
FLOPSYNC-QACS: Quantization-Aware Clock Synchronization for
Wireless Sensor Networks

Federico Terraneo∗, Alessandro Vittorio Papadopoulos†, Alberto Leva∗, Maria Prandini∗
∗Politecnico di Milano, Milano, Italy

†Mälardalen University, Västerås, Sweden

Abstract—The development of distributed real-time systems
often relies on clock synchronization. However, achieving pre-
cise synchronization in the field of Wireless Sensor Networks
(WSNs) is hampered by competing design challenges, such as
energy consumption and cost constraints, e.g., in Internet of
Things applications. For these reasons many WSN hardware
platforms rely on a low frequency clock crystal to provide
the local timebase. Although this solution is inexpensive and
allows for a remarkably low energy consumption, it limits the
resolution at which time can be measured. The FLOPSYNC
synchronization scheme provides low-energy synchronization
that takes into account the quartz crystal imperfections. The
main limitation of the approach are the effects of quantization.

In this paper we propose a clock synchronization scheme
that explicitly takes into account quantization effects caused
by low frequency clock crystal, thus addressing the clock syn-
chronization issue in cost-sensitive WSN node platforms. The
solution adopts switched control for minimizing the effect of
quantization, with minimal overhead. We provide experimental
evidence that the approach manages to reach a synchronization
error of at most 1 clock tick in a real WSN.

I. INTRODUCTION

During the past decade, the Internet of Things (IoT) has
gained significant attention both in academia and industry.
The basic idea of IoT is to connect objects to the internet
and make them communicate with each other. According
to a recent study by Gartner [4], the current count of
IoT devices is around 6.4 billion devices (not including
smartphones, tablets, and computers), and it is expected
to grow up to 21 billion by 2020. In such a scenario,
wireless communication technologies will play a major role,
and in particular, Wireless Sensor Networks (WSNs) will
proliferate in many application domains. Indeed, the small,
inexpensive and low power WSN nodes can be an enabling
technology for IoT.

Among the various challenges, time synchronization is
one of the most important for the correct operation of
WSNs [21, 25]. In particular, it allows for successful com-
munication between the different nodes, but also for location
and proximity estimation [12], energy efficiency [10, 19],
and mobility [20]. In general, WSN nodes coordination

This work was partially supported by the European Commission under
the project UnCoVerCPS with grant number 643921, and by the Swedish
Foundation for Strategic Research under the project “Future factories in the
cloud (FiC)” with grant number GMT14-0032.

is crucial, especially when real-time operations must be
executed. Since many IoT devices are battery powered,
and time synchronization is continuously executed, energy
efficient architectures and protocols are necessary [1].

Even more, since the cost of the nodes is relevant and
a high-precision time synchronization may not be needed
in some IoT applications, the use of low resolution clock
oscillators is often a viable choice, see e.g. [15, 16]. Ap-
parently, the clock resolution affects the minimum achiev-
able synchronization error, and protocols able to push the
performance to the limits are needed. In this paper, we
propose a synchronization mechanism based on a switched
control policy aimed to minimize the effect of quantization
on the synchronization error, with a minimal overhead.
The following work is cast in the framework of multi-hop
master-slave clock synchronization, i.e., when the network
is composed by a master, and of a number of slaves which
synchronize their clock to the masters’ clock.

The rest of the paper is organized as follows. Section II
presents a technological view on the clock synchronization
problem. Section III describes the proposed switched control
scheme, while Section IV presents simulation and experi-
mental results. Section V concludes the paper.

II. THE SYNCHRONIZATION PROBLEM

A master-slave clock synchronization scheme works by
disseminating the timing information using packets trans-
mitted by the radio transceiver of the WSN nodes. In
simple topologies, such as star networks, synchronization
packets can be transmitted by the master node. In multi-
hop networks, flooding schemes [3, 13] allow for the dis-
semination of synchronization packets also to nodes that
are not directly in the radio range of the master node.
Packets may contain a timestamp with the time of the
master node, or this information can be implicit if packets
are transmitted periodically over a contention-delay-free
MAC [22]. A clock skew compensation [9, 17, 26] scheme
is often used to minimize the divergence of the nodes’ local
clock in between synchronizations. Drift compensation is
also possible, accounting for common error causes such as
temperature variations [18, 22]. Finally, propagation delay
estimation and compensation [11, 23] can be employed for
ultra high precision synchronization.

Despite the many different features a master-slave clock
synchronization scheme can be composed of, all of them
have in common the need for timestamping incoming pack-
ets using the local clock. Timekeeping in WSN nodes is
performed by dedicating a hardware timer/counter unit of
the node microcontroller that is read to know the time,
and allows to set interrupts for generating events. One
way to perform incoming packet timestamping is read-
ing the hardware counter in the packet reception interrupt
handler [13]. Alternatively, one may use of a hardware
input capture module [3, 22], a common feature of modern
timer peripherals that takes a snapshot of the counter upon
receiving an event. In all cases, the finite frequency of the
local hardware counter introduces a quantization effect in
packet timestamping, of increasing magnitude as the counter
frequency is decreased.

Energy consumption constraints limit the frequency at
which a WSN node hardware counter can be operated. It is
well known that the power consumption is proportional to
the operating frequency, load capacitance and the square of
the operating voltage. The dependency of power, and thus
energy consumption on the clock frequency is a relevant
concern in the hardware counter, that has to remain active
also in sleep states to not lose the notion of time. For
this reason, it is common in WSN nodes to have the
microcontroller CPU clocked at several megahertz, while
the timer used for timekeeping at only 32768Hz [16]. This
choice is based on the availability of inexpensive and ultra
low power clock crystals for this frequency.

A breakthrough solution is the Virtual High-resolution
Time (VHT) algorithm [19]. It resynchronizes a high fre-
quency timer, which is turned off in deep sleep, while a
low frequency timer is always active. Although this solution
has been used to achieve high synchronization precision
and ultra-low energy consumtion [22], its implementation
requires hardware support that is uncommon in most WSN
nodes. The main requirements for implementing VHT are
two: a high frequency timer clocked with a stable (e.g. clock
crystal) oscillator, and hardware support for timestamping
an edge of the low frequency clock with the high frequency
timer. In [19] this problem was solved through hardware
modifications to an existing node and also proposed a
hardware implementation in VHDL. Although specialized
nodes appeared having this support [24], widely deployed
nodes [6], such as the TelosB [16], are not capable enough
to implement VHT. This is not only a legacy issue, as cost
sensitive IoT applications may not have such strict timing
requirements to justify the additional cost of VHT support.
Addressing the clock synchronization problem using low
frequency clock timers is therefore a relevant research topic
that has the potential to enable low cost yet real-time capable
WSN node platforms.

To further evidence how clock synchronization with a
high and low frequency clock are two completely different

−400

−200

0

200

400

Sy
nc

.e
rr

or
[n

s]

0 200 400 600 800 1000 1200 1400
−40

−20

0

20

40

Time [s]

Sy
nc

.e
rr

or
[µ

s]

Figure 1: Experimental result showing the synchronization
error using the high frequency timer (top graph) and low
frequency timer (bottom graph) on the WandStem node.
Note the different time units on the vertical axis.

scenarios, we made a test synchronizing two nodes using
the FLOPSYNC-2 [22] scheme on the WandStem [24] WSN
node platform. This platform has support for the VHT, so
it was possible to compare the synchronization quality in
both cases, on the same hardware. The tests were performed
using a 10s synchronization period, and the reported error
samples are taken at the end of each synchronization period,
immediately before the next synchronization. The top graph
in Figure 1 shows the results with a high frequency timer,
while the bottom graph shows the low frequency timer case.
Although the high frequency timer has a resolution of 20.8ns
(indicated with the gray area), the standard deviation of the
clock synchronization error in the reported test is 164ns
(dashed lines in the figures), a significantly higher value. The
reason for this is that at high frequencies, jitter caused by
the oscillator phase noise, and the packet transmission jitter
at the radio transceiver are greater than the quantization-
induced error [22]. On the contrary, when the low frequency
timer is used, the standard deviation of the error is 24.6µs
(indicated with the dashed lines), which is lower than the
30.5µs timer resolution (indicated with the gray area). More
significantly, the error shows a regular pattern composed of
only three values: 0 and ±1 timer tick, highlighting that the
quantization induced error is greater in magnitude than the
noise sources.

The clock synchronization algorithm proposed in this
paper includes a switching control scheme that can minimize
the effect of quantization on the clock synchronization error.
The proposed solution is applicable in all cases where
quantization is the major source of synchronization error.

III. FLOPSYNC-QACS

After detailing the sources of quantization in clock syn-
chronization, we here formalize the problem and introduce
FLOPSYNC-QACS, our proposed switched control scheme
that minimizes the effect of quantization.

A. Sources of quantization

When we analyze the quantization problem from an
hardware perspective, it is clear that the hardware counter
is incremented on the active edge of the clock signal,
and asynchronous events – such as the packet reception
one – can occur at any time between two active edges.
In this case the reported timestamp will naturally be the
value of the counter incremented by the previous edge.
Thus, the hardware timestamping operation works like the
mathematical floor operation. A second quantization occurs
when the output of the clock correction algorithm, which is
computed using floating point or fixed point numbers, has to
be converted back to the tick resolution. In this case, since
the conversion is done by a software routine, it is possible
to choose the quantization function, for example using the
mathematical rounding operator.

From a mathematical perspective, a quantizer maps a real-
valued function into a piecewise constant function taking
values in a discrete set. Here quantizers are either rounding
operators (for the corrective actions) or floor operators (for
the measured synchronization error). Given a real number
z, we denote with sign (z) the sign function, with bzc the
floor operator, and with ρ (z) the rounding operator, with
ρ (0.5) = 1, and ρ (−0.5) = −1. We also define the
rounding error of a real number z as ∆z := z−ρ (z). Notice
that the rounding error of a real number z is always bounded
as |∆z| ≤ 1

2 . Finally, note that given two real numbers
a ∈ R, and b ∈ R, we have that ρ (ρ (a) + b) = ρ (a)+ρ (b).

B. Problem formalization

The problem of time synchronisation in a distributed
system is a well known and studied problem in computer
science [2, 5, 8, 14], and has recently gained a lot of attention
in control theory as well [7, 10]. We here consider the setting
of a WSN where a the master node sends a synchronization
signal with a fixed period T to all the slave nodes in the
network. Then, synchronization is achieved by controllers
of each slave node that communicates with the master and
receives the synchronization packets every T seconds.
If a flooding scheme like glossy [3] is used for the transmis-
sion, it can be assumed that the medium access contention
does not introduce uncertainty in the transmission time.

The synchronization error at time kT , k ∈ N, can be
defined as:

e(k) := t(k)− t̂(k),

where t(k) denotes the master node clock at the k-th
synchronization, and t̂(k) is the slave estimate of the master
node’s clock. Since the error accumulates over time, during
each time interval [kT, (k + 1)T] the synchronization error
dynamics can be described as:

e(k + 1) = e(k) + d(k), (1)

where d(k) is a disturbance that accounts for different
factors influencing the synchronization error. Notice that the
time scale of the considered dynamics is defined by the
synchronization period T . In general, the disturbance over a
synchronization period can be characterized as:

d(k) = −
∫ (k+1)T

kT

δf (τ)

fo
dτ, (2)

where fo is the nominal frequency of the slave clock
oscillator, and δf (t) the (continuous-time) variation of that
frequency caused by manufacturing tolerances, aging, ther-
mal stress, and short-term jitter. The minus sign in (2) is
because a positive δf makes the local clock advance, while
for convenience (1) contains d(k) with the plus sign.

Notice that all the uncertainty is confined in the distur-
bance term d(k), and based on model (1), a controller can
be design to reject d(k). Whence d(k) is characterized, a
simple control policy can be implemented with a very little
computational overhead, like, e.g., [9], in contrast to other
classical alternatives. The various sources of disturbances
can be counteracted by considering the different time scale
of their contributions:

• Tolerances due to imperfections in the manufacturing
process of the quartz crystals result in a constant
frequency error δf .

• Aging acts on a time scale of days while reasonable
values for the synchronization period T are seconds
or minutes, hence it can be thought of as a constant
disturbance contribution, and eliminated at steady state
by integral control.

• The temperature dependence of clock crystal oscillators
is one of the most common source of variable distur-
bance [19]. In a wide variety of operating conditions
a WSN undergoes either abrupt but sporadic thermal
stress episodes, or environmental variations that are
slow compared to the thermal dynamics of typical
nodes. The proposed controller can be extended to
compensate for abrupt thermal variation episodes [22].
In between such events, however, this disturbance con-
tribution can be considered constant as well.

• Short-term jitter acts on the time scale of electronic
noise, hence being too fast to compensate, and therefore
providing the ultimate bound for the achievable syn-
chronization quality. However, here we are addressing
the case where quantization resolution a greater source
of error than jitter, as shown in Section II.

The above characterization of the disturbance contribu-
tions allows us to focus on optimizing the controller for the
case when d is constant, although the proposed controller
will obviously still be able to cope with variable distur-
bances.

R ρ (·) P b·cu ρ (u)+ e

bec

d

+

Figure 2: FLOPSYNC control scheme with quantizers.

C. The FLOPSYNC control scheme

In [9], FLOPSYNC was proposed as a viable solution for
clock synchronization in WSNs. FLOPSYNC introduces as
control variable a corrective action u on the synchronization
error, which is then quantized. Hence, (1) becomes:

e(k + 1) = e(k) + ρ (u(k)) + d(k). (3)

In the FLOPSYNC scheme, u is determined from the
quantized measurements of the synchronization error bec,
by a discrete-time Proportional Integral (PI) controller as:

u(k + 1) = u(k) + be(k)c − α be(k + 1)c (4)

where α is the only design parameter. Figure 2 shows the re-
sulting control scheme, where P is the dynamic process (3),
and R is the controller (4). Plugging (4) into (3), we get
that:

e(k + 1) = e(k) + d(k)

+ ρ (u(k − 1) + be(k − 1)c − α be(k)c)
In [9] the FLOPSYNC control scheme was designed by
ignoring the quantizers. More specifically, when no quan-
tization were in place, and inverting (3), leads to:

e(k + 1) = (1− α)e(k) + e(k − 1) + u(k − 1) + d(k)
= (2− α)e(k) + d(k)− d(k − 1)

which corresponds to an asymptotically stable linear system
if 1 < α < 3. For a constant disturbance, i.e., d(k) =
d(k−1) = d, the scheme guarantees the convergence of the
synchronization error to zero, with a rate of convergence that
depends on the parameter α.

When quantizers are in place, on the other hand, the
synchronization error still converges towards zero, but, intu-
itively, it is not possible to distinguish errors below the clock
resolution. Moreover, the disturbance d is integrated over
time according to (3). The integrated residual disturbance
is not detectable on the quantized output bec as long as
it is smaller than the clock resolution due. This causes
the controller to react whenever the quantization of the
integrated residual disturbance switches to 1 or −1, steering
the controlled system to a limit cycle of amplitude 2. An
example of this effect is shown in Figure 3, with α = 1.5,
d(k) = d =

√
2, and the control system initialized as

e(0) = 2, u(0) = 0.
This paper proposes a switched control scheme that re-

duces the effect of quantization, steering the system to a

0 5 10 15 20 25 30
−1
0

1

2

3

k

Sy
nc

.e
rr

or e(k) be(k)c

Figure 3: The effect of quantization in the FLOPSYNC
synchronization scheme.

limit cycle of an amplitude that is half of the one obtained
with the FLOPSYNC control scheme in [9]. The proposed
solution has the additional advantage of sticking to simple
controllers that lead to an easily implemented system in an
embedded device, with very low overhead.

D. The proposed switched control scheme

In this section, we propose a switched variant of the
classical FLOPSYNC controller which improves its perfor-
mance in the presence of quantization effects, and it is called
FLOPSYNC-QACS.

The controller is composed by a linear part:

ũ(k + 1) = be(k)c − α be(k + 1)c (5)

and of a switched part where the control action ũ is set as
the input to the following modified discrete-time integrator:{

u(k + 1) = u(k) + ũ(k + 1), if be(k + 1)c 6= 0

u(k + 1) = ρ (u(k)) + ũ(k + 1), if be(k + 1)c = 0

that finally computes the actual corrective action u, based
on the quantized synchronization error measurement bec.

Figure 4 shows the resulting switched control scheme with
R̃ being (5), P being the synchronization error dynamics (3),
and z−1 being a unit delay operator in discrete time.

R̃ ρ (·) P b·c

z−1

ũ + u ρ (u)+ e

bec

+

d

+

Figure 4: Control scheme of FLOPSYNC-QACS.

The switched control system dynamics is characterized by
e as per (3), and by u, that can is computed as:

• if be(k + 1)c = be(k) + ρ (u(k)) + d(k)c = 0, then:

u(k + 1) = ρ (u(k)) + be(k)c (6)

• if be(k + 1)c = be(k) + ρ (u(k)) + d(k)c 6= 0, then:

u(k + 1) = u(k) + be(k)c
− α be(k) + ρ (u(k)) + d(k)c (7)

Figure 5: One of the WandStem WSN nodes that was used
to test the FLOPSYNC-QACS scheme.

Apparently, the computational complexity of the pro-
posed solution is limited to the simple measurement of
be(k) + ρ (u(k)) + d(k)c = be(k + 1)c, and, based on the
measured value, compute the corrective action as (6) or (7).
As the following experiments will show, the proposed solu-
tion is able to reduce the amplitude of the limit cycle from
2 to 1, independently of the value of α.

IV. EXPERIMENTAL AND SIMULATION RESULTS

We implemented the FLOPSYNC and FLOPSYNC-
QACS scheme on WSN nodes composed of WandStem [24]
nodes, that employ ARM Cortex-M3 microcontrollers run-
ning at 48MHz, and CC2520 radio transceivers operating
in the 2.4GHz band. One of the used nodes is shown in
Figure 5. The control algorithms are implemented in C++
as an application for the Miosix1 microcontroller operat-
ing system. For our implementation, we decided to use
α = 11/8, since it preserves stability of the closed-loop
linear dynamics, and it can be easily implemented in an
embedded device with fixed-point arithmetic.

A. An experimental test

We assessed the performance of the proposed solution
in a real-world setting, where the actual disturbance acting
on the system is not known, but it can be considered
practically constant, according to the considerations in Sec-
tion III-B. Real disturbances are actually varying, but it is
safely assumed that such variability occurs at a time scale
much longer than the synchronization period, and therefore
the control scheme is able to reject them. The performed
experimental test provide experimental evidence that this is
the case.

In the test, three nodes are used. One plays the role of
the master, broadcasting synchronization packets. Out of
the other two, one runs the bare FLOPSYNC scheme, and
the other FLOPSYNC switched variant of the scheme. The
nodes are placed in an office environment, therefore exposed
to radio interference from local wireless networks, and to
temperature variations like those encountered in a typical
indoor setting with standard climatization.

1Sources available at http://miosix.org

−2

−1

0

1

2

be
(k
)c

FLOPSYNC

0 2 4 6 8
−2

−1

0

1

2

time (hours)

be
(k
)c

FLOPSYNC-QACS

Figure 6: Experimental results comparing FLOPSYNC and
FLOPSYNC-QACS.

The synchronization period T is 10 seconds. The nodes’
hardware timers have a measurement and actuation res-
olution – the tick – of 30.5µs, which is the source of
quantization, and it is normalized to 1. The control parameter
α was set to 11/8. In order to show the long-term behavior
of the system in the face of slowly varying disturbances, the
experiment was set to last 10 hours.

Figure 6 shows both the quantized synchronization error
in ticks for FLOPSYNC (left column) and FLOPSYNC-
QACS (right column). The horizontal axes report the ex-
periment time in hours. The [−1, 1] synchronization error
range is highlighted in both top plots with a gray area.

Notice that in the case of FLOPSYNC, the gray area is
practically covered by the quantized synchronization error
trajectory. This is because the quantized synchronization
error oscillates between {−1, 0, 1} with an excursion of
amplitude 2.

In the case of FLOPSYNC-QACS, the quantized synchro-
nization error first switches between {−1, 0}, then, after a
brief transient, it switches between {0, 1}. For practically
the whole experiment, the quantized synchronization error
has an excursion of amplitude 1. More in details, the error
lies in the {−1, 0} or {0, 1} range for 99.3% of the time.

We compare the two results by computing the Root
Mean Square (RMS) performance index of the quantized
synchronization error. The RMS computed in the case
of FLOPSYNC is 0.878, while the RMS computed for
FLOPSYNC-QACS is 0.499, i.e., about half than with bare
FLOPSYNC. We can conclude that the proposed control
scheme results in a lower RMS error magnitude also in
a practical setting, where the disturbance is not rigorously
constant.

Analyzing a bit more in detail the obtained result of
FLOPSYNC-QACS, after about 8 hours and 30 minutes,
the quantized synchronization error starts switching between
the values {−1, 0, 1}, and then settles to a new regime,
switching only between 0 and 1. This type of behavior is

−2

0

2

be
(k
)c

0 50 100 150 200 250 300
0

0.5

1

k

D
is

tu
rb

an
ce d(k) ρ (d(k))

Figure 7: Replication of the experimental results with sim-
ulated dynamics.

probably explained considering that the disturbance is not
exactly constant, but it might have a slowly varying behavior.

In order to better investigate what caused the transi-
tion, we performed a simulation study trying to replicate
the same behavior with a slowly changing disturbance.
Figure 7 shows the quantized synchronization error, and
the disturbance acting on the system with its quantization.
Remember that the corrective action is rounded, and it needs
to compensate the quantized disturbance, i.e., in principle
a perfect compensation is u(k) = − ρ (d(k)). Therefore,
the transition between the two regimes happen exactly at
the when the disturbance crosses the 0.5 threshold of the
rounding. More specifically, we selected a disturbance that
starts as a constant d = d1 = 0.6, i.e., ∆d = −0.4 < 0.
Then from time k = 100 the disturbance slowly decreases
linearly up to the value d = d2 = 0.4, i.e., ∆d = 0.4 > 0.
Finally, the disturbance keeps constant and equal to d2. The
simulation produces exactly the same behavior that can be
observed in the experimental data of Figure 6. We can thus
conclude that the behavior that appeared in the experimental
results may have been caused by a disturbance similar to the
one presented in the bottom graph of Figure 7.

V. CONCLUSIONS AND FUTURE WORK

A control-based time synchronization mechanism for
WSNs, called FLOPSYNC-QACS, was proposed for re-
ducing the degradation effect due to quantization of both
corrective actions and synchronization error. FLOPSYNC-
QACS was implemented in a real WSN, and experimental
results back up the proposed solution.

As a future work, we plan to provide formal guarantees
on the obtainable performance of the proposed approach,
like, for example, convergence time of the algorithm. We
also plan to include a more thorough discussion and ex-
perimental analysis of the power consumption obtained
with the proposed methodology, compared to state-of-the-
art approaches.

REFERENCES

[1] N. Aakvaag et al. “Timing and Power Issues in Wireless Sensor
Networks: An Industrial Test Case”. In: ICPP. 2005, pp. 419–426.

[2] F. Cristian. “Probabilistic clock synchronization”. In: Distributed
Computing 3.3 (1989), pp. 146–158.

[3] F. Ferrari et al. “Efficient network flooding and time synchronization
with Glossy”. In: IPSN. 2011, pp. 73–84.

[4] Gartner. http://www.gartner.com/newsroom/id/3165317. 2015.
[5] R. Gusella and S. Zatti. “The accuracy of the clock synchronization

achieved by TEMPO in Berkeley UNIX 4.3BSD”. In: IEEE Trans.
Soft. Eng. 15.7 (1989), pp. 847–853.

[6] V. Handziski et al. “TWIST: A Scalable and Reconfigurable Testbed
for Wireless Indoor Experiments with Sensor Networks”. In: REAL-
MAN. 2006, pp. 63–70.

[7] J. He et al. “Time Synchronization in WSNs: A Maximum-Value-
Based Consensus Approach”. In: IEEE Trans. Aut. Cont. 59.3
(2014), pp. 660–675.

[8] L. Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565.

[9] A. Leva and F. Terraneo. “Low power synchronisation in wireless
sensor networks via simple feedback controllers: the FLOPSYNC
scheme”. In: ACC. 2013, pp. 5017–5022.

[10] A. Leva et al. “High-Precision Low-Power Wireless Nodes’ Syn-
chronization via Decentralized Control”. In: IEEE Trans. Cont. Syst.
Tech. 24.4 (2016), pp. 1279–1293.

[11] R. Lim et al. “Time-of-Flight Aware Time Synchronization for
Wireless Embedded Systems”. In: EWSN. 2016, pp. 149–158.

[12] G. Mao et al. “Wireless sensor network localization techniques”. In:
Comp. Netw. 51.10 (2007), pp. 2529–2553.

[13] M. Maróti et al. “The Flooding Time Synchronization Protocol”. In:
SenSys. 2004, pp. 39–49.

[14] D. L. Mills. Network Time Protocol (NTP). Tech. rep. RFC-958.
Network Working Group Report, 1985.

[15] S. Ping. Delay Measurement Time Synchronization for Wireless Sen-
sor Networks. Tech. rep. IRB-TR-03-013. Intel Research Berkeley
Lab, 2003.

[16] J. Polastre et al. “Telos: enabling ultra-low power wireless research”.
In: IPSN. 2005, pp. 364–369.

[17] F. Ren et al. “Self-correcting time synchronization using reference
broadcast in wireless sensor network”. In: IEEE Wireless Comm.
(2008).

[18] T. Schmid et al. “Temperature compensated time synchronization”.
In: IEEE Embedded Systems Letters 1.2 (2009), pp. 37–41.

[19] T. Schmid et al. “High-resolution, Low-power Time Synchronization
an Oxymoron No More”. In: IPSN. 2010, pp. 151–161.

[20] R. Silva et al. “Mobility in wireless sensor networks – Survey and
proposal”. In: Comp. Comm. 52 (2014), pp. 1–20.

[21] F. Sivrikaya and B. Yener. “Time synchronization in sensor net-
works: a survey”. In: IEEE Network 18.4 (2004), pp. 45–50.

[22] F. Terraneo et al. “FLOPSYNC-2: Efficient Monotonic Clock Syn-
chronisation”. In: RTSS. 2014, pp. 11–20.

[23] F. Terraneo et al. “Reverse Flooding: Exploiting Radio Interference
for Efficient Propagation Delay Compensation in WSN Clock Syn-
chronization”. In: RTSS. 2015, pp. 175–184.

[24] F. Terraneo et al. “Demo: A High-Performance, Energy-Efficient
Node for a Wide Range of WSN Applications”. In: EWSN. 2016,
pp. 241–242.

[25] Y. C. Wu et al. “Clock Synchronization of Wireless Sensor Net-
works”. In: IEEE Sign. Proc. Mag. 28.1 (2011), pp. 124–138.

[26] S. Yoon et al. “Tiny-sync: Tight time synchronization for wireless
sensor networks”. In: ACM Trans. Sens. Netw. (2007).

