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Abstract

Swirling flows are very dominant in applied technical prob-

lems, especially in IC engines, and their prediction requires

rather sophisticated modeling. An adaptive low-pass filter-

ing procedure for the modeled turbulent length and time

scales is derived and applied to Menter’ original k − ω SST

turbulence model. The modeled length and time scales are

compared to what can potentially be resolved by the compu-

tational grid and time step. If the modeled scales are larger

than the resolvable scales, the resolvable scales will replace

the modeled scales in the formulation of the eddy viscosity;

therefore, the filtering technique helps the turbulence model

to adapt in accordance with the mesh resolution and the

scales to capture. The novel turbulence model presented

in this work will be called Dynamic Length Scale Resolu-

tion Model (DLRM), because of its capability to dynamically

adapt its behavior according to the grid resolution and to

consequently switch from modeling to resolving the turbu-

lent length scales. Validation has been carried out both on

a strongly swirling flow through a sudden expansion and on

a simple IC engine geometry with one axial central valve;

the model seems able to capture unsteady effects and to

produce accurate time-averaged results (especially if com-

pared to its standard RANS formulation) and looks particu-

larly suitable when used with grids where turbulence would

not be sufficiently resolved for an accurate LES.

Introduction

There are many interesting strategies for unsteady turbu-

lence modeling: Spalart [1] gave an overview and dis-

cussion about the advantages and limitations of many of

these when applied to general problems. For industrial sim-

ulations of IC engines, unsteady RANS (Reynolds aver-

aged Navier-Stokes) equations are established as a stan-

dard tool: the complete turbulence behavior is enclosed

within appropriate turbulence model which takes into ac-

count all turbulence scales, from the largest eddies to the

Kolmogorov scale. Turbulent length and time scales are

estimated by dimensional considerations, and model trans-

port equations are solved on reasonably coarse grids, that

make this approach relatively cheap in terms of computa-

tional cost. Despite RANS is able to give a reasonable ap-

proximation of the wall shear stress, it is quite well known

that the excessive predicted viscous behavior very often

damps out the unsteady motion and the flow unsteadiness,

because it overestimates the modeled turbulent length and

time scales. Also, despite the uniqueness of a solution

to the three-dimensional Navier-Stokes equations has yet

to be mathematically proven [2], it is generally accepted

that the solution is completely determined by the initial and

boundary conditions: hence, unsteady RANS cannot ac-

count for randomness or independent events in the flow

and it is characterized by simulation results that are per-

fectly repeatable, if constant boundary conditions (and the

same computer) are used for the unsteady computation. In

Large-Eddy Simulation (LES), the turbulent length scale is

related to the computational grid and to the turbulent time

scale from the resolved flow without additional equations;

as a result, the approach is potentially more accurate and it

is able to provide the intrinsic unsteady character of the flow.

For this reason, Large-Eddy Simulation has gained popular-

ity and success; on the other hand, as the Reynolds num-

bers of most engineering flows are usually very large, LES

of wall bounded flows very seldom represents an option for

full scale industrial simulations, because the computational

cost of LES scales near the walls is similar to Direct Nu-

merical Simulation (DNS). In many LES conducted for wall-

bounded flows, wall modeling based on logarithmic profile

or other theoretical models are used to avoid the high reso-

lution near the walls, so that the computational cost of LES

for modeling the free-shear flows is only weakly dependent

on the Reynolds number (∼ Re0.4). In complex flows, such

as in internal combustion engines, the validity of these theo-

retical models for LES at the walls is questionable and most

of the times it does not improve the quality of the results. A

very detailed overview about the use, the advantages and

the limits of LES when applied to IC engines is discussed

in [3]. Since the required grid resolution needs to be ex-

tremely high, LES simulation may become very expensive.

Hybrid models are all based on the same idea to represent

a link between RANS and LES, since they use the best of

both worlds: they resolve the turbulence where possible and

they model it elsewhere. As a consequence, they try to keep



computational efficiency of RANS and the potential of LES

to resolve large turbulent structures, even on coarser grids

and with high Reynolds number. In the recent years, several

hybrid LES/RANS methods have been proposed in the liter-

ature: examples are Detached Eddy Simulation (DES), Lim-

ited Numerical Scales (LNSs), hybrid LES-RANS, or sec-

ond generation unsteady RANS models, including partially

averaged NavierStokes (PANS) and scale-adaptive simula-

tion (SAS). A recent application of PANS to IC engine simu-

lation has been shown in [4]. There is obviously the need in

IC engines simulation for a turbulence model that can dis-

tinguish between what can be resolved and what cannot,

at the same time as it produces an accurate estimate of

the wall shear stress. Very Large Eddy Simulation (VLES)

is another kind of hybrid method which starts to expand

as a promising compromise for simulation of industrial flow

problems with reasonable computational time and costs. In

VLES large turbulence structures are resolved by an un-

steady simulation and the minor structures are modeled

with an adequate turbulence model. Compared to the LES

and similarly to the other hybrid models, the main difference

is that with VLES a smaller part of the turbulence spectrum

is resolved and the influence of a larger part of the spectrum

has to be expressed with the model. In VLES models, the

additional requirement is an appropriate filtering technique

which distinguishes between resolved and modeled part of

the turbulence spectrum. The filtering procedure provides

the adaptive characteristic of the VLES models, enabling

them to be applied for the whole range of turbulence model-

ing approaches from the RANS to the DNS; also, it limits the

influence of the statistical turbulence model on the unsteady

mean flow field.

A VLES model, sometimes also called Variable Resolution

(VR) approach, to predict stochastic flows in internal com-

bustion engines is presented. The filtering approach used

may be considered converse to the filtering approach that

is used in LES. Instead of solving the filtered equations to

avoid the computation of small scales, the modeled length

and time scales are filtered in order to suppress their neg-

ative influence on the unsteady flow field. This approach

has been originally developed by Willems [5] and is simi-

lar to other approach of Speziale [6, 7] and Fasel [8], be-

cause the filter is applied directly to the Reynolds stress

tensor and the turbulence model is left unchanged. Simi-

larly to [9], the functional form of the filter is derived from

the relation between filtered and non-filtered time scales.

In this work, a novel formulation of the functional form of

the filter function, including time resolution in the criteria to

maintain phase coherence, is proposed and it is applied to

compressible flows. The modeled length and time scales

are compared with what it can be resolved by the computa-

tional grid and time step. If the modeled scales are larger

than the resolvable scales, resolvable scales will replace the

modeled scales in the formulation of the eddy viscosity. To

distinguish between large- and small-scale turbulence, the

upper limit of the length scales of non-resolved turbulence

is made proportional to the local grid spacing or the prod-

uct of the local velocity magnitude and the time step of the

simulation; there is no lower limit because the mean non-

resolved turbulent length scale may be much smaller than

the local grid spacing, especially near the walls. This allows

for a much coarser grid resolution than in LES; also, the

filter will allow large-scale unsteady structures in the flow,

and the model will still produce a wall shear stress com-

parable to what is produced by the standard RANS model.

The filtering technique has been applied to a compressible

formulation of the k − ω SST model [10] including the op-

tional sink term for rough walls [11]. Model validation has

been performed against experimental measurements on a

strongly swirling flow through a sudden expansion [12] and

on a flow around a poppet valve [13].

Turbulence Modeling

The compressible formulation of the k − ω SST model [10]

including the optional sink term for rough walls [11] has

been used as the basic turbulence model in this work. The

main idea behind this choice is to retain the robust and ac-

curate formulation of the RANS model in the near wall re-

gions and in zones of the freestream region where the mesh

resolution is not sufficiently high for the direct solution of the

main turbulent scales. The model is a two-equation eddy

viscosity model, and it is coupled to the averaged Navier-

Stokes equations by the eddy-viscosity assumption:

−τij = 2µtSij −
2

3
ρkδij (1)

where τij is the viscous stress tensor and Sij is the strain

rate tensor, defined as:

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(2)

The Boussinesq assumption introduces the concept of a

turbulent eddy viscosity, µt and it is particularly suitable

when the influence of turbulence on the mean flow is dom-

inated by a mixing process. The eddy viscosity has the

same dimension as the viscosity of the fluid and is assumed

to be proportional to a function of the local turbulent length

and time scales:

µt ∼ L2
t/Tt (3)

The turbulent length and time scales are unknown local

properties of the turbulent flow and must be modeled. If

the modeled turbulent kinetic energy k and specific dissipa-

tion rate ω are solved, a measure of the turbulent length and

time scales can be estimated.

Derivation of the Filter Function

A low-pass filtering operation is applied to the turbulence

model in order to allow the existence of resolvable turbu-

lent scales in the solution of the flow field. Similarly to [9],

the form of the filter function is derived from a dimensional

analysis and the filter is applied to the turbulent length and

time scales, rather than to the turbulent kinetic energy [5].

As it will later discussed, this allows to apply the approach
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to any URANS model with minor modifications. The local

modeled turbulent length scale can be directly evaluated by

the turbulent kinetic energy and dissipation, as follows:

Lt ∼ k1/2/ω (4)

Tt ∼ 1/ω (5)

In the approach presented in this work, the filtering oper-

ation is based on the comparison between the modeled

and the resolved turbulent length scales. The upper limit

of the modeled turbulent length scale corresponds exactly

to the lower limit of the resolved turbulent length scales. The

largest length scale that needs to be a part of the eddy vis-

cosity formulation is:

ℓt = min{Lt,∆f} (6)

where ∆f is evaluated by comparing a function of the local

flow velocity U and an equivalent LES filter size ∆eq:

∆f = max(α|U|δt, ∆eq) (7)

In Eq. (7), the product α|U|δt is a measure of the short-

est distance over which a fluid particle can be traced in an

unsteady computation and the maximum length scale that

needs to be a part of the eddy viscosity formulation. In this

sense, the computational timestep influences the lower limit

for the resolved time scale and includes the implicit relation-

ship between space and time in the filtering operation. Intro-

ducing the maximum flow Courant-Friedrichs-Lewy (CFL)

number:

CFLmax =
Umax δt

δxmin

(8)

the time integration step is usually limited to:

δt ≤
CFLmax δxmin

|Umax|
(9)

where CFLmax is usually chosen on the basis of the numer-

ical method and of the level of unsteadiness of the problem.

Being the local CFL number defined on cell i :

CFLi =
|Ui| δt

δxi
(10)

the criterion (9) ensures that for each cell the local CFL

number CFLi is lower than the maximum CFL:

β =
CFLi

CFL
≤ 1 (11)

In general, there is no way to mathematically distinguish

between turbulence and unsteadiness. For this reason, it is

very difficult to estimate the minimum length scale that the

turbulence model is able to capture, since it depends both

on the spatial resolution and on the temporal correlation be-

tween timesteps, which is strictly related to the CFL used by

the numerical solver. A conservative way of thinking would

lead to the conclusion that for each computational cell the

smallest turbulent length scale that can be captured by the

turbulence model is (|U| δt)MAX

|U| δt|
MAX

= CFL · δx

=
CFLi

β
δx

= α CFLi δx

= α |U|δt (12)

where

α =
1

β
=

CFL

CFLi
(13)

In [9], numerical experiments suggested that the optimum

multiplier α to the product |U| δt should be 3 in order to

properly resolve the turbulent structures. In the present pa-

per, the coefficient α is dynamically calculated by the model

from the local and the overall CFL number, which varies

in time and space; this is done to correlate the temporal

scales of the vortexes and the spatial resolution of the grid

in the filter operation and it is particularly important in en-

gine flows, where cell size and flow conditions significantly

vary between the near valve region and the other regions of

the mesh. A dynamic procedure for run-time calculation of

the integral length scale allows for a more correct estimation

of the minimum integral length scale that can be locally cap-

tured by the model. In Eq. (7), the (estimated) upper limit of

the dissipation range scales is compared to the length of the

resolved scales through the Length Scale Resolution (LSR)

parameter [14]. LSR provides a relationship between the

actual resolved energy level and the corresponding lower

limit of the inertial sub-range and it is defined as:

LSR =
∆

ℓdi
(14)

where ∆ is the local filter size and ℓdi is the lower limit of

the inertial sub-range [15]:

ℓdi ≈ 60η (15)

and η is the Kolmogorov scale:

η = ν3/4ε−1/4
(16)

Where the LSR value is equal to 1 all the turbulent scales

up to the dissipation range are resolved. From the definition

of Eq. (14), the evaluation of the actual resolved energy

level is directly linked to the local filter size; in this way the

adopted mesh size is related to the local energy resolution

all over the computational domain. In [16], it was found that

LSR ≤ 5 (17)

is the upper limit to guarantee a reasonable resolution is

space for LES at an affordable computational cost. From

Eq. (17) and (14), it follows that the maximum equivalent

filter width ∆eq to use in Eq. (7) is:

∆eq ≤ LSR · ℓdi (18)
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The upper limit on the modeled length and time scales ℓt
can also be defined in terms of the filtered (non-resolved)

variables:

ℓt ∼ k̂1/2/ω̂ (19)

tt ∼ 1/ω̂ (20)

The specific dissipation rate ω is related to the dissipation

rate ε by the relation:

ω =
ε

β∗ k
(21)

where β∗=0.09. The filtered specific dissipation can be writ-

ten as

ω̂ =
ε̂

β∗ k̂
(22)

The dissipation rate is never resolved in anything cheaper

than a DNS, hence

ε̂ = ε (23)

and from Eq. (22) and (23) it follows:

ω̂ =
ω k

k̂
(24)

and from Eqs. (4), (19) and (22) an expression for the fil-

tered turbulent kinetic energy can be found:

k̂ = g(ℓt, Lt) k (25)

where the equality follows from the assumption that the con-

stants of proportionality in Eq. (4) and (19) are equal. The

filter function results to be defined as:

g ≡ (ℓt/Lt)
2/3 (26)

in which ℓt is computed from Eq. (6) and the modeled tur-

bulent scale Lt is calculated as:

Lt ≃
k1/2

β∗ ω
(27)

In regions where turbulence cannot be resolved, i.e. where

Lt < ∆f in Eq. (6), the filter function is equal to unity and

in Eq. (25) k̂ = k. However, there is no need to compute

the filtered turbulent variables explicitly. A filtered eddy vis-

cosity can be constructed directly from the non-resolvable

turbulent length and time scales:

µ̂t ∼ ℓ2t/tt (28)

It follows from Eqs. (19), (20), (24) and (25) that

µ̂t = g2 ρ
k

ω
(29)

where the equality must hold in order to recover the origi-

nal (non-filtered) eddy viscosity formulation, µt = ρ k/ω, in

regions where the filter is inactive. Note that the only modifi-

cation to the original eddy viscosity formulation is the factor

g2, i.e., the square of the filter function.

The filter function can be derived and applied using any two-

equation turbulence model: it will always have the same

functional form reported in Eq. (26) and it will always ap-

pear as squared when used in the formulation of the eddy

viscosity; also, it has an explicit grid dependence in the eddy

viscosity formulation through the parameter lt in Eq. (26)

when ∆f < Lt in Eq. (6).

Figure 1: The filter function g2(∆f ) is clipped to 1 as ∆f is equal
to the integral length of the modeled scales Lt and it tends to zero
with a minimum as the grid size tends to the fine grid limit.

The definition of Eq. (26) is thought to allow the filter func-

tion to go naturally to zero as the grid spacing tends to zero

and as the grid size tends to the fine grid limit:

lim
∆f→0

g2 = 0 (30)

Also the derivative of g2 with respect to the filter width:

∂
(

g2
)

∂∆f
=

4

3

(

∆f

Lt

)1/3

(31)

must tend to zero as ∆f → 0:

∂
(

g2
)

∂∆f

∣

∣

∣

∣

∣

∆f→0

→ 0 (32)
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Eq. (31) justifies the choice of applying the filter not only to

the kinetic energy k as in [5], but to turbulent scales as well.

If the filter was applied only to the turbulent kinetic energy,

the square of the filter function g(ℓt, Lt) in Eq. (29) would

vanish and the filter would not have the proper behavior in

the fine grid limit, since Eq. (32) would not tend to zero.

It must be also noted that the above conclusion holds as

long as k and ω do not explicitly depend upon the local grid

spacing. Actually, as the eddy viscosity is limited by the

filter, there will also be less production of modeled turbulent

kinetic energy k and specific dissipation rate, ω. This is

natural, because the resolved turbulent kinetic energy and

specific dissipation should increase. In Fig. 1 an example of

the filter function g2 is shown. The filter function is clipped

to 1 if ∆f is greater than the integral length of the modeled

scales Lt. Finally, the second derivative of the curve near

the fine grid limit must be positive, to ensure that in that

region small variations of the grid size corresponds to high

variations of the resolved scales.

The described model will be called Dynamic Length Scale

Resolution Model (DLRM), because of its capability to dy-

namically adapt its behavior according to the grid resolution

and to consequently switch from modeling to resolving the

turbulent length scales.

Test Cases and Computational Setup

The Dynamic Length Scale Resolution Model has been val-

idated on two different test cases, where experimental data

were available:

- A swirling flow through a sudden expansion, whose

measurement were published in [12].

- A simplified IC engine configuration, consisting of a cir-

cular pipe with a sudden expansion from d = 34 mm to

D = 120 mm, with a single axis-centered poppet valve

is positioned across the expansion with a fixed lift of 10

mm, to originate a circular jet that expands inside the

larger cylinder.

A second-order backward differencing scheme was used

for discretizing the temporal derivatives, whereas momen-

tum convection was performed with the Linear-Upwind Sta-

bilized Transport (LUST) scheme, a low-dissipation method

specifically developed for LES [17]. For the remaining differ-

ential terms, pure second-order differencing schemes were

used, with the exception of energy, for which an upwind-

biased method was employed for stability. The pressure-

velocity coupling was solved using a compressible solver

based on the PIMPLE (merged PISO-SIMPLE) algorithm,

that has been extended by the authors to work with non-

conformal grids [18]. For each case, predictions of the

DLRM have been compared with the standard formulation

of k-ω SST and of the wall-adapting local eddy viscosity

(WALE) model on the same computational grids (where tur-

bulence may not be sufficiently resolved for an accurate

LES), in order to compare the capability to predict the un-

steady effects and to produce accurate time-averaged re-

sults. The computational tool used for the simulations is

the open-source finite-volume CFD software OpenFOAM®,

that was already extended by the authors with sgs models,

boundary conditions, pre- and post-processing applications

to perform simulation of turbulent flows with moving bound-

aries [19, 20, 21, 22, 23, 24].

Swirling flow in a abrupt expansion

A swirling flow through a sudden expansion has been inves-

tigated and experimental results from [12] have been used

for validation. In the experiments, the swirl number

S =

∫ R

0

VθVzr
2dr

R

∫ R

0

V 2
z rdr

(33)

was approximately 0.6 based on the inlet radius, R=D/2; Vθ

and Vz in Eq. (33) denote the time-averaged tangential and

axial velocities, respectively. The Reynolds number based

on the inlet diameter D and the bulk velocity at the inlet was

Re=30000. The axial inlet duct had a diameter of 0.0508

m; its length was 31 diameters and the sudden expansion

was located 15 diameters downstream of the swirl gener-

ator. Experiments were performed with an incompressible

flow (water); swirl was generated by supplying a variable

portion of the flow through tangential slots. Both axial and

tangential components of mean velocity and rms turbulence

levels were measured by Laser Doppler Anemometry (LDA)

on a dense grid of points lying in a horizontal plane through

the tube centerline. Included in the grid measurement sta-

tions were two upstream locations at X/D=-2 and X/D=-0.5.

The complete distribution of the measurement stations is

shown in Fig. 2.

Figure 2: Probe locations in the experimental test rig [12].

In the simulations, two different block-structured grids have

been used, with a resolution that is typical of in-cylinder flow

calculations: a first grid (that will be labeled as “coarse”)

had about 1.5 Million cells, while a “fine” grid was made

of about 4 Million cells. The two grids were mainly differ-

ing in the resolution of the area near the abrupt expansion,

where more turbulent structures need to be captured. Cell

centers normal to the wall were placed at y+ ∼ 2 in both

grids; hence, the coarser grid had larger grid stretching in

the wall-normal direction, especially in the near-wall region

downstream of the sudden expansion. Also, the coarse

grid had an axial resolution that was definitely lower down-

stream of the abrupt expansion. An incompressible formu-

lation of the solver and of the turbulence model were used;

despite in IC engines flows are highly compressible, the aim

of the early stage of this work was to validate the theory
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Figure 3: Velocity profiles and rms turbulence levels at different locations: a) mean axial velocity; b) mean tangential velocity; c) axial RMS
fluctuations; d) tangential RMS fluctuations. Legend: experiments; −⋄− DLRM (coarse grid); – – DLRM (fine grid); −+− WALE (coarse grid);
−×− kω SST (coarse grid).
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Figure 4: Contour plot of the filter function along the middle section of the geometry studied (time=20 mean flow residence times, coarse grid).
The square of the filter function g in the DLRM model is bounded between 0 (DNS, theoretically) and 1 (pure RANS). Pure RANS modeling is used
at the walls, where grid resolution is obviously too low for solving turbulent scales of the flow.

of the filtering approach, which is independent by the na-

ture of the flow. Spline curves based on the measured data

were used as inlet boundary condition for mean velocities,

while constant inlet turbulent intensity was set to 10% on

the basis of the levels of axial and tangential Reynolds nor-

mal stresses measured in [12]. However, since the swirl

level in the present experiment was high enough for a fast

transition to turbulence, adding unsteadiness at the steady

inlet boundary condition would have been superfluous, as

evidenced by the results shown by Fig. 3. Also, since the

DLRM model (as any RANS-based filtered model) is not

very sensible to the values of the turbulent quantities at the

inlet boundary, LES boundary conditions for synthetic tur-

bulence generation [20, 23] were not needed. At the outlet

boundary, a homogeneous Neumann boundary condition

was used for velocity and temperature, while pressure level

was set to ambient; a no-slip condition was used for the

velocity at the walls, where the turbulent kinetic energy van-

ishes. Time-averaged profiles of the monitored quantities

have been calculated over 20 mean flow residence times

and circumferentially averaged in space. The evolution of

the axial and tangential velocity distributions and the pre-

dicted rms turbulence levels are shown in Fig. 3 for each

z/D available from the measurements. As evidenced, the

aim of the DLRM is to allow large-scale unsteady structures

in the resolved flow field and to give accurate time-averaged

results on a typical RANS grid. In order to see what results

can be obtained from a LES on the same grids, a simu-

lation using the WALE sgs model [25] on the grid labelled

as “coarse” was performed. Results of Fig. 3 show that

DLRM model behaves much better than k − ω SST all over

the domain; the RANS k-ω-SST model has been applied

only to the coarse mesh, where grid convergence was sat-

isfied. It is important to notice that since the mean velocity

of this case is not particularly high, LSR is often lower that 5

around the abrupt expansion: for this reason, WALE model

is able to sufficiently resolve most of the energy-containing

turbulent structures in that region, while it does not pro-

vide good predictions for z/D>1.5, where grid size is too

coarse for LES (almost 1 cm along the axial direction, LSR

is higher than the threshold). At z/D=-2, quantities at the

first computational cell near the inlet boundary are reported.

As expected, the profiles of turbulence intensity reflects the

behavior of the models adopted: with a pure RANS turbu-

lence model, turbulent intensity is almost constant over the

section of the channel, since the model transports the tur-

bulent kinetic energy that is set at the inlet. As the DLRM

model is used, the value of the turbulent viscosity in the first

computational cell near the boundary is calculated on the

basis of the grid refinement: turbulent viscosity results to

be lower than the modeled one, as confirmed by the theory

[26]. For the same reason, turbulent viscosity calculated by

pure LES modeling (WALE) on the same cells results to be

also lower when compared to RANS. Fig. 3 also evidences

that DLRM improves the predictions of the pure k − ω SST

in the recirculation region, since the original formulation of

k−ω SST is quite insensitive to rotation [26] and damps out

unsteady fluctuations during the simulation. Similarly to the

filtering procedures [9], DLRM removes the limitations of the

k− ω SST model, while retaining good near wall character-

istics. Finally, the contour plot of the time-averaged value of

the filter function (Fig. 4) shows that even the coarse grid

is sufficiently fine to allow for the direct resolution of most

of the scales of interests for the case studied: for this rea-

son, both WALE and DLRM are able to provide good pre-

dictions of the average quantities. Finally, DLRM is able to

provide reliable predictions of the turbulence intensities u’

and v’ (Fig. 3) also for z/D > 2 and near the walls, where

the grid resolution is not high enough for the direct resolu-

tion of the turbulent scales (Fig. 4), since it combines the

best features of RANS and LES models.
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Figure 5: simplified engine geometry [13] used for validation.

Flow around a poppet valve

The second case analyzed is a simplified IC engine config-

uration (Fig. 5) consisting of a circular pipe where a single

axis-centered poppet valve is positioned with a fixed lift of

10 mm, to originate a circular jet that expands inside the

cylinder. The cylinder has an outlet open end and the flow

is driven by the difference of total pressure between the inlet

and the outlet boundary. Air enters the smaller pipe with a

mean Reynolds number of about 30000, which corresponds

to a bulk velocity of 65 m/s. The flow inside the smaller an-

nular duct is similar to a circular pipe flow; however, in the

studied case this region was of minor interest since most
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Figure 6: DLRM predictions on two diffent grids: 700k cells (”coarse” grid, first row); 5.3 M (“fine” grid, second row). DLRM is able to smoothly
handle the transition from RANS to LES by the blending function g2, as the local grid resolution changes: this is confirmed by the snapshots of
the flow field, that do no show any discontinuity. Space averaging has been applied for the plotted (time-averaged) quantities along the azimuthal
direction. Only for the filter function, the color scale used is logarithmic.

of the turbulence production takes place at the shear layer

between the circular jet and the cylinder flow that is, initially,

at rest. The mesh structure, the flow features and filter

function calculated by DLRM are reported in Fig. 6. Con-

tour plots show that highest velocities are located where the

jet-like flow extends into the cylinder region. As the intake

flow extends beyond the near valve region, flow direction

changes at the cylinder wall, creating a clockwise tumble

motion. Two large toroidal recirculation zones originate in-

side the cylinder: the former is located near the upper wall,

the latter is close to the cylinder axis. Although simplified,

this configuration can be considered as representative of

the main flow types that occur in a real engine during the in-

take stroke, where a high-speed jet coming from the intake

valve enters into the cylinder region and originates large-

scale motion of the charge. LDA measurements of the

mean flow velocity and of RMS fluctuations (along the ra-

dial and tangential directions) were available on two planes
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Figure 7: Comparison between predicted velocity profiles and LDA measurements. Plane x=20 mm: a) mean axial velocity b) rms axial fluctu-
ations c) rms tangential fluctuations. Plane x=70 mm: c) mean axial velocity d) rms axial fluctuations e) rms tangential fluctuations. Legend:
experiments; − ⋄ − DLRM (700 k cells); −− DLRM (5.3 M cells); −+− WALE (12 M cells).

located at a distance of 20 mm and 70 mm from the cylin-

der top, respectively. Similar studies on this configuration

have already been done in [13] and in [20]. A comparison

of simulations carried out with different turbulence models

and grids is reported in Fig. 7: the WALE model [25] in

its compressible formulation was applied on a grid having a

resolution of 12 M cells, that could be considered merely ad-

equate for a proper LES. Predictions with the WALE model

[20] were compared with DLRM, that was applied on two

different grids, having 700 thousand and 4 million cells re-

spectively. The two grids will be referred in the following to

as ‘coarse’ and ‘fine’ grid. The resolution of all the grids

used was considered fine enough for a complete RANS.

For all cases, mesh non-orthogonality was very low (below

40 ◦), as well as skewness, so the solver convergence was

strongly favored; also, grid resolution in the cylinder region

was relatively coarse, if compared to the fine cells oriented

like the flow used near the valve seat, where most of the

turbulence production takes place. The topology of the grid

used for DLRM summarizes some considerations coming

from early investigations [21], where it has shown the influ-

ence of the shear layer instability of the annular jet going

from the valve section to the cylinder region on cyclic vari-

ability of IC engines: consequently, resolution in the grids

used is higher in the jet region in order to let DRLM directly

solve the turbulent scales; larger scales in the cylinder are

just modeled. In the fine mesh of Fig. 6, non conformal in-

terfaces [27, 28, 24] have been used to unlink the grid res-

olution between the duct, the jet and the cylinder regions

and, therefore, to limit the overall number of cells; the re-

sulting grid was oriented as the jet flow near the valve seat

and it is highly refined in the region of the jet flow. The

contour plot of the filter function g2 and of the flow field ev-

idence that where the grid is refined, DLRM resolves more

and more turbulent structures. For the coarse mesh, turbu-

lence is mainly modeled by RANS, as a direct (and obvious)

consequence of the choice to have only a 700 K cell grid.

It is important to note that case setup for DLRM in terms of

boundary and initial conditions for turbulence is the same

of a RANS simulation. Mean velocity was set at the inlet

boundary, while constant inlet turbulent intensity was set to

10% of the mean velocity. The simulations using DLRM (as

any other turbulence model based on filtering) is not ex-

pected to be sensible to the values of turbulence quantities

at the inlet boundary. If the imposed length scale is too

large, the filter activates and automatically decreases the

production of turbulence via the eddy viscosity, according to

Eq. (6). Statistical quantities have been computed by aver-

aging in time over a large number of samples (correspond-

ing to the number of timesteps) during the ten mean flow

residence times simulated. The first flow residence time

was discarded from the statistical analysis in order to mini-

mize the effect of the initial conditions. Taking advantage of

the axisymmetric geometry, space averaging was computed

along the azimuthal direction for the time-averaged quan-

tities, in order to reduce the total number of flow-through

times to be simulated. Data were sampled with an angu-

lar step of 5◦; linear interpolation was used to approximate

the fields in between cell centers. Both ensemble averaged

velocity and rms fluctuations have been extracted from the

circumferential-z averaged planes and compared with ex-

perimental measurements, as reported in Fig. 7. Profiles

have been plotted along the cylinder radius at 20 and 50

mm from the cylinder head, conventionally assumed as z=0.

Only the axial component of the mean velocity has been

considered for comparison, since no experimental data [13]

were available along the other two directions; experiments

on rms fluctuations were available instead both along the ra-

dial and the axial direction. Both WALE and DLRM provide

good predictions of average velocity, since all the grid had a

sufficient resolution in the regions studied; when rms fluctu-

ations are considered, then the different characteristics and

behavior of the different models is apparent. Predictions by

DLRM better agree with experiments than WALE, or they

are at least comparable: considering that the grid resolution

used with DRLM is only 700 K cells for the ‘coarse’ mesh,

the result can be considered very satisfying. As a higher

mesh resolution is used, DLRM progressively resolves a

higher amount of turbulent scales, improving the accuracy

of the results; grid resolution initially defined by the operator
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is the control parameter for the operation of DLRM and this

makes the setup particularly simple. Also, the good agree-

ment of DLRM near the walls is favored by the use of RANS

wall functions. Experimental data in the near vicinity of the

walls (r/R > 0.9) were missing from original LDA measure-

ments, despite this is not so apparent by Fig. 7. Finally, it

is important to note that because of the hybrid nature of the

DLRM model, a deeper statistical analysis partially loses its

significance, because the integral turbulent length scale is

not fully resolved everywhere. Hence, detailed flow statis-

tics such as two-point correlations or power spectra would

be affected by the application of the filter function, which

continuously varies from one cell to another, thus making

very difficult to use them to gather clear information about

grid convergence; this is the reason why statistical analysis

is not reported in the paper. As already mentioned, grids

used in this work are too coarse for solve most of the tur-

bulent scales: the aim of the work was to find a model to

resolve the scales of interest for an engine simulation on

a very coarse grid, rather than trying to resolve all the tur-

bulent scales, as only a complete LES on a very fine grid

would be able to describe.

Conclusions

With respect to traditional RANS, predictions of unsteady

turbulent flows by DLRM result improved, thanks to the ap-

plication of an adaptive low-pass filter to the modeled tur-

bulent length and time scales. The novel definition of the

filtering function, explicitly though for transient simulations

of compressible flows, includes a dependency of the time-

resolved scales on the CFL constraint and a criterion based

on the Length Scale Resolution parameter, to ensure proper

spatial and temporal resolution. The advantages are signif-

icant: the computational cost of the model and the case

setup, in terms of boundary and initial conditions required

are the same of the standard k-ω SST model; the local grid

resolution is the parameter that directly influences the way

to calculate the turbulent scales. The filter function smoothly

controls the transition from cells where turbulence is mod-

eled (RANS) to cells where turbulent scales are directly re-

solved. With respect to other hybrid models available in

the literature, the formulation of the filter used by DLRM

allows to avoid discontinuities in the flow field, in particu-

lar in the regions where there is transition between differ-

ent formulations of the turbulent scales. Despite the turbu-

lence model works with any kind of mesh definition (hexa-

hedral, tetrahedral or, in general, polyhedral), the combined

use with an accurate compressible solver and high quality

mesh [18] favors a very good agreement between simula-

tions and experiments. If compared with WALE, DLRM is

computationally more expensive (it is a two equation model,

where k and ω are transported); on the other hand, DLRM

is able to work with coarse (RANS) grids providing similar

results to LES, with a computational effort that is compa-

rable to RANS modeling. If the grid defined by the user is

too coarse, DLRM behaves as a k − ω SST model, hence

results must be intended and interpreted as RANS results.

The square filter function, which is bounded between 0 and

1, is an indicator of the way to calculate turbulence length

scales: a square filter function g=0 would theoretically indi-

cate a direct resolution of the turbulent scales (DNS): this is

of course impracticable with the grid resolutions applied in

this work (and in general in the field of IC engines), there-

fore g = 0 should be intended as the condition when implicit

LES is applied to capture the turbulent scales of interest.

The formulation of the filter function g proposed in this work

can be easily applied to any RANS turbulence model, mak-

ing the approach very general.
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