determined for a
given increment of the cross-sectional bending moment. To
this aim, a Newton-Raphson solver is adopted along with a
classic one-step backward Euler algorithm (see, e.g., [37]) to
integrate the rate-form constitutive equations (12) and (13).
This step of the numerical solution is referred to as cross-
sectional “state determination.”

Equations (16) can be easily solved also for the generalized
forces 𝐹𝑖(𝑡) and𝑀𝑖(𝑡), if the time history of the displacement,

V𝑖(𝑡), and rotation, 𝜑𝑖(𝑡), are provided in input. This is a
typical problem in the implementation of flexibility-based
beam theories formulations (e.g., [38–40]) and a necessary
ingredient to numerically solve the nonlinear equations of
motion of the 𝑖th damper inertial body (7) with classic time-
stepping schemes, such as the Newmark ones (see, e.g., [37]).
In this work, for a given increment of the displacement,
V𝑖(𝑡), and rotation, 𝜑𝑖(𝑡), (16) are iteratively solved in order
to evaluate the corresponding generalized forces with a
full Newton-Raphson algorithm. The cross-sectional state
determination is performed at each iterative correction step
and for all the integration points along the strand, leading
to two nested Newton-Raphson algorithms (i.e., both at the
(global) element level and at the (local) cross-sectional one).
This is a classic solution strategy for flexibility-based beam
elements (N-N algorithm in [39]).

4. Identification of the Model’s Parameters

Being the modelling approach a mechanical one, based
on the physics of the Stockbridge damper, the constitutive
parameters of the hysteretic model defined in Section 3
can be conveniently identified from the results of quasi-
static bending tests on the messenger cable. This is a direct
consequence of the rate-independent dissipative behaviour of
the cable (see, e.g., [19]), which also is correctly reproduced
by the hysteretic Bouc-Wen model (see, e.g., [32]) adopted
in this work to characterize the moment-curvature diagram
of the cross sections of the cable. If this approach will prove
successful, it would open the way to an alternative and easier
characterization of themechanical response of themessenger
cable; that can be based on the results for cyclic loading
of proved mechanical models of the cable, should these be
available.

Although the common industrial practice is mostly
based on the dynamic testing of the Stockbridge dampers
[41], some results of static bending tests have been also
reported in the literature. Usually these tests are based on
a very simple experimental setup, made of a short stretch
of messenger cable clamped at one end and free at the
other one. The free end of the specimen is then subjected
to a prescribed transverse displacement at the tip, while
recording the corresponding transverse force applied to the
strand (or vice versa). The load-displacement curves can be
obtained both for monotonically increasing and for cyclically
varying transverse displacements (or forces) and assumed as
a reference to characterize the overall bending behaviour of
the strand (see, e.g., [10, 11]).

A similar test setup was also adopted by Sauter and
Hagedorn [18, 19], which additionally measured the local
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Table 1: Geometric characteristics of the messenger cable. The data are from [18].

Layer Number of wires Wire diameter, 𝑑 (mm) Helix radius, 𝑅 (mm) Lay angle, 𝛼 (∘)
0 (core wire) 1 2.0 - -
1 6 2.0 2.0 24.69
2 12 2.0 4.0 21.44

Table 2: Parameters of the proposed cross-sectional hysteretic model identified from the cyclic static test (see also Figure 6).

Section Position 𝑠 (m) 𝐸𝐼max (Nm
2) 𝐸𝐼min (Nm

2) 𝜒0 (m−1) × 10−2 𝜎 𝑛
1 0.005 40 5.0 4.0 1 1
2 0.015 35 3.5 3.0 1 1
3 0.025 32.5 2.8 2.8 1 1
4 0.035 30.5 2.6 2.8 1 1
5 0.05 25 2.4 3.3 1 1
6 0.12 25 2.5 2.8 1 1
7 0.15 25 2.5 2.6 1 1
8 0.18 25 2.5 2.25 1 1
9 0.205 25 2.5 1.8 1 1
10 0.23 40 2.0 0.8 10 1
11 0.25 40 2.0 0.3 10 1

s

F



l = 30 cm

1110987654321

Figure 6: Schematic representation of the static experimental test
on the messenger cable reported by Sauter and Hagedorn [18, 19].

curvatures on several cross sections along the specimen by
means of a special arrangement of strain gauges. This refined
measurement system allowed the authors to record both
the global load-displacement curve and the local moment-
curvature diagrams along the messenger cable. Combining
both local (i.e., cross-sectional) and global information, the
experimental results presented by Sauter and Hagedorn [18,
19] can be conveniently used to identify the parameters and
critically assess the validity and limitations of the hysteretic
model proposed in the present work for themessenger cables.

The messenger cable tested by Sauter (see, e.g., [18])
was made of two external layers of wires wrapped around
a straight core wire. All wires were made of steel and
with the same diameter 𝑑 = 2mm. All relevant geometric
characteristics of the wires are listed in Table 1. The tested
specimen, with a length 𝑙 = 30 cm, was rigidly clamped at one
end and subjected to a cyclic transverse displacement, V, of the
tip. Figure 6 shows a schematic representation of the test setup
along with the position of eleven cross sections for which the
experimentally determined moment-curvature diagrams are
available in [18].

For each cross section, the parameters of the proposed
hysteretic cross-sectional moment-curvature relation ((12)
and (13)) have been identified and are reported in Table 2.
Figures 7–11 show the comparisons between the moment-
curvature diagrams measured by Sauter [18] and the ones
predicted by the proposed model. After calibration of the
parameters, the computed results are in excellent agreement
with the experimental ones, clearly highlighting the validity
of the proposed phenomenological hystereticmodel in repro-
ducing the main characteristic of the physical problem.

Some interesting conclusions on the bending behaviour
of the strand can be drawn by analysing the variation
along the length specimen of the identified values of the
model parameters. First of all, it is worth noting that the
nondimensional parameters 𝜎 and 𝑛 can be both assumed
equal to the unity along the whole length of the cable. In this
respect, sections 10 and 11 can be regarded as an exception,
with an identified value of 𝜎 = 10. However, this markedly
different value of the parameter 𝜎 can also be influenced by
the poor quality of the measured moment-diagram curves
of sections 10 and 11 (see Figure 11). The impaired quality
of the data, on the other hand, can be due to the fact that
being the two sections close to the tip of the cantilever they
are subjected to small values of bending moment to which
it corresponds to a more complex sliding process [42]. Note
also that all the values of 𝜎 in Table 2 correspond to a
thermodynamically consistent (Class I, according to [36])
behaviour.

Differently than 𝜎 and 𝑛, the identified values of the
parameters𝐸𝐼max,𝐸𝐼min, and𝜒0 show some clear trends along
the length of the cable, as it can be appreciated from Figures
12 and 13, where they are plotted against the nondimensional
abscissa 𝑠/𝑙, which is, respectively, equal to zero at the clamp
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Figure 7: Cross-sectional moment-curvature diagram. Comparison between the proposed model and the experimental data from Sauter
[18]. (a) Section 1. (b) Section 2.
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Figure 8: Cross-sectional moment-curvature diagram. Comparison between the proposed model and the experimental data from Sauter
[18]. (a) Section 3. (b) Section 4.
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Figure 9: Cross-sectional moment-curvature diagram. Comparison between the proposed model and the experimental data from Sauter
[18]. (a) Section 6. (b) Section 7.
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Figure 10: Cross-sectional moment-curvature diagram. Comparison between the proposed model and the experimental data from Sauter
[18]. (a) Section 8. (b) Section 9.
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Figure 11: Cross-sectional moment-curvature diagram. Comparison between the proposed model and the experimental data from Sauter
[18]. (a) Section 10. (b) Section 11.
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Figure 12: Maximum and minimum values of the cross-sectional bending stiffness of the messenger cable. Comparison between the values
identified from the static cyclic test and the theoretical values calculated from (11). The values are plotted against the nondimensional arc-
length coordinate 𝑠/𝑙 (see also Figure 6). (a) Maximum stiffness value 𝐸𝐼max. (b) Minimum stiffness value 𝐸𝐼min.
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Figure 13: Values of the yielding curvature𝜒0 of themessenger cable
identified from the static cyclic test. The values are plotted against
the nondimensional arc-length coordinate 𝑠/𝑙 (see also Figure 6).

and to one at the tip (see also Figure 6). The theoretical
values of the maximum and minimum bending stiffness of
the cross sections have been also calculated through (11) and
plotted in Figures 12(a) and 12(b) for comparison purposes.
The reference value of 𝐸 = 200GPa has been assumed in the
calculations for the Young modulus of the steel wires.

First of all, it can be observed that over a wide central
region of the strand the identified stiffness values 𝐸𝐼max and𝐸𝐼min tend to be constant and equal, respectively, to the values𝐸𝐼max = 25Nm2 and 𝐸𝐼min = 2.5Nm2. These values, hence,
can be considered as representative of the cable behaviour
far from the boundaries and compared with the results of
(11). The latter, indeed, are derived from a discrete cable
model neglecting the effects of the boundary conditions.
Equation (11) significantly overestimates the value of 𝐸𝐼max,
with a difference between theoretical and identified values of
about 55%. The discrepancy between the theoretical (11) and
identified value of 𝐸𝐼min, instead, is in the order of 5%.

The differences between the identified and the theoretical
values of the parameter𝐸𝐼max can be partially due to the effect
of the tangential compliance of the internal contact surfaces
between the wires, which is neglected in the model at the
basis of (11). Indeed, preliminary results presented by one of
the authors in [43] show that accounting for the interwire
tangential compliance within the classic framework of the
Hertzian contact theory can actually reduce the value of the
maximum bending stiffness, in both taut and slack single-
layer strands.

FromFigures 12(a) and 12(b), the occurrence of a “bound-
ary layer” region near to the clamp can also be clearly
appreciated. Within this region, both 𝐸𝐼max and 𝐸𝐼min show
a rapid increase from their “far-field” constant values to
the values of, respectively, 40Nm2 and 5Nm2 identified at

a distance 𝑠 = 5mm from the clamp. The presence of the
clamping device can intuitively explain the occurrence of this
boundary region, whose length (𝑙𝐵1) can be estimated from
these figures as 𝑙𝐵1 = 0.16𝑙 (where 𝑙 is the length of the strand).

A second boundary layer region, near to the tip of the
strand and with length approximately equal to 𝑙𝐵2 = 0.23𝑙, can
be also observed from the same two Figures 12(a) and 12(b).
The stiffness parameter 𝐸𝐼max increases up to the same value
of 40Nm2 observed near to the clamp. On the other hand,
a counterintuitive decreasing of the value of the minimum
bending stiffness 𝐸𝐼min is observed close to the tip. This
could also be, however, a spurious effect due to fact that the
identification procedure in this region is based on the less
accurate moment-curvature diagrams of sections 10 and 11
(see also Figure 11).

Figure 13 shows the yielding curvature parameter, 𝜒0, as
a function of nondimensional abscissa 𝑠/𝑙. Within the central
region of the strand, that is, approximately for 0.2 ≤ 𝑠/𝑙 ≤ 0.6,
the parameter 𝜒0 linearly varies within the range of values
from 0.02 to 0.03 (1/m). In the boundary region near the
clamp, the values of 𝜒0 exhibit a rapid increase, which can
be explained by recalling that the radial pressures exerted by
the clamp on themessenger cable tend to contrast the relative
sliding between the wires. This restraining effect tends to
increase toward the clamp, where the interwire displacement
can be assumed to be strictly equal to zero, leading to the limit
theoretical condition of𝜒0 →+∞, for 𝑠/𝑙 → 0. Finally, a third
region can be identified from Figure 13. For 𝑠/𝑙 ≥ 0.6, the
curve𝜒0(𝑠/𝑙) shows a variation of the slope with respect to the
one characterizing the central region of the strand, leading to
a rapid decrease of 𝜒0 from about 0.02 (1/m) toward the zero.

The distribution of the identified values of 𝜒0 along the
length of the strand, hence, leads to two main observations.
On the one hand, it confirms the existence of a boundary
layer region in the proximity of the clamp, already suggested
by the analysis of the identified values of the stiffness
parameters𝐸𝐼max and𝐸𝐼min. On the other one, it can suggest a
dependence of the parameter 𝜒0 on the maximum curvature
𝜒max reached during the hysteresis loops (see also Figures
7–11). To further investigate this effect, the identified values of
the parameter 𝜒0 are plotted in Figure 14 against 𝜒max for all
the sections outside the boundary layer regionnear the clamp,
that is, sections 6–11, which are characterized by 𝑠/𝑙 ≥ 0.2.

The nonlinear relation highlighted in Figure 14 points out
that in the cable there has been dissipation mechanism of
different importance depending on the vibration amplitude.
Given the relatively simple hysteretic model herein adopted,
this is reflected in a smaller value of 𝜒0 at the decrease of 𝜒max
in order to correctly reproduce the energy dissipation.

In the light of the rich and complex scenario coming
from the analysis of the cross-sectional behaviour of the
messenger cable, some simplifications need to be introduced
in order to achieve a good trade-off between the accuracy and
complexity of the model.

To this aim, a fundamental distinction between the
boundary layer and far-field regions of the messenger cable is
introduced by defining two different prototype sections. The
latter are meant to be sufficiently representative, respectively,
of the behaviour of the strand in the proximity of the
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Table 3: Constitutive parameters of the cross-sectional hysteretic model for the prototype sections in the far-field and boundary layer regions
of the messenger cable.

𝐸𝐼max (Nm
2) 𝐸𝐼min (Nm

2) 𝜒0 (m−1) × 10−2 𝜎 𝑛
“Far-field” section 25 2.5 3.0 1 1
“Boundary-layer” section 40 5.0 15.0 1 1
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Figure 14: Relation between the identified values of the yielding
curvature 𝜒0 of the cross sections of the messenger cable and
the maximum 𝜒max curvature measured during the experimental
hysteresis cycles.

restraints or far from them. The constitutive parameters
adopted for these two sections are listed in Table 3.

Once this simplification is introduced, the lengths of the
two boundary regions in the proximity of the clamp and
of the tip of the cable (herein denoted, respectively, as 𝑙𝐵1
and 𝑙𝐵2) should be regarded as two additional parameters of
the model. The analysis of the results of the cross-sectional
identification procedure, however, gives an indication on
the possible extent of the boundary regions, which can be
assumed in the range of 10–25%of the length of the specimen.

5. Capabilities of the Proposed
Modelling Strategy

The proposed modelling strategy is based on a local descrip-
tion of the cyclic bending behaviour through the Bouc-Wen
hysteretic model and on the adoption of a classic structural
theory for themessenger cable.The capability of the proposed
modelling strategy to capture the response of Stockbridge
dampers will be presented in terms of the global behaviour
of the damper reported by Sauter and Hagedorn for the
experimental cyclic tests already adopted for the modelling
of the local behaviour [18, 19]. First, the comparison will be
in terms of the results from quasi-static cyclic tests, then in

 (mm)
Proposed model, lB1 = lB2 = 0

Proposed model, lB1 = 0.1l, lB2 = 0

Experimental data
(Sauter, 2003)

6040200−20−40−60
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Figure 15: Cyclic static test. Comparison between the results of the
proposed cable model and the experimental data reported by Sauter
[18]. The results of the proposed model are plotted for two different
choices of the boundary layer lengths 𝑙𝐵1 and 𝑙𝐵2.

terms of the Stockbridge damper response in the frequency
domain.

5.1. Quasi-Static Response. The bending response of the
specimen tested by Sauter and Hagedorn [18, 19] has been
numerically simulated by solving (16) for a prescribed vertical
load, cyclically varying between the values of ±15N. The
numerical simulations have been carried out by assuming the
constitutive parameters listed in Table 3 for the boundary
layer and far-field cross sections and a total number of
30 Gauss-Lobatto integration points have been adopted to
evaluate the integrals in (16). Different grids of points have
been also preliminary considered in order to exclude the
dependency of the simulation results on the chosen integra-
tion grid.

Figure 15 shows a comparison between the experimen-
tally determined load-displacement curve and the results of
the proposed hysteretic model. The numerical results are
shown for two different values of the boundary layer length
𝑙𝐵1: 𝑙𝐵1 = 0, and 𝑙𝐵1 = 0.1𝑙, with 𝑙 as in Figure 6. In
both cases, the length of the boundary layer close to the
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Figure 16: Real part of the impedance curve of the Stockbridge damper tested on a shaker for sweep tests in frequencywith an imposed vertical
translation of the clamp having a constant value of the clamp velocity equal to 0.2m/s. Comparison between the results of the proposedmodel,
the experimental data and the hysteretic model proposed by Sauter and Hagedorn (Sauter’s model). The experimental data and the results of
Sauter’s model are from [18].

tip of the specimen has been assumed equal to zero (i.e.,
𝑙𝐵2 = 0). Preliminary calculations, indeed, have shown that
varying the length of the boundary layer close to the tip from
zero up to the 20% of the length of the specimen does not
significantly affect the overall response of the strand. This
was expected, since, due to the particular loading conditions
and the resulting triangular bending moment distribution,
the overall response of the cable turns out to be mostly
controlled by the hysteretic response of the cross sections in
the neighbourhood of the clamp.

The structural response reported in Figure 16, computed
from the identified local (sectional) behaviour, is in excellent
agreement with the experimental one once the flexural
boundary layer at the clamp has been accounted for.

5.2. Dynamic Response. In this section, the generalmodelling
procedure described in the previous sections is used to
characterize the dynamic response of a specimen of a sym-
metric Stockbridge damper that was experimentally tested
by Sauter and Hagedorn [18, 19] on a shaker for an imposed
vertical translation of the clamp: sweep tests in frequency
at constant value of the clamp velocity (equal to 0.2m/s).
Being the experimental test of the type at constant velocity,
there is not a single value of amplitude of the motion, since
this depends on the frequency. Due to the nonlinearity of
the Stockbridge response, this last aspect makes achieving a
satisfactory matching with the experimental data even more
challenging.

The efficiency of Stockbridge dampers in damping aeolian
vibrations is one important issue in power line design. One
of the codified [41] ways to measure the damper efficiency
is by first evaluating the damper mechanical impedance at
the clamp through translational tests on an electrodynamic
exciter. Then, the steady state amplitudes of the aeolian
vibrations, and the related strains on the real span, can be
computed resorting to the energy balance principle (EBP) for
the energy input from the wind and the energy dissipated by
the cable + dampers assemblage. The damper is considered

efficient if the computed strains are lower than the allow-
able ones in all of the aeolian vibrations frequency range.
Although not perfect (see, e.g., [44, 45]), the method is well
accepted in the practice. Another use of the impedance curve
found on a shaker is to prove that production samples have
similar dynamic response as dampers qualified in the design
tests.

In order to carry out the assessment, the equations of
motion for the general formulation presented in Section 2.2
are modified for the particular case at hand of symmetric
Stockbridge damper, as it follows. For a symmetric Stock-
bridge damper subjected only to a vertical translation of
the clamp, the dynamic equilibrium equation for the clamp
becomes

𝐹𝑐 = (2𝑚𝑑 + 𝑚𝑐) 𝑤̈𝑐 + 2𝑚𝑑V̈𝑑 − 2𝑚𝑑𝑒𝐺𝑑𝜑̈𝑑
𝑀𝑐 = 0 (17)

along with the following equations of motion for the attached
inertial bodies:

𝑚𝑑V̈𝑑 − 𝑚𝑑𝑒𝐺𝑑𝜑̈𝑑 + 𝐹𝑑 = −𝑚𝑑𝑤̈𝑐
−𝑚𝑑𝑒𝐺𝑑V̈𝑑 + (𝑒2𝐺𝑑𝑚𝑑𝜑̈𝑑 + 𝐼𝐺𝑑) +𝑀𝑑 = 𝑚𝑑𝑒𝐺𝑑𝑤̈𝑐.

(18)

Equations (18) have been numerically integrated for a sinu-
soidal motion, in vertical direction, of the clamp and the
reaction of the clamp has been subsequently evaluated
through the first of the two equations (17). During the test,
sinusoid frequency undergoes a linear sweep from0 to 100Hz
during a total duration of 200 s. A time step Δ𝑡 = 0.0001 s
was adopted in the numerical analyses in association with a
Newmark constant acceleration time-stepping strategy. The
other parameters of the Stockbridge damper model are listed
in Table 4.

Figure 16 presents the comparison of the results obtained
from the proposed modelling strategy (which adopts only
two different identified hysteretic laws), the one by Sauter
[18] which employs more than fifteen identified Masing laws,
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Figure 17: Real part of the impedance curve of the Stockbridge damper tested on a shaker for sweep tests in frequencywith an imposed vertical
translation of the clamp having a constant value of the clamp velocity equal to 0.2m/s. Comparison between the results of the proposedmodel,
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Table 4: Geometric and inertial properties of the Stockbridge
damper. The data are from [18].

𝑙 (m) 𝑒𝐺𝑑 (m) 𝑚𝑑 (kg) 𝐼𝐺𝑑 (kgm2)
0.1875 0.0325 0.856 0.001814

and the experimental test; in terms of the real part of the
impedance function, 𝑍, of the damper, this is defined as the
ratio between the force at the clamp over the clamp velocity.
The real parts of the impedance can be used to characterize
the dissipated power. The results shown have been obtained
after calibration of the boundary layer lengths 𝑙𝐵1 and 𝑙𝐵2.The
values identified for these model parameters are quite close
to the one already presented in relation to the outcome of the
quasi-static cyclic tests (and of the experimentally identified
boundary layers in Figure 12): 𝑙𝐵1 = 0.2𝑙; 𝑙𝐵2 = 0.08𝑙.

On the basis of Figure 16, we can notice the good
performance of the proposed modelling strategy that is
able to capture the position and the maximum value, for
both resonances (the one at about 11Hz and the one at
about 38Hz). The match over the full frequency range is
very good also in light that the curves were plotted with a
linear scale (not a dB scale, as it is customary for frequency
response functions) on the vertical axis.Thenumericalmodel
proposed by Sauter appears less accurate in reproducing
the experimental data, shifting the position of the first
resonance peak to lower frequencies by about 30%, the
position of the second resonance to higher frequencies by
about 10%, and significantly underpredicting the maximum
value of the impedance function (more notably for the second
resonance).

As mentioned, the values of the model parameters 𝑙𝐵1, 𝑙𝐵2
were calibrated. In order to highlight the importance of the
first parameter, Figure 17 depicts how the impedance function
is affected by the value of 𝑙𝐵1 (𝑙𝐵2 is always assumed equal to
zero for these results). This parameter affects the resonance

related to both modes due to couplings between the modes.
The increase of this parameters leads to an increase of both
resonance peaks and to a reduction of their separation with a
shift of both toward the central frequency.

Comparison of the curve for 𝑙𝐵1 = 0.2𝑙 and 𝑙𝐵2 = 0 in
Figure 17 with the one for 𝑙𝐵1 = 0.2𝑙 and 𝑙𝐵2 = 0.08𝑙 in Figure 16
shows that the second parametermainly affects the resonance
related to secondmode, shifting the resonance peak to higher
frequencies and higher values as the length of this boundary
layer zone increases.

6. Conclusions

In this work, a simple mechanical model of a Stockbridge
damper has been presented. The model is based on a beam-
like description of the messenger cable and on the cross-
sectional inelastic nonlinear cyclic bending behaviour.

Starting from a description of the interwire sliding pro-
cess, the classic Bouc-Wen hysteretic model has been recog-
nized as adequate to represent the cyclic bending behaviour
of the cross sections.

The model parameters are identified from experimental
results available in literature and used at the local (cross-
sectional level) to characterize the mechanical behaviour of
the messenger cable. The descending global behaviour of
the Stockbridge damper compares very favourably with the
experimental results in terms of the impedance function at
the clamp and allows for the confident used of the proposed
model inside the assessing process of full lines.

The important role of the end zones of the messenger
cable, where a boundary layer like transition has been
found for the bending stiffness of the messenger cable cross
section, has been highlighted, along with its effects on the
global response of the damper. Without the definition of the
length of these end zones the match with the experimental
results is only partially satisfactory. These lengths have been
considered as additional model parameters.
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As a final thought, the model depends on some parame-
ters that can vary over the life of the Stockbridge damper (e.g.,
the aging of the messenger cable can affect wear and change
the interwire sliding process). As for all the other Stockbridge
models to the knowledge of the authors, this aspect has not
been pursued in this work.
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