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H I G H L I G H T S

• Fluidized bed reactor model accounting for concentration polarization.

• Reduction of concentration polarization in fluidized bed is demonstrated.

• Experimental demonstration and model validation of biogas steam reforming in a FBMR.

• The H2 productivity is proportionally related to the concentration polarization.
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A B S T R A C T

The production of pure hydrogen through the steam reforming of biogas in a fluidized bed membrane reactor has
been studied. A phenomenological one-dimensional two-phase fluidized bed reactor model accounting for
concentration polarisation with a stagnant film model has been developed and used to investigate the system
performance. The validation of the model was performed with steam reforming experiments at temperatures
ranging from 435 °C up to 535 °C, pressures between 2 and 5 bar and CO2/CH4 ratios up to 0.9. The permeation
performance of the ceramic-supported PdAg thin-film membrane was first characterized separately for both pure
gas and gas mixtures. Subsequently, the membrane was immersed into a fluidized bed containing Rh supported
on alumina particles and the reactor performance, viz. the methane conversion, hydrogen recovery and hy-
drogen purity, was evaluated under biogas steam reforming conditions. The resulting hydrogen purity under
biogas steam reforming conditions was up to 99.8%. The model results were in very good agreement with the
experimental results, when assuming a thickness of the stagnant mass transfer boundary layer around the
membrane equal to 0.54 cm. It is shown that the effects of concentration polarisation in a fluidized bed mem-
brane reactor can be well described with the implementation of a film layer description in the two-phase model.

1. Introduction

The increasing energy demand over the last decades, in combination
with the need to reduce greenhouse gas (GHG) emissions, has given rise
to the development of more efficient conversion technologies and al-
ternative energy carriers. Hydrogen is the most promising energy car-
rier, as it can be produced from renewable energy sources and no CO2 is
emitted at the end user. Most of the hydrogen produced nowadays is
made via steam reforming of natural gas, producing significant GHG
emissions. The current demand for hydrogen and its potential use in the
new energy systems requires the development of a sustainable route for

its production. Biogas is one of the renewable sources that could be
used in the production of hydrogen.

Biogas is produced from biomass, which consists of organic matter
(that captured carbon form atmospheric CO2 over a relatively short
timescale), mainly through anaerobic digestion of organic substrates
(manure, sewage sludge, organic fractions of industry waste and energy
crops) [1]. The composition of biogas varies significantly depending on
the source of biomass. Typical biogas compositions from an anaerobic
digester and landfill production are shown in Table 1.

The methane in the biogas can be converted into a hydrogen rich
gas by steam reforming (SR): methane reacts with steam at high
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temperatures over a nickel-based catalyst to produce CO and H2 via the
Steam Methane Reforming reaction (SMR), Eq. (1). To increase the
hydrogen yield this process is combined with Water Gas Shift (WGS),
Eq. (2). Because of the high CO2 content, Dry Reforming (DR), Eq. (3),
is likely to take place as well.

CH H O CO H H3 Δ 206kJ molr
θ

4 2 2
1+ ⇄ + = + − (1)

CO H O CO H HΔ 41kJ molr
θ

2 2 2
1+ ⇄ + = − − (2)

CH CO CO H H2 2 Δ 247kJ molr
θ

4 2 2
1+ ⇄ + = + − (3)

The reforming of methane is highly endothermic and requires high
temperatures (> 900 °C) and is favoured at low pressures. Moreover, to
obtain high purity hydrogen from the SR process, downstream separa-
tion and purification steps are required. The application of biogas in the
SR process has significant challenges: (i) the combination of the nickel
catalyst and high operation temperatures makes the system prone to

coking, (ii) the high CO2 content of biogas induces equilibrium lim-
itations and (iii) the presence of H2S even if present in trace amounts
requires intensive cleaning of the biogas. The development of reforming
catalysts with a high resistancy to carbon formation have increased the
potential for hydrogen production from biogas [3]. Noble metal cata-
lysts, such as Rh, Ru, Pt and Pd show a high activity and selectivity for
hydrogen production [4]. Generally Rh has been found to have the best
performance along the different noble metal catalysts. To remove the
H2S, the biogas can be upgraded by cleaning using e.g. pressurized
water scrubbing, pressure swing adsorption, amine absorption or
membrane absorption [2]. However, these methods significantly in-
crease the energy consumption and costs of hydrogen [2]. The emer-
ging technology of palladium-based membrane reactors shows a high
degree of process intensification for the production of hydrogen and has
demonstrated significant advantages over the conventional SR process
[5]. The hydrogen is selectively extracted from the reaction system,
thus combining the SMR, WGS and H2 separation (and purification) in
one single unit. The in-situ extraction of hydrogen can overcome the
equilibrium limitations of the biogas reforming thanks to the product
recovery. The shift in equilibrium also allows operation at lower tem-
peratures and higher pressures. Finally, pure hydrogen is obtained di-
rectly from the membranes without the requirement of downstream
separations, hence reducing the process complexity and the associated
capital costs. These advantages of membrane reactors can make hy-
drogen production on smaller scales from a decentralized source such as
biogas attractive. Previous works investigated the application of biogas
steam reforming in a membrane reactor. Sato et al. [6] identified the
membrane reactor as a promising technology for hydrogen production
from biogas. Steam reforming of a biogas mixture derived from super-
critical water gasification of glucose was performed using a PdAg

Nomenclature

Ar Archimedes number
Aj Arrhenius pre-exponential factor
AT Area of bed cross section [m2]
db,0 Initial bubble diameter [m]
db Bubble diameter [m]
db avg, Average bubble diameter [m]
db,max Maximum bubble diameter [m]
dp Particle diameter [m]
Dg Gas diffusivity [m2 s−1]
DT Bed diameter [m]
Eact j, Activation energy for reaction j
fk Fraction of phase k
Fi Molar flow of species i [mol s−1]
g Gravitational acceleration [m s−2]
Hmf Height of the bed at minimum fluidization velocity [m]
Hf Height of the fluidized bed [m]
Hs Height of the packed bed [m]
Kce Volumetric interchange coefficient between cloud and

emulsion [s−1]
Kbc Volumetric interchange coefficient between bubble and

cloud [s−1]
Kbe i n, , Volumetric interchange coefficient between bubble and

emulsion phase [s−1]
K j

eq Equilibrium constant for reaction j
Mw i, Molar weight of component I [kgmol−1]
Ni Molar flux component i [mol m−2 s−1]
p0 Pre-exponential factor for permeability of membrane

[mol m−1 s−1 Pa−n]
Pi Partial pressure of species i [bar]
rj Reaction rate of reaction j [mol kg−1 s−1]
Rmemb. Radius of the membrane

SF Q( ) Heaviside function of Q
t Thickness of Membrane selective layer thickness [m]
uk n

s
, Superficial velocity of phase j in cell k [m s−1]

umf Minimum fluidization velocity [m s−1]
u0 Superficial gas velocity at inlet
ub Bubble rise velocity
ub avg, Average bubble rise velocity
VD i, Diffusion volume for component i
Vk n, Volume of phase k in cell n [m3]
wk i n, , Weight fraction of phase k, component i in cell n
xi bulk, Molar fraction of species i in the bulk
xi memb, . Molar fraction of species i adjacent to the membrane

Greek symbols

δ Thickness of the stagnant film layer [m]
HΔ r

θ Reaction enthalpy at standard conditions [kJ/mol]
εk n, Fraction of phase k in cell n
εmf Bed voidage at minimum fluidization velocity
μg Gas viscosity [Pa s]
νj i, Stoichiometric coefficient of reaction j component i
ρk n, Density of phase k in cell n [kgm−3]

Subscripts

b Bubble phase
e Emulsion phase
g Gas phase
i Species
j Reaction
n Number of CSTR in emulsion or bubble phase
s Solid phase

Table 1
Anaerobic digestion or landfill biogas composition [2].

Component AD biogas Landfill biogas Unit

CH4 53–70 30–65 vol%
CO2 30–50 25–47 vol%
N2 2–6 <1–17 vol%
O2 0–5 <1–3 vol%
H2 NA 0–3 vol%
CxHy NA NA vol%
H2S 0–2000 30–500 ppm
NH3 <100 0–5 ppm
Chlorines < 0.25 0.3–225 mgNm3

Siloxane < 0.08–0.5 µg/g-dry
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supported on stainless steel membrane in a fixed bed containing a Ru/
Al2O3 catalyst. Iulianelli et al. [7] studied the steam reforming of biogas
in a Pd-based membrane on a porous Al2O3 support over a Ni catalyst.
Methane conversion of 34% and separation of the produced hydrogen
up to 70% were reported. However, the process required regeneration
of the catalyst deactivated by carbon formation, and the hydrogen
purity was decreased rapidly due to the formation of pinholes. Vasquez
et al. [8] investigated the effect of the temperature and pressure on the
steam reforming in a fixed bed and described their experiments with a
one-dimensional model. However, the use of fixed-bed reactors has
some drawbacks, in particular when applied to membrane reactors with
high fluxes. First of all, the poor heat transfer in the packed bed results
in large temperature gradients, which can be detrimental for the
membrane flux and membrane stability. Moreover, when high-flux
membranes are used, mass transfer limitations, known as concentration
polarisation, become dominant and negatively impact the reactor per-
formance [9,10]. The mass transfer limitations depend on the hydrogen
depletion close the membrane surface and prevails when the hydrogen
transport from the bulk in the fixed bed to the membrane surface is
relatively slow. As a result, concentration polarisation decreases the
trans-membrane driving force for the hydrogen transport. These aspects
can be reduced by using fluidized bed membrane reactors, which have
significantly higher heat transfer rates compared to fixed bed mem-
brane reactors, resulting in advantages in terms of heat management
and a much more even temperature distribution [11]. Moreover, it is
expected that the higher mass transfer rates also result in a reduction of
the concentration polarisation.

However, when describing the steam reforming of biogas in a flui-
dized bed membrane reactor, the concentration polarisation is still
expected to influence the system performance significantly. These ef-
fects are a result of the low methane and consequently hydrogen con-
centrations and cannot be ignored. The present work evaluates a flui-
dized bed membrane reactor for biogas steam reforming and the
influence of concentration polarisation on the system performance. The
effect of concentration polarisation is first analysed experimentally for
hydrogen/nitrogen mixtures with and without the fluidized bed. The
steam reforming of synthetic biogas mixtures (mainly CO2 and CH4) as
well as pure methane is evaluated for temperatures between 430 °C and
530 °C and pressures up to 5 bar. The results are discussed, followed by
the description and validation of a developed phenomenological, one-
dimensional, two-phase fluidized bed membrane reactor model. The
model is then used to quantify the influence of the concentration po-
larisation and its significance for the design of fluidized bed membrane
reactors for biogas reforming.

2. Experimental

2.1. Experimental setup

Single and mixed gas permeation tests to characterize the mem-
brane performance and reforming experiments, were conducted in a
membrane reactor consisting of a shell-and-tube configuration (see
Fig. 1) where the reactor has a diameter of 4.27 cm and a total length of
44 cm. The membrane is made of a thin PdAg layer deposited by
electroless plating onto an alumina porous tube from Rauschert. The
membrane was sealed using a graphite sealing method developed by
Fernandez et al. and the leakage was subsequently measured using an
helium/ethanol system [12]. The length of the membrane was 14.35 cm
and with a diameter of 14.26mm resulting in a total membrane surface
area of 64.3 cm2. The membrane thickness was measured by SEM
(Phenom) analysis on a cross section of the membrane and was found to
be 5.2 µm. The membrane was integrated from the top flange of the
reactor with a stainless-steel tube, such that a distance of 2 cm re-
mained between the bottom gas distributor and the bottom membrane
seal. Single and mix gas experiments were performed first without
catalyst particles, here referred to as empty tube. After these experi-
ments the catalyst, a Rh based catalyst supplied by Johnson Matthey
(particle size of 170 µm), was loaded into the reactor to perform the mix
gas test under fluidized conditions and subsequently the (steam) re-
forming experiments. The reactor system could be operated in two
configurations, viz. as a normal fluidized bed reformer and as a flui-
dized bed membrane reactor, simply by opening and closing of the
membrane permeate line. The minimum fluidization velocity of the
catalyst was experimentally determined at different temperatures and
atmospheric pressure using the standard pressure-drop method. The
feed flow rate for reactive experiments was selected in such a way that
the fluidized bed was in the bubbling fluidization regime. The amount
of catalyst was selected to cover the full active membrane surface, re-
sulting in 165 g of catalyst. The reactor was placed inside an oven to
ensure isothermal operation. In the reforming experiments the tem-
perature, pressure and feed gas composition was varied. The system
performance was evaluated in terms of methane conversion (Eq. (4)),
separation factor (SF, Eq. (5)) and hydrogen recovery factor (HRF, Eq.
(6)) as defined below:

( )
Methane conversion

F F
F

CH CH out

CH in

,

,

in4, 4

4

=
−

(4)

Fig. 1. Schematic representation of the experimental setup.
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( )
Separation factor

F
F F

H perm

H perm H ret

,

, , .

2

2 2

=
+ (5)

Hydrogen recovery factor
F

F4
H perm

CH in

,

,

2

4

=
(6)

The gas feed to the reactor was controlled by Bronkhorst® digital
mass flow controllers. The feed of water was controlled by a
Bronkhorst® Coriflow liquid meter and steam was produced using a
Bronkhorst® controlled evaporator mixer. The pressure was controlled
by a back pressure regulator supplied by Bronkhorst®. The permeate
side was either operated at atmospheric pressure or at vacuum. The
volumetric flow rate at the permeate side was measured using a Horiba
film flow meter. The composition of both the permeate and retentate
streams were measured using a Varian micro GC equipped with two
molecular sieve 5A columns and a PoraPlot Q column. The retentate
flow rate is obtained from the nitrogen balance. The carbon balance
was satisfied with± 5% error for all experiments reported hereafter.
The system has been tested at CH4/H2O ratios high enough such that
carbon formation is thermodynamically unlikely to occur. The mem-
brane has been visually inspected after the test and no carbon formation
was found. The catalyst has been analysed using thermogravimetric
analyses and no carbon formation was found.

2.2. Membrane performance characterization

Once the membrane was placed in the reactor, the nitrogen leakage
was monitored periodically. To activate the membrane, the system was
heated up to 400 °C in nitrogen, once at this temperature the membrane
was exposed to 2 Nl/min of air for 2min. Subsequently, the system was
flushed with nitrogen and heated up to 550 °C and left in a hydrogen
environment until a stable hydrogen flux was obtained. After reaching
stable conditions, the permeation tests were performed decreasing the
oven temperature from 550 °C to 400 °C with steps of 50 °C; the results
are shown in Fig. 2. The hydrogen permeability of the membrane could
be well described as a function of the driving force using an exponent n
equal to 0.5 (i.e. Sieverts’ law), as shown in Fig. 2. An activation energy
and a pre-exponential factor of respectively 9.23 kJ/mol and
4.57·10−8 mol m−1 s−1 Pa−0.5 were fitted to the experimental data.
These values are comparable with the 9.99 kJ/mol and
6.93·10−8 mol m−1 s−1 Pa−0.5 reported earlier by Fernandez et al. for a
similar membrane [13]. The initial ideal H2/N2 perm-selectivity was
found to be 18,000 at 545 °C and 4576 at 384 °C with a transmembrane
pressure difference of 1 bar.

3. Model description

The reactor model developed in this work describes a membrane
fluidized bed section in which a dead-end perm-selective membrane
can be integrated. It is an improvement of the model described by
Gallucci et al. [14]. The model was firstly developed by Deshmukh et al.
and based on the frequently used bubble assemblage model proposed by
Kato and Wen [15,16]. In this approach, both the bubble and emulsion
phases are divided into a number of CSTRs along the reactor. In par-
ticular, Kato and Wen related the volume of the CSTR to the local
bubble size, whereas Deshmukh et al. adopted a different approach
where the CSTRs all have the same volume and the number of CSTRs is
used describe the amount of gas back mixing in the system [15,17].

The steady state overall (bubble and emulsion phases) component
mass conservation equations, the total volume balance and the overall
balances for each component used in the model are formulated in
Table 2. These equations consider the chemical transformations in the
emulsion phase and a net gas production due to the chemical reactions
and gas extraction via the membrane. The equations are solved for each
section in the fluidized bed reactor. Since the introduction of membrane
reduces the extent of back mixing, a large number of CSTRs is selected

representing plug flow behaviour. The empirical correlations for the
description of the system hydrodynamics and mass transfer are ob-
tained from literature and are described in Appendix I [16,18–20].
Although these equations are developed for fluidized beds without
membranes, it is shown in prior works that a reasonable description of
the system with immersed membranes can also be obtained [14,17].
The chemical reactions are described using the kinetic rate laws by
Numaguchi and Kikuchi for the steam reforming and water gas shift
reactions [21]. The kinetic parameters for the Rh based catalyst are
obtained from Marra et al. [22]. The rate expressions and kinetic
parameters are provided in Appendix II. Because of the high steam-to-
carbon ratio applied in the experimental conditions the dry reforming
reaction can be assumed to be of negligible influence in the reaction
system (this was also confirmed by separate kinetic tests not reported
here for brevity).

The selective extraction of hydrogen in the model is described by
Sieverts’ law, Eq. (7), using the experimentally obtained parameters of
the membrane.

N
p
t

e P P( )i
E RT

H Ret
n

H Perm
n0 /

, . , .a
2 2= − (7)

When describing hydrogen extraction from a mixture through a
highly selective and permeable membrane, Sieverts’ law is found to be
insufficient to predict the transmembrane flux [24,25]. Due to the de-
pletion of the permeable species near the membrane and accumulation
of the non-permeable species, a mass transfer boundary layer is formed
along the membrane (phenomena known as concentration polarisa-
tion). To account for the mass transfer limitations induced and accu-
rately describe the membrane permeation, the concentration at the
membrane surface is required. In this work, the stagnant film model is
applied to determine the concentration at the membrane surface [26].
In the stagnant film model, the following assumptions are applied:

• Steady state conditions;

• No axial convection in the film layer;

• No axial dispersion, only radial dispersion.

• The thickness of the stagnant film is assumed to remain constant
along the length of the membrane.

The boundary layer thickness is indicated with δ , see Fig. 3. The
steady state mass balance of the shell around a cylindrical membrane in
the radial direction, as shown in Fig. 3, leads to Eq. (8), where Ni r, is the
flux in the radial direction.

Fig. 2. Single gas test permeation results of hydrogen.
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r
d
dr

rN1 ( ) 0i r,− = (8)

The total flux through the film layer in the radial direction can be
written as the sum of the drift flux and diffusive mass flux, Eq. (9), using
the generalised Fick’s law, where Di represents the effective diffusivity
of component i and Ctot the total concentration.

N D C dx
dr

x Ni r i tot
i

i tot, = − + (9)

Since the membrane can be approximated as fully permselective for
H2, Ntot equals Ni r, , so further rearranging Eq. (9) leads to Eq. (10).

N D C
x

dx
dr

1
1i r i tot

i

i
, = −

− (10)

From the steady state mass balance, it follows that the term rNi r, is
constant over the layer.

rN c r R δ N Nat ,i r memb i r i r δ, . , , m= = + = + (11)

Combining this and Eq. (10) and integrating over the boundary
layer of thickness δ yields Eq. (12)

( )
N D C

R δ

x
xln 1

ln
1
1i r δ

i tot

memb
δ

R

i memb

i bulk
,

.

, .

,
m

memb.

⎜ ⎟=
+ +

⎛
⎝

−
−

⎞
⎠

+

(12)

Since the flux through film layer and membrane are equal, Eq. (12)
can be used to find xi memb, . and obtain the partial pressure of hydrogen
at the surface of the membrane.

4. Results and discussion

4.1. Permeation of N2 and H2 mixtures

Gas permeation experiments were performed to determine the in-
fluence of the concentration polarisation on the membrane separation
and to validate the implementation of the stagnant film in the model.
Hydrogen permeation in the empty tube system (no catalyst bed) from a
75% H2/N2 mixture was measured at different pressures. After these
experiments the catalyst was loaded into the system. The presence of
the catalyst should not influence the hydrogen permeation from a pure
hydrogen mixture. However, the experiment with the 75% H2/N2

mixture showed that the flux was increased compared to the empty tube
system. In Fig. 4, the experimental results are shown together with the
model results.

The extent of the concentration polarisation can be represented by
the Concentration Polarisation Coefficient (CPC). Several definitions of
the CPC exist in literature however in this work the definition presented
by Caravella et al. is used [24]. Taking the logarithmic average into
account in determining the pressure difference over the module. The
CPC for both the results of the empty and fluidized bed system per-
meation test are shown in Fig. 5. The concentration polarisation coef-
ficient is reduced by the introduction of the fluidized bed from 0.41 to
0.32 at 3 bar, at 5 bar is decreased from 0.52 to 0.34.

Because the model without concentration polarisation does not take
mass transfer limitations into account, the hydrogen flux is over-pre-
dicted. This shows that a description taking the concentration polar-
isation into account is indeed required in the model. To describe the
permeation results in the empty tube system, a δ of 1.125 cm was fitted
to the experiment at 4 bar total pressure. In the work of Helmi et al.
[27] it is shown that the radial dispersion in the fluidized bed is larger
than the molecular gas diffusion coefficient Di. Since there is no general
correlation available for the radial dispersion in membrane fluidized
beds its value was estimated using CFD simulations at 1·10−4, which
was also adopted in this work. Accordingly, a δ of 0.975 cm was found
to correctly describe the hydrogen flux. The increase in the hydrogen

Table 2
Mass balance equations for each CSTR in each section of the fluidized bed
membrane reactor [23].

Total mass balance

u A ρ u A ρ u A ρ u A ρ

N M A ε N M A ε( (1 )) 0
b n
s T b n b n

s T b n e n
s

T e n e n
s

T e n

i
nc

i mol
membrane w i membrane b n i mol

membrane w i membrane b n

, 1 , 1 , , , 1 , 1 , ,

1 , , , , , ,

− + −

+ ∑ + − =
− − − −

=
Bubble phase component mass balance

u A ρ u A ρ K V ρ w w

N M A ε w SF Q w SF Q

( )

[ ( ) ( )] 0
b n
s T b n b n

s T b n i
nc

be i n b n b n b i n e i n

i
nc

i mol
membrane w i membrane b n e i n b i n

, 1 , 1 , , 1 , , , , , , , ,

1 , , , , , , ,

− − ∑ −

+ ∑ + − − =
− − =

=
Emulsion phase component mass balance

( )
u A ρ u A ρ K V ρ w w

N M A ε ν r V ρ ε

w SF Q w SF Q

( )

(1 ) (1 )

[ ( ) ( )] 0

e n
s

T e n e n
s

T e n i
nc

be i n b n b n b i n e i n

i
nc

i mol
membrane w i membrane b n j

nrxn
j i j e n p n e

e i n b i n

, 1 , 1 , , 1 , , , , , , , ,

1 , , , 1 , , ,

, , , ,

− + ∑ −

+ ∑ − − ∑ −

+ − − =

− − =

= =

Transfer term

Q u A ρ u A ρ K V ρ w w

N M A ε

( )

(1 )

e n
s

T e n e n
s

T e n i
nc

be i n b n b n b i n e i n

i
nc

i mol
membrane w i membrane b n

, 1 , 1 , , 1 , , , , , , , ,

1 , , ,

= − + ∑ −

± ∑ −

− − =

=

u A u A ε
u A u A ε
u A u A ε

(1 )

(1 )

e n
s

T e n T b n

b
s T tot T b n

b
s T tot T b n

, , ,

,0 ,

,0 ,

= −
=
= −

Fig. 3. Schematic description of the film around the membrane.

Fig. 4. Permeated hydrogen flux at different total pressures from a 75% H2/N2

mixture at 380 °C, with a total feed flow of 3.6 Nl/min.
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flux in the fluidized bed compared to the empty system can thus be
explained by the increase of the radial dispersion of the system due to
the bubbling behaviour of the fluidized bed corresponding to a decrease
in δ.

Fig. 5a shows the film layer thickness at 3 bar fitted for different
feed fractions of hydrogen in the system without fluidized bed for dif-
ferent total feed flow rates. To indicate the effect of hydrogen depletion
on the results, the bars in Fig. 5 show the inlet and outlet fraction of
hydrogen of the system. The film layer thickness increases with an in-
crease in the partial pressure of hydrogen, roughly between 6 and
12mm. Analysis of the conditions of these results show that the de-
crease in δ with a decrease of the partial pressure of hydrogen and
fluidization velocity is related to the increase in the Reynolds number of
the system, as shown in Fig. 5b, demonstrating the strong influence of
the hydrodynamics on the extent of the concentration polarisation.
However, for the fluidized bed there is no correlation available to get a
good estimation of the δ as a function of the different operating con-
ditions. Therefore, in this work δ is an adjustable parameter of the
model and obtained by fitting to the results of a base case reforming

experiment performed at the following conditions: 480 °C, a total
pressure of 3 bar, a total feed flow rate of 3.6 Nl/min and a feed dis-
tribution of CH4:CO2:H2O=1:0.7:3. The δ obtained from the fitting
was 0.54 cm as a result of the more vigorous hydrodynamics of the
fluidized bed; this constant δ is further used to describe all reforming
experiments presented in the following analysis. The CPC for the system
with biogas reforming was found to be 0.78, with the use of the hy-
drogen concentrations obtained from the model.

4.2. Biogas steam reforming

To validate the model for the reforming of synthetic biogas, ex-
periments were carried out at temperatures between 430 °C and 540 °C,
with CO2/CH4 feed ratios ranging from 0 to 0.9, pressures from 2 bar up
to 5 bar and a range of steam-to-carbon ratios (SCR) from 2 to 4. The
stability of the system was monitored using the prior mentioned base
case experiment together with the performance of the membrane. The
nitrogen and hydrogen permeability of the membrane increased over
time: the fluidization roughens the membrane surface increasing the
active area for hydrogen permeation but also creating defects for ni-
trogen to pass. The discrepancy between the model and experiments
was therefore higher for the experiments varying the SCR, as they were
performed in a later stage of the system. All other results showed good
agreement with the model and the use of one single δ showed to be
sufficient over the investigated experimental ranges. From Figs. 6 to 9
the experimental results together with the model predictions are shown
in terms of methane conversion, SF and HRF. The effects of the studied
parameters will be further elaborated to show the effects and the dif-
ferences between methane steam reforming (MSR) and biogas steam
reforming (BSR). The impact of the temperature is studied for three
different values, a comparison is made between MSR and BSR, all the
other parameters are studied with and without the selective extraction
of hydrogen. In all cases, the experimental results and the model pre-
diction fit with the predicted equilibrium conversion. The cases without
extraction of hydrogen behaved as expected for SMR: the methane
conversion increases with temperature due to the endothermic nature
of the system (Fig. 6); a decrease in methane conversion with increasing
pressure as a result of the negative effect of pressure on the SMR re-
action (Fig. 7) and when CO2 in the feed is increased, to form the
synthetic biogas mixture, the conversion reduces due to the high con-
centration of CO2 (Figs. 6 and 8). The increase in H2O content on the
other hand had a positive effect on the methane conversion, since this is

Fig. 5. Concentration polarisation coefficient for the empty tube and the flui-
dized bed system at different pressures.

Fig. 6. A: Film layer thickness for different hydrogen fractions at 3 bar and 370 °C for different total feed flow rates in system without fluidized bed. B: the thickness
of the boundary layer as function of the Reynolds number.
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a reactant forcing the equilibrium to the product side (Fig. 9). When
hydrogen was extracted from the system the equilibrium was shifted
upwards. The extent of this shift depends on the permeability of the
membrane and the transmembrane driving force. Focusing on tem-
perature, the permeability of the membrane increases with temperature
showing a higher SF and HRF and thus shift of the conversion. A
maximum methane conversion of 72% and 68% for respectively MSR
and BSR at 533 °C was obtained. The transmembrane pressure is strictly
related to the system pressure, therefore increasing the pressure results
in an increase of SF as well as HRF. Over the tested range, the con-
version increased by 50% to 105% with respect to the conversion
without membrane. Although, it was not possible to work at higher
pressures in the experimental system it can be expected that at higher
pressure, hence higher HRF, the conversion would increase with pres-
sure. In this way, the system can overcome the negative effect of the
pressure on the SMR reaction. The study of different BSR mixtures with
different CO2/CH4 ratios showed a constant shift in equilibrium, as the
SF was not affected by the higher feed of CO2. The equilibrium

conversion and HRF still decreased with an increase in the CO2 fraction
and also the concentration of CO was increased on the retentate side
with increasing CO2/CH4, showing the effect of the CO2 on the WGS
equilibrium. CO poisoning could be assumed to be negligible, as the SF
was not affected and considering the temperature the experiments
where performed at [28]. The dilution effect of CO2 could not be stu-
died well in these experiments since the system feed was balanced with
CO2, later performed experiments with lower dilutions also showed no
significant effect of an increase in the CO2 content in the feed on the SF.
As mentioned before, the methane conversion increases with higher
SCR, however, also the shift showed a small increase. This increase in
shift can be explained as follows: as more hydrogen is produced, also
the transmembrane pressure difference is increased, which can be seen
from a slight increase in SF. During the experiments, there was no in-
dication of carbon formation, and after the experiment no carbon was
visible in the system or on the membrane.

The methane conversion, SF and HRF are important parameters to
assess the reactor performance, although the purity of the hydrogen is

Fig. 7. Methane conversion, SF and HRF of SMR and BSR (CO2/CH4=0.7) as a function of temperature at 3 bar, a total feed of 3.6 Nl/min with 10% of methane and
a SCR of 3.

Fig. 8. Methane conversion, SF and HRF for different pressures at 480 °C, a total feed of 3.6 Nl/min with 10% of methane and a SCR of 3.
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as important to demonstrate the potential of the presented concept for
biogas steam reforming. The permeate composition for the different
cases is reported in Fig. 10. The minimum amount of CO that was de-
tected at the permeate side in the experiments was 146 ppm, in the
other cases the GC was not detecting any CO and the amount can be
assumed to be at least lower than 146 ppm. CO was found in three
cases, where in two of the cases the CO concentration in the system was
relatively high as a result of the high CO2/CH4 ratio or the low SCR,
while in the other case the temperature was lower (437 °C) resulting in
a lower hydrogen flux. The hydrogen purity is strongly affected by the
temperature, because it affects the hydrogen flux as consequence of the
increased the hydrogen permeability and methane conversion at higher
temperatures. The lowest and highest hydrogen purity found for BSR
were 97.34% and 99.88% achieved at the lowest and highest operation
temperature, respectively. This effect could also already be seen from
the increase in the ideal selectivity during the membrane character-
ization.

4.3. Optimization and scale-up

To further validate the implementation of the concentration polar-
isation in the model, experiments with high dilutions were performed.
From the results of these experiments a higher discrepancy with the
model for the flux was obtained. This can be discerned from Fig. 11,

where the high and the low dilution cases are compared. This dis-
crepancy can be explained by the increase in the hydrogen partial
pressure in the system and the change in validity of the assumed film
layer thickness.

Further scale up of the system to higher pressures would therefore
require a new estimation of δ . However, no Sherwood correlation is
available in the literature to describe the mass transfer from the bulk to
the immersed membrane. To study the importance of the parameter δ,
the validated model is used to evaluate this. To do this, the model was
scaled up and the operation conditions were selected as for an industrial
application. The system feed was selected as a representative biogas
reforming mixture. Both the feed composition and the operation con-
ditions are listed in Table 3 and the computed concentration profile
along the reactor length is shown in Fig. 12.

It can be seen, that in the first part most of the hydrogen is produced
and the highest hydrogen concentration is reached. After this point the
rate of hydrogen extraction becomes dominant over the rate of hy-
drogen production, and therefore the hydrogen concentration decreases
along the reactor. Both the steam and methane concentration decrease
along the reactor as they are converted. CO2 is produced together with
CO. A small difference can be outlined between the emulsion phase and
bubble phase concentrations due to the influence of bubble-to-emulsion
phase mass transfer limitations. This is not the case for the hydrogen
transport, since in the model it was assumed that hydrogen is extracted

Fig. 9. Methane conversion, SF and HRF for different CO2/CH4 ratios at 480 °C, 3 bar, a total feed of 3.6 Nl/min with 10% of methane and a SCR of 3.

Fig. 10. Methane conversion, SF and HRF for different SCRs at 480 °C, 3 bar and a total feed of 3.6 Nl/min with 10% of methane.
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from both the emulsion and bubble phase. To evaluate the importance
of the thickness δ, the system was evaluated for three different cases: δ
equal to 0.54 cm as resulted from the permeation experiments, a δ of
0.25 cm and 0.75 cm. The results of these calculations are shown in
Fig. 13. The thickness δ has a significant influence on the system per-
formance. The conversion is shown as function of the membrane pro-
ductivity, indicating the amount of hydrogen that can be obtained per
membrane area. The productivity of the membranes reduces pro-
portionally with the thickness of δ . Which means that a decrease in
thickness δ of 25% leads in an increase of 25% in the productivity.
These results not only highlight the importance of the film layer
thickness in the design of fluidized bed membrane reactors, but also
indicate the potential of improving a membrane system by decreasing
the concentration polarisation (See Fig 14).

Fig. 11. Permeate composition for: (a) CO2/CH4 ratio, (b) temperature, (c) pressure and (d) SCR.

Table 3
Conditions and feed composition used for the analyses of the scaled-up system.

Parameter value Unit

Pressure 12 bar
Temperature 550 °C
Permeate pressure 0.1 bar
H2O/CH4 2.4 –
CO2/CH4 0.76 –
N2/CH4 0.37 –
u/umf 7.41 –

Fig. 12. Parity plot of the predicted and measured hydrogen flow for high and
low dilution conditions.
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5. Conclusions

Hydrogen production via steam reforming of biogas has been ex-
perimentally investigated in a fluidized bed membrane reactor and the
results were used to validate a phenomenological, one-dimensional,
two-phase model, that was extended to account for concentration po-
larisation using a stagnant boundary layer film model. A PdAg mem-
brane supported on Al2O3 has been used both in an empty shell-and-
tube configuration and in a fluidized bed with a Jonson Matthey Rh
based catalyst. Permeation results in the various system configurations
were used to determine the thickness of the mass transfer boundary
layer (δ). The importance of the hydrogen concentration and fluidiza-
tion velocity on the extent of concentration polarisation is shown. A
good description of the reforming experiments over the entire range of
experimental conditions was obtained by the model when using the
same thickness δ of 0.54 cm. Experiments with synthetic biogas

mixtures showed lower conversions, however, the hydrogen separation
was not affected and the previous estimation of δ was sufficient.
However, when scaling up the system to lower dilutions showed a
larger error in the model predictions. The model was used to further
scale up the system and study the dependency of the thickness δ. It was
shown that the thickness significantly influenced the system pro-
ductivity and δ scaled proportionally with the productivity.
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Appendix

Appendix I. Empirical correlation used in the model for the description of the system hydrodynamics and mass transfer

Parameter Equation Refs.

Archimedes number
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−
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Emulsion velocity ue
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b b

b

0= −
−

Fig. 13. Composition along the reactor at 550 °C, 12 bar, load-to-surface ratio
of 3 m3

CH₄-−2
memb. h−1, continues lines and dashed lines represent respectively

emulsion and bubble phase gas fractions.
Fig. 14. Membrane productivity as function of methane conversion for three
different thicknesses of δ .
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Bubble phase fraction fb
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Appendix II. Reaction rate laws and kinetic parameters

Reaction Stoichiometry and reaction rate equation Refs.

Methane steam reforming Eq. (1)

rSMR

k P P

P

SMR CH H O
PH PCO

KSMR
eq

H O

4 2
2

3

2
1.596=

⎛

⎝
⎜ −

⎞

⎠
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[21]

Water gas shift Eq. (2)

rWGS

k P P

P

WGS CO H O
PH PCO

KWGS
eq

H O

2
2 2

2
=

⎛

⎝
⎜ − ⎞
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k A ei i

Eact i
RT

,
=

⎛
⎝

− ⎞
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Constant Value Unit

ASMR 9.74·104 mol bar−0.404 kgcat−1 s−1 [22]
AWGS 17.2·102 Mol bar−1 kgcat−1 s−1

Eact SMR, 83.6·103 J/mol
Eact WGS, 54.53·103 J/mol
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