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Abstract

Functional data are usually assumed to be observed on a common do-
main. However, it is often the case that some portion of the functional
data is missing for some statistical units, invalidating most of the existing
techniques for functional data analysis. The developments of methods able
to handle partially observed or incomplete functional data is currently at-
tracting an increasing interest. We here briefly review this literature. We
then focus on discrimination based on principal component analysis, and
illustrate a few possible methods via simulation studies and an application
to the AneuRisk65 dataset. We show that carrying out the analysis over
the full domain, where at least one of the functional data is observed, may
not be the optimal choice for classification purposes.

1 Introduction

Over the past two decades, functional data analysis has constituted an extremely
active area of research and one of the fastest growing fields of modern statistics;
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see, e.g., the text books and reviews by Ramsay and Silverman (2005), Ferraty
and Vieu (2006), Wang et al. (2016), Kokoszka and Reimherr (2017), and refer-
ences therein. The interest in this area has been fueled by the explosive growth
in the recording of complex and high-dimensional data, exhibiting a functional
nature, i.e., representable by means of suitable curves, surfaces or other func-
tions. Functional data are in fact nowadays common in all fields of sciences and
engineering, thanks to the development of many devices able to provide images
and measures of quantities of interest, captured over time and/or space.

Functional data come as discrete and typically noisy observations of the
underlying functional object, measured at different locations in time, space or
some other continuum. While the specific observation grid where each functional
datum is available may vary across the statistical units, the domain where the
data are observed is typically assumed to be the same across units. When
this is not the case, the analysis is usually restricted to the intersections of the
domains of the data, or some pre–registration procedure is carried out, so that
the registered data insist over the same domain. On the other hand, in many
application fields, it is common to encounter sets of functional data where the
data have missing parts, or equivalently the domains where they are observed
varies across statistical units. This setting is referred to as incomplete functional
data, or partially observed functional data.
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Figure 1: The Aneurisk65 dataset. Registered radius (left) and curvature (right) of the

internal carotid arteries of 65 subjects. The portion of the domain where the data are observed

for all subjects is highlighted in light–gray. The circles indicates the starting and ending points

for each datum. Two different colors are used for subjects in the Upper group (blue) and subjects

in the Lower–No group (orange).

Figure 1 for instance displays some data from the AneuRisk65 dataset
(https://statistics.mox.polimi.it/aneurisk/). These data consist in the profiles
of radius (left) and curvature (right) of the internal carotid artery of 65 subjects
(see, e.g., Sangalli et al., 2009, 2014b). The data originate from the reconstruc-
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tion of three-dimensional angiographic images, taken on subjects suspected to
be affected by cerebral aneurysms. The domain where each datum is observed
varies across subjects, with longer or shorter portions of the internal carotid
artery being observed, depending on where the medical scan has been centered.
As highlighted in the figure, there is one portion of the domain where all the
data are observed; this corresponds to the (approximately) 3 cm closer to the
terminal bifurcation of the artery, that is a point of specific clinical interest; on
the other hand, for most subjects, longer portions of the artery are observed,
up to more than 10 cm. This incomplete data setting, where there is one por-
tion of the domain where all data are observed, but individual observations are
progressively lost when moving from this portion of the domain towards the full
domain, is common in functional data coming from medical imaging and from
biological studies in general. The analysis of AneuRisk65 data is relevant for
the study of the pathology of cerebral aneurysms; in particular, it is relevant
to investigate whether the morphology of the internal carotid artery influences
aneurysms pathogenesis. The data can be divided into two groups, displayed
in orange and blue in the figure, depending on the presence and location of the
cerebral aneurysms. In particular, 33 subjects have an aneurysm at or after the
terminal bifurcation of the internal carotid artery (Upper group) while the re-
maining 32 subjects, either have an aneurysm along the internal carotid artery,
before the terminal bifurcation, or were found no apparent aneurysm during the
angiography (these 32 subjects compose the Lower–No group). Sangalli et al.
(2009) present a discriminant analysis between these two groups, based on the
scores of the principal components of the radius and curvature profiles; in the
latter work, the principal components are computed restricting the attention to
the portion of the domain common across subjects. It is however natural to
wonder whether these discrimination results may be improved by considering
also portions of the domain where not all data are observed.

Unfortunately, most of the nowadays very extensive literature on functional
data analysis focuses on the case where all functional data are observed over a
common domain, and the vast majority of functional data analysis techniques
so far developed is not able to handle this incomplete data framework. The
development of methods for partially observed functional data has thus recently
started attracting an increasing interest. Classification of functional fragments is
discussed in James and Hastie (2001) where an extension of the linear discrim-
inant analysis to the incomplete data framework is proposed. An alternative
discrimination technique, based on curves extension, is presented by Delaigle
and Hall (2013) and further developed in Delaigle and Hall (2016). Methods for
functional Principal Component Analysis (fPCA) of incomplete functional data
are described for instance in James et al. (2000), Yao et al. (2005) and in Kraus
(2015). Di et al. (2014) extend the technique by Yao et al. (2005) to a multi-
level setting, while Liu et al. (2017) employ it to handle spatio–temporal data
with gaps. Other works consider partially observed functional data in different
applied contexts: Liebl (2013) develops a functional factor model for electricity
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spot prices, Goldberg et al. (2014) focus on curve forecasting for call center data,
and Gromenko et al. (2017) propose a functional regression model for physical
data.

Here, in particular, we shall focus on discrimination based on fPCA scores
and consider the case where the incomplete functional data share one common
portion of the domain, likewise AneuRisk65 data. The natural usage of tech-
niques for incomplete functional data consists in applying the technique to the
whole domain where at least one functional datum is observed. However, this
may not be the optimal choice, especially for classification purposes. We will
specifically show that, when considering discrimination based on fPCA scores,
enlarging the analysis to the whole domain, as well as restricting it to the com-
mon domain where all data are observed, may not lead to the best classification
results. As illustrated via a simulation study and an application to AneuRisk65
data, the optimal choice often lies between these two extremes. We here suggest
to explore different extensions of the domain, ranging from the common domain
to the full domain, and select the one that provides the best discrimination result
under cross–validation.

Section 2 reviews the techniques for fPCA of incomplete functional data
proposed by James et al. (2000), Yao et al. (2005) and Kraus (2015). The same
section also generalizes to the incomplete data setting the regularized fPCA
technique originally proposed by Huang et al. (2008) in the completely observed
data scenario. Section 3 describes the domain extension approach for fPCA–
based discrimination. Section 4 illustrates this idea in a simulation study while
Section 5 shows the application to AneuRisk65 data. Finally, Section 6 draws
some concluding remarks and outlines future directions of possible research.

2 fPCA of partially observed functional data

Assume that n functional data x1(t), . . . , xn(t) are generated from some real-
valued random process X(t), with mean µ(t) and covariance kernel Σ(s, t),
and that only a discrete and noisy version of each datum is available, i.e.,
xij = xi(tij) + εij for i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, where εij are measure-
ment errors, with zero mean and finite variance. Consider in particular the case
where the observation grids {ti1, . . . , timi}, with ti1 < · · · < timi , may differ over
the various statistical units, i = 1, . . . , n, and that the domains where they in-
sist, Ti = [ti1, timi ] ⊂ R, may as well be different. Standard fPCA assumes the
representation

xi(t) = µ(t) +
∞∑
k=1

uikfk(t), i ∈ {1, . . . , n}, (1)

where µ(t) is the mean function, fk(t) is the kth eigenfunction of the covariance
kernel Σ(s, t) and uik is the corresponding score for the ith observation. In
practice, only the first K elements of the series are considered. In particular,
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when the data are completely observed over a common domain T = [t1, tm]
and on a common grid {t1, . . . , tm}, the same for all statistical units, the first K
principal components can be estimated performing the eigendecomposition of the
empirical covariance matrix Σ; the corresponding scores, theoretically defined
as uik =

∫
Xi(t)fk(t) dt, for each i and k, can be computed by discretizing

the integral. When the observation grid differs across the statistical units, but
the domain is common to all units, i.e. Ti = T , one possibility is to smooth
separately each functional datum, and then evaluate each function on a new
regular grid, common to all statistical units. Unfortunately, when the data are
only partially observed, or observed over different domains Ti, the individual
smoothing is not useful for inferring the values of the functions where these are
not observed; hence, it is not possible to compute the principal components and
associated scores as described above. In this situation, few methodologies try to
estimate the scores and the eigenfunctions considering different reformulation of
the estimation problem.

James et al. (2000)

Mixed effect models are widely used to handle missing data in longitudinal data
analysis. Borrowing from these approaches, James et al. (2000) propose a mixed
effect model where the principal component scores are treated as random ef-
fects and the mean and principal components are represented via a spline basis.
Denote by φ(t) a spline basis with dimension q. The mean and principal compo-
nents are then represented as µ(t) = φ(t)Tcµ and f(t)T = φ(t)TC, where cµ and
C are, respectively, a q–dimensional vector of spline coefficients and a (q ×K)
matrix of spline coefficients. From equation (1), this leads to the model

xi(t) = φ(t)Tcµ + φ(t)TC ui + ζi(t),

where the uis are assumed to have zero mean and a common variance Σu, and
the ζi(t)s are assumed to have zero mean and a constant variance function σ2.
To ensure identifiability of C and Σu the authors restrict the covariance matrix
of the uis to be diagonal. The fitting procedure is based on maximum likelihood
estimation and makes use of the EM algorithm. Once the estimates of the
principal components are obtained, the estimates of the scores can be computed
through best linear unbiased prediction. The number of basis functions acts as
a smoothing parameter that must be carefully selected.

Yao et al. (2005)

Yao et al. (2005) develop an algorithm called PACE (Principal Analysis via
Conditional Expectation) that estimates the principal component scores using
conditional means. They first estimate the mean µ(t) and the covariance func-
tion Σ(s, t) via local linear smoothing of the raw mean vector and covariance
matrix obtained from pooled data. An important choice in this context is the
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selection of the bandwidths hµ and hΣ for the two kernel smoothers. Once the

estimates µ̂(t) and Σ̂(s, t) of the mean and covariance functions are available, the
estimates {f̂1, . . . , f̂K} of the first K principal components are determined solv-
ing the usual discretized eigenvalue–eigenfunction problem, with the associated
estimated eigenvalues {λ̂1, . . . , λ̂K}. The best prediction for the score vector ui,

associated with the ith observation xi =
(
xi1, . . . , ximi

)T
, is the conditional ex-

pectation given (Xi = xi). Under Gaussian assumptions for the measurement
errors εij and for the scores themselves, this can be shown to be

ûik = Ê[uik|Xi = xi] = λ̂k f̂Tik Σ̂
−1

i (xi − µ̂i),

where f̂ik =
(
f̂k(ti1), . . . , f̂k(timi)

)T
,
[
Σ̂i

]
j`

= Σ̂(sij , ti`), and µ̂i =
(
µ̂(ti1), . . . , µ̂(timi)

)T
are computed on each individual grid Ti.

Huang et al. (2008)

In the case of completely observed functional data, Huang et al. (2008) propose
a regularized version of fPCA, that can be be easily generalized to partially
observed data, as noted in Lila et al. (2016). This approach relies on a dif-
ferent characterization of the principal components, the so–called best K bases
approximation property. Namely, the first K principal components enable the
best reconstruction of the signals, in an L2 sense, among all orthonormal bases
of dimension K:

{
fk
}K
k=1

= argmin{
{ψk}Kk=1:

∫
ψs,ψl=δsl

}E
[∫ {

X − µ−
K∑
k=1

(∫
Xψk

)
ψk

}2]
.

Considering only one principal component, the empirical version of the expecta-
tion above, for partially observed functional data, is given by

∑n
i=1

∑mi
j=1

(
xij −

uif(tij)
)2

. Since the minimization of this quantity involves raw data, a rough-
ness penalty on f is introduced to ensure smoothness of the resulting principal
component. In particular, the first principal component and the associated score
vector u = (u1, . . . , un)T are estimated solving the following minimization prob-
lem:

argmin
u,f

n∑
i=1

mi∑
j=1

{
xij − uif(tij)

}2
+ γ uTu

∫ {
f(t)

}2
dt.

The smoothing parameter γ > 0 controls the regularity of the estimated prin-
cipal component f(t). The term uTu is included to obtain desirable invariance
properties (see Huang et al., 2008, for details). Subsequent principal compo-
nents and the associated score vectors are estimated sequentially solving the
same minimization problem, once the contribution to the data of the previously
estimated principal components is removed.
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Kraus (2015)

Kraus (2015) shows another way to deal with the problem of fPCA in the case
of partially observed functional data. The starting point is to estimate the mean
function µ(t) using, for each t, only the available curves at the specific time t,
and to estimate Σ(s, t) using all complete pairs of functional values at s and t.
It is shown that under technical conditions concerning the information provided
by the observation grids, these estimators are consistent. The eigenfunctions
of the covariance operator can be estimated performing spectral analysis of the
complete pairs sample covariance. The missing part of each score is predicted
via best linear approximation of its conditional expectation. Using the Riesz
representation theorem, the optimization problem can be written as

min
aik∈L2(Ti)

E

[(
uik,mis −

∫
Ti

aikxi

)2]

where uik,mis is the missing part of the kth score for the ith unit, aik is an element
of L2(Ti) and xi is the observed curve. This leads to a linear inverse problem
that is regularized, thus involving also in this case the choice of a regularization
parameter. Note that this methodology assumes that the data are observed
without noise. Moreover, the technique can only deal with data observed over
grids that, apart for the starting and ending points, are common across statistical
units. This does not create problems in the application to Aneurisk65 data, as
these data are preprocessed and evaluated on a common regular grid (see Sangalli
et al., 2014b, for details on the preprocessing). In general, a pre-smoothing of
each functional data and the re-evaluation on a common grid may be necessary
before the technique by Kraus (2015) can be implemented.

3 PCA–based discrimination of partially observed func-
tional data

The four methods for fPCA of incomplete functional data, briefly reviewed in
Section 2, are based on different estimation problems and is not clear in advance
which one is preferable and in which situation. The first two models rely on
parametric assumptions, while the third and the fourth do not. The first three
methods involve smoothing, but in different ways: James et al. (2000) use a B–
spline basis to represent the mean and principal components, Yao et al. (2005)
use a kernel smoothing for the mean and the covariance function, and Huang
et al. (2008) smooth the eigenfunctions using a roughness penalty approach.
For all the methods, one or more tuning parameters must be selected in some
optimal way: the number of B–spline basis in James et al. (2000), the two kernel
bandwidths in Yao et al. (2005), the smoothing parameter γ in Huang et al.
(2008), and the regularization parameter in Kraus (2015).
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In the following sections, we use these methods to perform discrimination
of partially observed functional data, where the discrimination is based on the
scores of the first K principal components. One natural approach in this sense
would be to carry out the analysis over the full domain. However, we show
that working on the largest possible domain may not be the optimal choice for
classification purposes. On one hand, this may result in imprecise estimates of
the principal components, especially of high order, where many data are missing.
On the other hand, when the target is classification, considering the total domain
may not be useful, when most of the between–group variability is located within
the common domain or close to it, or when the missingness is so important that
is difficult to distinguish between–group and within–group variability.

We here instead suggest to explore different portions of the domain, moving
from the common domain and progressively enlarging towards the full domain.
More specifically, we divide the domain where the data are partially observed
in L portions, and we thus consider a collection of progressively larger domains
I` for ` ∈ {0, . . . , L}, with I`−1 ⊂ I`, where I0 is the common domain and IL
is the full domain. Figure 2 shows such domains extensions for the AneuRisk65
data. The principal components and their associated scores are then computed
over each domain extension I`, and used for the classification. In particular,
in the following sections we consider quadratic discriminant analysis (see, e.g.,
Izenman, 2009) on the scores of the first K principal components. The opti-
mal number of principal components and the optimal domain extension I` are
selected via cross–validation. For simplicity, the domains I` are defined by con-
stant enlargements from the common domain to the full domain. Moreover,
for illustrative purposes, we here carry out an exhaustive search from I0 to IL.
Of course, the enlargement step as well as the search could be optimized, if
necessary, to decrease the computational cost.

Domain Extension

−100 −80 −60 −40 −20 0

Figure 2: Visual illustration of the domain extensions for AneuRisk65 data. Moving from

the portion of the domain where we have observations for all statistical units, i.e., the common

domain, here highlighted by the darkest color, we progressively enlarge the domain by constant

steps, until we reach the full domain, where at least one statistical unit is observed, here indi-

cated by the lightest color. The various domain extensions are denoted by progressively lighter

shades of color.
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4 Simulations

To illustrate the domain extension approach we carry out a simple simulation
study. We generate a set of n = 100 functional data over the interval IL = [0, 1].
We then completely retain the data generated over the interval I0 = [1/3, 2/3],
while we censor them over the intervals Ileft = [0, 1/3] and Iright = [2/3, 1],
by sampling the starting point of each functional datum uniformly over Ileft,
and its ending point uniformly over Iright. For four statistical units the starting
or ending observation points are not sampled but fixed, so that we have one
functional datum with starting point in 0, another with starting point in 1/3,
one functional datum with ending point in 2/3 and another with ending point in
1; this ensures that the full domain is IL = [0, 1] and the common domain is I0 =
[1/3, 2/3]. The data are generated from a cubic B–splines basis with 16 internal
knots, corresponding to a total of 20 bases. The position of the spline knots is
displayed in Figure 3 by small vertical markers along the x-axis. We generate two
groups of functional data, g ∈ {1, 2}, composed by 50 curves each, by sampling at
each simulation repetition the spline coefficients {c1,g, c2,g, . . . , c20,g} for the two
groups from normal distributions with group–specific means, cs,g ∼ N(µs,g, σ

2),
for s ∈ {1, . . . , 20}. The means of the first group, {µ1,1, µ2,1, . . . , µ20,1}, are
set equal to {0, 0, 0, 0, 1, 2, 1, 0,−1, 2, 2,−1, 0, 0.5, 1, 0.5, 0, 0, 0, 0}; the means of
the second group are set to {µ1,2, µ2,2, . . . , µ20,2} = {µ20,1, µ19,1, . . . , µ1,1}, thus
taking the same values as the first group, but in reverse order. The difference
in the means of the spline coefficients constitutes the only structural difference
between the two groups. The variance σ2 of the spline coefficients is the same
in both groups and across different coefficients and is set to σ2 = 0.6. The
n generated curves are evaluated on a regular grid of p = 150 over [0, 1] and
contaminated by additive, uncorrelated, Gaussian noise, with mean zero and
constant variance σ2

ε = 0.1. This simulation is repeated 50 times. Different
simulation settings are considered in the appendix, changing the amount of noise,
the variance of the spline coefficients, the mean values of the coefficients. Figure
3 shows the data sampled in the first simulation repetition. The discrimination
between the two groups of data is present both within and outside the common
domain, with an important part of the discrimination lying outside the common
domain.
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Figure 3: Simulation study 1. Data generated in the first replicate of this simulation.

The portion of the domain where the data are not censored is highlighted in light–gray. Two

different colors are used for the data in the two groups. Dashed lines represent missing part

of the functional data. The small vertical markers along the x-axis indicate the position of the

spline knots used for the data generation.

We thus apply the three methodologies for fPCA of partially observed func-
tional data reviewed in Section 2, over 10 domain extensions, ranging from I0

to IL, with constant enlargement steps. The analysis is performed in the R en-
vironment (R Core Team (2016)). The tuning parameters of each methodology
are selected at each simulation replicate by cross–validation. This is carried out
separately over each domain extension; the selected tuning parameters can thus
differ for different domain extensions. The selection of the optimal number of
spline bases in James et al. (2000), implemented in the R package fpca (Peng
and Paul, 2011), is carried out optimizing an approximate cross–validation score.
For Yao et al. (2005), implemented in the package fdapace (Dai et al., 2017),
the optimal bandwidths for the two kernel smoothers are chosen minimizing the
leave–one–curve cross validation. For the method based on the extension of
Huang et al. (2008) to partially observed data, we implemented a 5–fold cross–
validation. The regularization parameter in Kraus (2015), implemented through
routines published by the author 1, is selected via generalized cross validation.

1available at http://dx.doi.org/10.1111/rssb.12087

10



Commom 

 Domain
Progressive Domain Extentions

Full 

 Domain

10

20

30

Le
av

e−
on

e−
ou

t m
is

cl
as

si
fic

at
io

n 
er

ro
r 

(5
0 

re
pl

ic
at

io
ns

)
Technique James et al. Yao et al. Huang et al. Kraus Without Missing

 

Commom 

 Domain
Progressive Domain Extentions

Full 

 Domain

0.05

0.10

0.15

0.20

1 
−

 A
re

a 
U

nd
er

 R
O

C
 C

ur
ve

 (
50

 r
ep

lic
at

io
ns

)

Technique James et al. Yao et al. Huang et al. Kraus Without Missing

 

Figure 4: Simulation study 1. Top: Leave–one–out misclassification error, over the 50

simulation replicates, for various domain extensions. Bottom: 1− Area Under ROC Curve,

over the 50 simulation replicates, for various domain extensions.

A quadratic discriminant analysis on the scores of the first K principal com-
ponents, with K 6 5, is then carried out. In particular, for each replication and
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each domain extension, we select the optimal number of principal components
scores to be considered for the discrimination via leave–one–out cross–validation,
but minimizing in this case the misclassification error. We also apply standard
PCA to the fully observed (non–censored) data; the associated misclassification
error indicates the best possible classification results achievable in this simula-
tion setting, based on discrimination of the principal component scores, for fully
observed data. The top panel of Figure 4 displays the boxplots of the leave-
one-out misclassification error, for the various techniques, for various domain
extensions. The leave-one-out misclassification error that could be attainable if
the uncensored data were available is as well displayed. Note that in the full
domain the method by Kraus (2015) is not employable because there are no
curves observed jointly at time 0 and 1. For all methods, the misclassification
error decreases when we start extending the domain with respect to the com-
mon domain, but then progressively increases as we approach the full domain.
None of the methods outperforms the other. As an additional measure of the
quality of the discrimination we also compute the area under the ROC Curve
(see Izenman (2009)); this quantity is bounded between 0 and 1, with the value
1 being attained for perfect classification. In the bottom panel of Figure 4 we
show the boxplots of the index (1 - area under the ROC curve), whose minima
correspond to the best discrimination. A visual inspection of these boxplots con-
firms what already commented on the base of the leave-one-out miscassification
error: extending the domain with respect to the common domain improves the
discrimination between the two groups; on the other hand, larger domain exten-
sions, and in particular the full domain, do not lead to the best discrimination
results.

5 Application to AneuRisk65 data

The AneuRisk project (https://statistics.mox.polimi.it/aneurisk/) is
an interdisciplinary project that involved statisticians and numerical analysts
from Politecnico di Milano (Milano, Italy) and Emory University (Atlanta,
USA), bioengineers and computer scientists from Istituto Mario Negri (Berg-
amo, Italy), and medical doctors from Niguarda Hospital and Maggiore Policlin-
ico Hospital (Milano, Italy), with the aim of investigating cerebral aneurysms
pathology. This is a very common pathology, totally asymptomatic in the vast
majority of cases. Rupture of a cerebral aneurysm is a rare event (affecting one
in ten thousand people every year), but unfortunately has associated very high
mortality. The origin of the pathology is still largely unknown. One conjecture,
investigated by the AneuRisk project, is that aneurysm’s pathogenesis may be
influenced by the morphology of the hosting vessels, and in particular by the mor-
phology of the internal carotid artery, through the effect that the morphology of
the vessel has on the blood fluid–dynamics. The two geometrical quantities that
mostly determine the haemodynamics are the radius and the curvature of the
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vessel. For this reason, the first studies carried out within the AneuRisk project
focused on these two features. Figure 1 shows the profiles of radius (left) and
curvature (right) of the internal carotid artery of 65 subjects, pre-processed and
registered as described in Sangalli et al. (2009, 2014b,a). As outlined in section
1, the data are divided in 2 groups depending on the presence and location of
the aneurysm. Sangalli et al. (2009) carry out a discriminant analysis between
these two groups, based on the scores of the principal components of the radius
and curvature profiles, computing the principal components by standard fPCA
on the portion of the domain common across subjects (the approximately 3cm
closer to the terminal bifurcation of the internal carotid artery, as highlighted
in Figure 1). The resulting leave–one–out misclassification error amounts to 15
subjects.

Here we test the four methodologies described in the previous sections over
various domains extensions; see Figure 2 for the considered domain extensions.
Likewise in Sangalli et al. (2009), we consider up to 4 principal components.
As for the simulation, the optimal number of principal components is selected
for each method and each domain extension via leave-one-out cross validation,
minimizing the misclassification error. Figure 5 shows the classification results.

For all considered methods, the domain where the best discrimination is
achieved lies between the common domain and the total domain. In this partic-
ular application, the approach based on the extension of Huang et al. (2008) to
partially observed functional data does the best job, reaching a leave–one–out
misclassification error of 9 subjects. Huang et al. (2008) returns the best results
also when considering the index based on the area under the ROC curve. Look-
ing at the leave-one-out missclassification error, the best domain extension for
this method turns out to be optimal also for the other techniques considered. On
the common domain, all methods perform similarly to standard fPCA, with 14,
15 or 16 misclassified units, depending on the method. As highlighted by this
figure, the application of the methodologies for partially observed data on the
full domain does not lead to any improvement in the discrimination; for discrim-
ination based on James et al. (2000) and Yao et al. (2005), the misclassification
error is in fact higher on the full domain than on the common domain, and the
index based on the area under the ROC curve is as well worse on the full do-
main than on the common domain. So, ignoring the domain extension technique
would lead to the incorrect conclusion that there is no advantage in including
the part of the domain where the data is only partially observed. The estimated
principal components over the best domain extension in terms of misclassifica-
tion error are displayed in Figure 6. The estimates of the principal components
returned by the four methods are very similar. The second component for the
radius and the first for the curvature have important peaks outside of the com-
mon domain (at about −40mm and −38mm, respectively). An important part
of the discrimination between the two groups lies here, and for this reason a
better classification is possible only when considering the domain extension.
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Figure 5: AneuRisk65 data. Top: leave–one–out misclassification error for various domain

extensions. Bottom: 1− Area Under ROC Curve for various domain extensions.
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Figure 6: AneuRisk65 data. Estimates of the principal components provided by the various

considered methods on the optimal domain extension. The portion of the domain where the

data are observed for all subjects is highlighted in light–gray.

6 Discussion

As highlighted by the simulation study and the application to AneuRisk65 data,
when performing supervised classification of partially observed functional data,
considering the full domain where the data are observed may not be optimal. In
this illustrated review of PCA–based discrimination of partially observed data,
we explored a simple strategy of searching over domain extensions, moving from
the common domain where all the data are observed to the full domain where at
least some datum is available. An interesting line for future investigation goes
towards a more complex and complete search for such optimal domain, where the
search is not restricted to progressive extensions of the common domain. In the
context of fully observed functional data, a similar idea is explored in Floriello
and Vitelli (2017) for unsupervised clustering, and by Pini et al. (2017) for
supervised profile monitoring. The domain–selection idea we are here considering
differs instead from the approaches explored in Ferraty et al. (2010) and Delaigle
et al. (2012), where the search focuses on specific pointwise locations where
discrimination between two groups of functional data is optimized.

Acknowledgments. We are grateful to two anonymous referees for their sug-
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Appendix

We consider three additional simulation studies, where we generate the data as
in main simulation study, detailed in Section 4, with the only differences that

- in Simulation study 2 (Figures 7 and 8), the variance of the measurement error
is increased to σ2

ε = 0.4;

- in Simulation study 3 (Figures 9 and 10), the variance of the spline coefficients
is decreased to σ2 = 0.3;

- in Simulation study 4 (Figures 11 and 12), the mean values of the spline co-
efficients of the first group of functional data are se to {µ1,1, µ2,1, . . . , µ20,1} =
{0, 0, 0, 0, 1, 2, 1, 0,−1, 1, 1.2,−1, 0, 0.5, 1, 0.5, 0, 0, 0, 0}, and the mean values of
the spline coefficients of the second group are set to {µ1,2, µ2,2, . . . , µ20,2} =
{µ20,1, µ19,1, . . . , µ1,1}.

Figures 7, 9 and 11 show the data generated in the first replicates of these simula-
tion studies. We implement the four techniques as detailed in Section 2. Figures
8, 10 and 12 show the boxplots of the misclassification error and area under the
ROC curve over the 50 simulation repetitions. Similar comments as those made
for the main simulation study hold for all the considered simulation settings:
by considering domain extensions it is possible to improve the discrimination
results; on the other hand, even though a large part of the separation between
the two groups lies outside of the common domain, considering the full domain
where at least one of the data is observed leads to sub-optimal results.
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Figure 7: Simulation study 2. Data generated in the first replicate of this simulation.

The portion of the domain where the data are not censored is highlighted in light–gray. Two

different colors are used for the data in the two groups. Dashed lines represent missing part

of the functional data. The small vertical markers along the x-axis indicate the position of the

spline knots used for the data generation.
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Figure 8: Simulation study 2. Top: Leave–one–out misclassification error, over the 50

simulation replicates, for various domain extensions. Bottom: 1− Area Under ROC Curve,

over the 50 simulation replicates, for various domain extensions.
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Figure 9: Simulation study 3. Data generated in the first replicate of this simulation.

The portion of the domain where the data are not censored is highlighted in light–gray. Two

different colors are used for the data in the two groups. Dashed lines represent missing part

of the functional data. The small vertical markers along the x-axis indicate the position of the

spline knots used for the data generation.
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Figure 10: Simulation study 3. Top: Leave–one–out misclassification error, over the 50

simulation replicates, for various domain extensions. Bottom: 1− Area Under ROC Curve,

over the 50 simulation replicates, for various domain extensions.
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Figure 11: Simulation study 4. Data generated in the first replicate of this simulation.

The portion of the domain where the data are not censored is highlighted in light–gray. Two

different colors are used for the data in the two groups. Dashed lines represent missing part

of the functional data. The small vertical markers along the x-axis indicate the position of the

spline knots used for the data generation.
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Figure 12: Simulation study 4. Top: Leave–one–out misclassification error, over the 50

simulation replicates, for various domain extensions. Bottom: 1− Area Under ROC Curve,

over the 50 simulation replicates, for various domain extensions.
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