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Abstract: Generating energy from combustion is prone to pollutant formation. In energy systems
working under non-premixed combustion mode, rapid mixing is required to increase the heat release
rates. However, local extinction and re-ignition may occur, resulting from strong turbulence–chemistry
interaction, especially when rates of mixing exceed combustion rates, causing harmful emissions
and flame instability. Since the physical mechanisms for such processes are not well understood,
there are not yet combustion models in large eddy simulation (LES) context capable of accurately
predicting them. In the present study, finite-rate scale similarity (SS) combustion models were
applied to evaluate both heat release and combustion rates. The performance of three SS models was
a priori assessed based on the direct numerical simulation of a temporally evolving syngas jet flame
experiencing high level of local extinction and re-ignition. The results show that SS models following
the Bardina’s “grid filtering” approach (A and B) have lower errors than the model based on the
Germano’s “test filtering” approach (C), in terms of mean, root mean square (RMS), and local errors.
In mean, both Bardina’s based models capture well the filtered combustion and heat release rates.
Locally, Model A captures better major species, while Model B retrieves radicals more accurately.

Keywords: heat and combustion rates; scale similarity (SS) based sub-grid scale (SGS) combustion
models; large eddy simulation (LES); a priori direct numerical simulation (DNS) analysis; syngas
jet flame

1. Introduction

Combustion of fossil fuels is still the main source of energy production. However, generating
energy from combustion of conventional sources is prone to pollutant formation and emissions.
Towards the down-sizing of novel energy systems, rapid mixing process is required in those
operating under non-premixed combustion mode to increase heat release rates. Many engineering
applications take the advantage of such turbulent combustion, which enhances the mixing of fuel
and oxidizer. However, local extinction and subsequent re-ignition processes resulting from strong
chemistry–turbulence interaction may occur, especially when rates of mixing exceed combustion
rates, causing harmful emissions and flame instability. Extinction and re-ignition are unsteady
phenomena which exhibit finite-rate chemistry effects. Since the physical mechanisms for such
processes are not yet fully understood, the research is still ongoing on the subject. Due to increased
computational power available today, computational fluid dynamics (CFD) is a promising tool to
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study such processes. Reynolds Averaged Navier-Stokes (RANS) simulations cannot be used to study
complex phenomena, such as extinctions and re-ignitions, because the equations are averaged in time.
Direct numerical simulation (DNS) is unfortunately limited up-to-now to low Reynolds’ numbers and
simple computational setups, because it is computationally very demanding. However, DNS results
can be utilized to develop/assess large eddy simulation (LES) models. LES predicts the unsteady
behavior of the large scales of the flow while small scales need to be modeled. Detailed chemistry can
be directly incorporated into LES of reactive flows by solving the transport equations of the filtered
species. The transport equations for species k = 1 . . . Ns − 1, with Ns the total number of species in the
kinetic mechanism, can be written as:

∂(ρY f
k )

∂t
+

∂

∂xi
(ρu f

i Y f
k ) =
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∂xi

(
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))
+

.
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where (·) represents filtered quantity in LES and (·) f
a Favre filtered quantity, defined as ρ(·)/ρ.

In Equation (1), ρ is the density of the mixture, Dk the molecular diffusion coefficient, Y f
k and u f

i
the Favre filtered mass fraction of species k and the velocity component in ith direction, respectively,
while

.
ωk expresses the filtered production/consumption rate of species k, which needs to be modeled.

Given a chemical kinetic mechanism of Ns chemical species and NR reactions, the formation rate
of species k,

.
ωk(ϕ), where ϕ is the composition vector contains mass fractions, (Y1, Y2, . . . , YNS),

temperature (T)/enthalpy (h) and pressure (p), is given by [1]:

.
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where Wk is the molecular weight of species k, and υ′kj and υ
′′
kj are forward and backward stoichiometric

coefficients of species k in reaction j, respectively. RRj is the reaction rate of reaction j. KFj and KRj are
the forward and backward kinetic constants of reaction j, respectively.

The problem of combustion closure in LES is to model the filtered nonlinear term
.

ωk(ϕ) in
Equation (1) using filtered values ϕ available from LES solution itself. Comprehensive reviews of
available LES combustion models can be found in [2,3]. Among different categories of available
combustion models for LES, in finite-rate combustion models, direct detailed chemistry can be
utilized by either directly solving the transport equations of species and modeling

.
ωk, or solving the

transport equations of joint velocity/composition probability density functions (PDFs) and modeling
unclosed mixing term. The most adopted finite-rate combustion models are the thickened flame model
(TFM) [4,5], the transported PDF (TPDF) models [6,7], the eddy dissipation concept (EDC) model [8],
the Partially Stirred Reactor (PaSR) model [9,10], and the scale similarity (SS) models [11,12], each
having its own pros and cons. In particular, the TFM was designed and developed mainly for turbulent
premixed flames. Even though TPDF models are attractive in treating both premixed and non-premixed
flames with closed

.
ωk, their main drawback lies on their computational burden. The EDC and PaSR

models were originally proposed and developed for RANS simulations (see, e.g., [13–15]). Although
they have been used recently in LES [9,16–19], there are a few studies on the extension of these models
to the LES framework. The focus of the present study is on SS models and their applications in
predicting combustion and heat release rates.

In their general form, SS models are type of soft deconvolution methods [20], which use the
first order approximation to reconstruct the exact field based on filtered fields. More advanced
deconvolution methods are still under development for reactive flow applications [21,22].
First, Bardina et al. [23] proposed a SS model for based sub-grid scale (SGS) stress tensor. Thereby,
the exact velocity field in the SGS tensor is replaced by its “grid filtered” counterpart resulting in
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“double grid filtered” quantities, which are exploited to model SGS stress tensor. In other words,
the SGS stress tensor is replaced by the modified Leonard’s stress in Germano’s decomposition [24].
Liu et al. [25], based on decomposition of the velocity field in logarithmic bands, proposed using
“test grid filtered” instead of “double grid filtered” quantities in the definition of SGS stress, which
is explained in the next sections. The ability of SS models in capturing the locations where the
contribution of SGS stress field is high has been proven in many studies using both a priori analysis
based on DNS data (e.g., [23]), as well as experimental data (e.g., [25]). However, the drawback of
the original models is their slight dissipative character. This can be explained by considering that SS
models are actually low order soft deconvolution models. The issue comes from the fact that in LES
the information lost by inherent grid filter is un-recoverable [26]. Thus, each soft deconvolution model
needs a complementary model to handle the lost data. This is the idea behind “mixed models”, which
take the advantages of both SS models and eddy viscosity type models.

In the context of LES of reactive flows, DesJardin and Frankel [11] proposed to use the SS
idea to close the filtered formation rate of species

.
ωk(ϕ) in Equation (1). They reported both

a priori and a posteriori assessments of the method using a two-dimensional spatially developing
non-premixed jet DNS database with one-step chemistry. The results (e.g., moments of product
mass fraction and reaction rates) using the proposed SS models were in reasonable agreement with
DNS data. Potturi and Edwards [27] also tested this model in LES of DLR and UVa combustors,
but they found no improvement compared to simulation without SGS combustion model for UVa
combustor. Jaberi and James [12] extended this method to dynamically evaluate the similarity
coefficient. They tested the model using a DNS database of isotropic decaying compressible reacting
flow and achieved results with acceptable accuracy. SS concept has further been used to develop
LES combustion models in premixed flames to postulate the filtered flame surface density (FSD) in
filtered progress variable balance equation [28,29]. It is evident that the direct application of SS idea in
LES of reactive jets is limited in the literature to the early 2D DNS/LES spatial jet of Desjardin and
Frankel [11] and 3D DNS/LES of isotropic decaying reactive flow of Jaberi and James [12], both with
small LES grid filters (∆) (∆/∆DNS = 3 in [11] and ∆/∆DNS = 4 in [12], where ∆DNS is the grid size used
in the DNS) and single step chemistry.

In the present study, a skeletal mechanism was used to a priori assess the performance of two
non-dynamic SS models (proposed in [11]) and the one developed following Liu and coworkers’ [25]
idea (for SGS stress fields), using 3D DNS data. The selected SS models were employed in a more
challenging test case employing large filter widths (∆/∆DNS = 8, 12, 18) to assess their capabilities in
the prediction of combustion and heat release rates along with the extinction and re-ignition phases of
a temporally evolving syngas jet flame for which a DNS database is available. This DNS database is
introduced in Section 2, while the SS models to be used are outlined in Section 3. An a priori analysis
and the assessment metrics are explained in Section 4. The results are presented and discussed in
Section 5. The paper is concluded in Section 6.

2. Direct Numerical Simulation Database

The numerical experiment used in the present work is the DNS of temporal evolution of syngas
jet flame (the so-called H-case) [30]. As jets are typically encountered in various practical energy
systems applications (combustors, furnaces, cooling devices, etc.), this configuration is representative
of shear-driven turbulent flows that especially aims at maximizing the residence time of the fluid in the
domain while enhancing the mixing process. This flame first experiences extinction up to 20tj and then
re-ignition. Here, tj is “transient” jet time. It is denoted as tj = H/∆U = 5 µs [30], with H = 1.37 mm
being the height of the initial fuel stream and ∆U = 2 × 138 m/s the difference of fuel (CO/H2) and
oxidizer (O2/N2) stream velocities. The adopted chemical kinetic mechanism has 11 species and 21
elementary reactions [30]. The initial jet Reynolds’ number based on initial fuel width is 9079 and the
maximum turbulent Reynolds’ number achieved in the simulation is Ret = 318. The computational
domain is a box with dimension 12H × 14H × 8H in x (stream-wise), y (transverse), and z (span-wise)
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directions, respectively. The mesh used is 864 × 1008 × 576, which results in a uniform grid size
of ∆DNS ≈ 19 µm. Periodic boundary conditions are used in x and z directions so that the flame
is statistically 1D, and xz planes at each y location can be considered as statistically homogenous
planes (see Figure 1a). In Figure 1b, the Favre averaged mixture fraction colored by Favre averaged
temperature during the simulation is shown. As stated earlier and evident in Figure 1b, the flame
experiences the transient phenomena of extinction and re-ignition. Figure 1b also reports, represented
by vertical lines, the times which are used in the present study (20tj, 35tj) for detailed analyses. It can
be inferred that the flame reignites in partially premixed mode. Figure 1c shows the normalized energy
spectrum (normalized by Favre averaged Kolmogorov length scale, η

f
, and Favre averaged turbulent

dissipation rate ε f ) obtained by velocity fluctuations on the center plane at t = 20tj. This figure
reveals the existence of the inertial range with −5/3 law in the current case. The examination of other
time instants showed the same behavior. This implies that the inertial range exists for the current
configuration although it is not distinctly separated from the dissipative scales, which is common
in such a low/medium Reynolds number DNS. Note that the test case has been used previously for
assessment of LES combustion/mixing models [31–37].
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Figure 1. (a) The schematic of the temporal jet direct numerical simulation (DNS) case, including the
contours of heat release rate (colored from black to white) and the mass fraction of OH radical (colored
from blue to red) at the maximum extinction time (t = 20tj). Local extinction events on the shear
layers are observed with low OH mass fraction and the corresponding low heat release rate; (b) favre
averaged mixture fraction (Z f ) in the whole simulation time colored by Favre averaged temperature.
The vertical red lines are the time instants analyzed in the current study; and (c) normalized energy
spectrum on the center plane (black line) and −5/3 scaling law shown by dashed red line; κ is the wave
number, η

f
, Favre averaged Kolmogorov length scale and ε f Favre averaged turbulent dissipation rate.
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3. Scale Similarity Closures for Reactive Flows

The first model of SS type, originally called scale similarity resolved reaction rate model (SSRRRM)
(hereafter denoted as Model A), was proposed by Desjardin and Frankel [11]. In this model:

.
ω

A
(ϕ) =

.
ω(ϕf ) + C∆

A L .
ω

A , (4)

L .
ω

A =
.

ω(ϕf )− .
ω(

=
ϕ

f
), (5)

where C∆
A is a coefficient which can be evaluated dynamically. In the present study, a non-dynamic

model has been utilized, where C∆
A is set to one. L .

ω
A stands for the residual field representing the

SGS effects. If one filters Equation (4) and uses the same decomposition for the residual field as in
Equation (4), it ends in Equation (5) for the residual field in the first filtering level. The “double grid

filtered” field (
=
ϕ), or more specifically the “double grid Favre filtered” field

=
ϕ

f
, is introduced (as

explained in the next section).
The second model, originally called scale similarity filtered reaction rate model (SSFRRM)

(hereafter denoted as Model B), stemmed from the same authors [11] and uses the filtered formation
rate of filtered fields instead of resolved formation rates in the first decomposition step which results
in Equation (6):

.
ω

B
(ϕ) =

.
ω(ϕf ) + C∆

B L .
ω

B , (6)

where C∆
B is the coefficient of similarity in Model B, assumed to be equal to one in the current analysis.

After applying the same procedure previously described to find an expression for the residual field
(L .

ω
B), the following equation is obtained:

L .
ω

B =
=.
ω(ϕf )−

=.
ω(

=
ϕ

f
). (7)

Apparently, the “double grid filtered” field is introduced for both original fields and the Arrhenius’
formation rates. In the next section, the procedure to compute these fields is explained in details.
Liu et al. [25] proposed using a filter (say ∆̂) larger than the grid filter (∆) in the similarity model
formulation for SGS stress field. If one uses this idea and extends it to formation rates of species, one
gets the non-dynamic Model C as:

.
ω

C
(ϕ) =

.
ω(ϕf ) + C∆

C L .
ω

C , (8)

L .
ω

C =
.̂

ω(ϕf )− .
ω(ϕ̂

f
), (9)

where ∆̂ = 2∆. The non-dynamic similarity coefficient (C∆
C) is set equal to one. As can be observed, in

Model C, the “test filtered” (
.̂

ω) and “test grid filtered” fields (ϕ̂f
) are introduced.

For comparison purposes, the “quasi laminar” or “no model” approach is also considered as

a reference. In “no model” approach, SGS effects are neglected so that
.

ω
noModel

(ϕ) =
.

ω(ϕf ).

4. A Priori Assessment and Evaluation Criteria

4.1. A Priori Assessment of Models Based on DNS Data

Due to development of massively large computational tools, DNS of reactive flows in low-medium
range Reynolds number with detailed chemistry has become feasible. Such DNS data can be utilized
to develop/assess combustion models in LES of reactive flows. Among the two main ways to utilize
DNS data, namely a priori and a posteriori testing [38], an a priori analysis was adopted in this
study by comparing modeled production/consumption and heat release rates with directly filtered
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production/consumption and heat release rates from DNS data. The modeled rates use DNS filtered
quantities. With this approach, the uncertainties regarding any other models (e.g., turbulence models
for stress field) are skipped and one can focus directly on the performance of the combustion model
itself. The challenge in a priori analysis is that it is unable to predict the time properties of sub-grid
closures [39]. A priori analyses have been performed in many previous works to study the performance
of combustion SGS models [34,40–44]. SS combustion models have been a priori tested in 2D DNS/LES
of a spatial jet [11] and 3D DNS/LES of isotropic decaying reactive flow [12], both with small LES grid
filters ∆ (∆/∆DNS = 3 in [11] and ∆/∆DNS = 4 in [12]) and single step chemistry. In the current study,
SS models (introduced in the previous section) were tested using large filter widths, in a challenging
test case [30], experiencing high level of extinction and then re-ignition, relying on a skeletal chemical
mechanism. In particular, since the formation rates of both major and minor species are provided by
DNS, it is interesting to assess the models in predicting species formation rates of both major and
radical species.

4.2. Explicit Filtering

First, the formation rates provided by DNS data are explicitly filtered in space using a top-hat
filter with ∆ = 8, 12, and 18 times DNS grid size to extract the exact

.
ω(ϕ). A filtered quantity q is

computed as:
q =

y
q(X′)F(X−X′)d3X′. (10)

Equivalently, a Favre filtered quantity is given by:

q f =
1
ρ
(
y

ρq(X′)F(X−X′)d3X′), (11)

where F(X) represents the 3D filter kernel which is, in this study, selected to be a top-hat filter:

F(X) = F(x1, x2, x3) = F(xj) =

{
1

∆3 i f
∣∣xj
∣∣ ≤ ∆

2
0 otherwise

. (12)

Therefore, Equation (10) leads to:

q =
1

∆3

∆/2y

−∆/2

q(X)d3X′. (13)

A top-hat filter corresponds to the filter implicitly associated with the discretization using centered
finite difference or finite volume codes which are used more often in LES [45]. The integral in Equation
(13) is computed using the trapezoidal rule. In 1D, the filtered quantity q in point n is computed by:

q1D
n =

1
∆LES

[
∆DNS

2

(
q(xn−∆/2) + 2 ∑l=n+N/2−1

l=n−N/2+1 q(xn) + q(xn+∆/2)
)]

, (14)

where ∆ is the filter width. The 3D filtered data are computed by three consecutive applications
of Equation (14) in x, y, and z directions, respectively. The “test grid filtered” data are computed
by application of the filter in already filtered fields using a kernel with ∆̂ = 2∆. After the data
are explicitly filtered, they are interpolated to the coarse LES mesh. The scalar fields of DNS (ϕk)
is first filtered/Favre filtered and then interpolated to the LES mesh. These filtered/Favre filtered
interpolated data are ϕk or ϕ

f
k , which are used to evaluate SS combustion models proposed in Section 3.

The required thermo-chemical properties of the filtered quantities including the new formation rates
terms in SS models are computed using the OpenSMOKE++ [46] framework. For the “double grid
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filtered” data, the method proposed in [47] is employed. In 1D the “double grid filtered” data in point
n are given by:

=
q

1D
n =

1
8
(qn+1 + 6qn + qn−1), (15)

where n + 1 and n− 1 are two neighboring points. The 3D filtered data are computed by 3 consecutive
applications of 1D filters in x, y and z directions.

In Figure 2a, the location of the spectral cutoff filters with the same filter width as in top-hat
kernel is shown on a log-log diagram of the compensated energy spectrum. The locations of the cut off
filters lie in the inertial range, which is evident by the plateau in the compensated energy spectrum.

In Figure 2b, the fraction of resolved Favre mean turbulent kinetic energy (TKE) is depicted
using different filter widths. It is seen that using ∆/∆DNS = 8, more than 80% of the TKE is
resolved. This fraction is reduced by increasing the filter width to 70% (∆/∆DNS = 12) and 60%
(∆/∆DNS = 18). This allows concluding that using the two larger filter widths is equivalent to
performing very-large-eddy simulation (VLES), which is common in practical applications. The reason
for applying larger filter widths compared to previous works on the same case (see [32]) is that using
∆/∆DNS = 8 in the re-ignition phase, when the flame is interacting with the decayed turbulence,
the “no model” approach performs well. This means that very little can be gained by combustion
models. Thus, in this situation, the test is not a challenging one to assess combustion models. This is
discussed in more detail in Section 5.2.
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4.3. Assessment Criteria

The first and second moments of the physical quantities are used as first metric for comparing
the modeled and exact field by DNS data. Since two homogenous stream-wise (x) and span-wise (z)
directions exist, the first moment is defined as the planar average (on xz planes) at different crosswise (y)
heights. The average is denoted by (·). The second moment is the “root mean square (RMS)”, which is
computed for an arbitrary quantity “q” as:

qRMS =

√
(q− q)2. (16)

Furthermore, to sum-up the local incurred errors and get one value from the whole sample space,
the cumulative relative error is defined as below:

ε =
‖ .

ωk
model

(ϕf )− .
ωk(ϕ)‖2

‖ .
ωk(ϕ)‖2

, (17)

where ‖.‖2 is the L-2 norm with
.

ωk
model

(ϕf ) the estimator and
.

ωk(ϕ) the exact filtered DNS data.
The sample space includes the clipped data from DNS domain. The data are confined to a region
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where Z f ≥ 0.02 with Z f expressing the Favre mean mixture fraction. This is done to avoid nearly
zero values of net formation rates in the regions outside the flame brush.

Beside the filtered reaction rates in Equation (1), the filtered heat release rate in the filtered energy
equation is also of great importance. In sensible enthalpy (hS) form, the balance of energy reads:

∂(ρh
f
s )

∂t + ∂
∂xi

(ρu f
i h

f
s ) +

1
2

∂(ρu f
j u f

j )

∂t + 0.5 ∂
∂xi

∂(ρu f
j u f

j u f
j ) =

∂
∂xi

(
ραk

∂h
f
s

∂xi
− ρ(uihs

f − u f
i h

f
s )

)
+ ∂ρ

∂t

.
Q, (18)

where αk =
λ

ρCp is the thermal diffusivity with λ the thermal conductivity. The unclosed filtered heat

release rate (
.

Q) contains the cumulative effect of all filtered species source terms and it is computed as:

.
Q = −∑Ns

k=1 ∆h0
k

.
ωk, (19)

where ∆h0
k is the enthalpy of formation of species k. To compute the exact

.
Q, the quantity

.
Q from DNS

is directly filtered. For the modeled
.

Q,
.

ωk
model

(ϕf ) from different models is used in Equation (19).

5. Results and Discussion

5.1. Combustion Rates Predictions in Extinction Time

In this section, the data at the times at which the flame experiences maximum local extinction
is analyzed. At t = 20tj, the flame is in the fully turbulent, self-similar regime [48]. In Figure 3,
the ability of the three SS models in predicting the filtered consumption rate of H2 (fuel) is compared
with the exact filtered reaction rate

.
ωH2(ϕ) obtained from DNS database. The “quasi laminar” or “no

model” approach is also shown as reference. In “no model” approach, SGS effects are neglected and
.

ω
noModel
CO (ϕ) =

.
ω(ϕf ). The analysis is done for three different filter widths. From left to right, the filter

size increases from ∆/∆DNS = 8 to ∆/∆DNS = 12 and ∆/∆DNS = 18. Top figures compare the first
moments (mean) and the bottom figures compare the second moments (RMS). The data are clipped to
a region where Z f ≥ 0.02 with Z f expressing the Favre mean mixture fraction.
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Figure 3. Production/consumption rate of H2 with units (kg/(m3s)), (-) filtered DNS, () “no model”, 

(◁) SS Model A, () SS Model B, (◇) SS Model C: (a,b,c) Mean; and (d,e,f) root mean square (RMS). 

Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18. The data are 

extracted at 𝑡 = 20𝑡𝑗. vertical dashed-blue lines: planes of maximum mean turbulent kinetic energy 

(TKE); vertical dot-dashed green lines: planes of mean stoichiometric mixture fraction; and vertical 

red lines: planes of maximum mean temperature fluctuations. 

Figure 3. Production/consumption rate of H2 with units (kg/(m3s)), (-) filtered DNS, (∗) “no model”,
(/) SS Model A, (+) SS Model B, (3) SS Model C: (a–c) Mean; and (d–f) root mean square (RMS).
Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18.
The data are extracted at t = 20tj. vertical dashed-blue lines: planes of maximum mean turbulent
kinetic energy (TKE); vertical dot-dashed green lines: planes of mean stoichiometric mixture fraction;
and vertical red lines: planes of maximum mean temperature fluctuations.
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In Figure 3, it is shown that all of the analyzed models, including the “no model” approach, can
capture qualitatively the consumption rate of fuel in terms of both mean and RMS. Looking at mean
results, in the core jet region, all models produce similar results. However, by approaching the plane
of maximum mean TKE (the vertical blue dashed line) deviations and differences become higher. For
∆/∆DNS = 8 (Figure 3a) the “no Model” approach results in slightly higher/lower mean consumption
rates. It can be observed in Figure 3a–c that the difference compared to the exact value (blue lines)
increases by increasing the filter width. For example, in Figure 3c, the “no model” approach results
start to deviate from the exact filtered DNS values in the first plane located after the central plane
(y = 0). However, by using smaller filter width (see Figure 3a), the “no model” approach can predict
the mean in a broader spatial range. Models A and B produce almost the same mean profiles and the
error is lower than that of the other two models, i.e., Model C and the “no model” approach. Looking
at RMS profiles, in Figure 3d–f, the “no model” approach reveals errors. Considering that the “no
model” approach has error both in mean and the RMS profiles, one can conclude that a model needs
to account for SGS effects. For the species here analyzed, this observation is more pronounced when
using filter widths larger than ∆/∆DNS = 8.

It should be mentioned that the same behavior is observed for other major species, where Model
C and the “no model” approach failed to predict the true spatial mean values while Models A and B
predicted almost the same mean in a good agreement with the filtered DNS data.

In Figure 4, the results of the performance of SGS models in predicting filtered formation rate of
H radical are analyzed. It should be noted that the mean formation rate of H is very low, since the
flame is experiencing high level of local extinction. The H radical is locally produced in the pockets of
burning gases and also in the burning surfaces around the extinction holes [49]. Large errors are seen
using the “no model” approach and Model C in predicting the mean

.
ωH . Considering the mean, both

Models A and B are in good agreement with DNS results. In terms of RMS in Figure 4d–f, the best
performance is obtained with Model B. It is interesting to observe how SS Models A and B can preserve
the mean even using a large filter width ∆/∆DNS = 18.
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Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18. The data are 

extracted at 𝑡 = 20𝑡𝑗. Vertical lines are the same as in Figure 3. 

In Figure 5, different models for different species and filter widths are assessed based on their 

local errors using the cumulative local error metric. First, as expected, locally, the error increases with 

increasing the filter width for all species. Second, looking at major species, it is seen that the 

performance of Models B and C is improved compared to the “no model” approach by increasing the 

Figure 4. Production/consumption rate of H with units (kg/(m3s)): (a–c) Mean; and (d–f) RMS.
Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18.
The data are extracted at t = 20tj. Vertical lines are the same as in Figure 3.

In Figure 5, different models for different species and filter widths are assessed based on their
local errors using the cumulative local error metric. First, as expected, locally, the error increases
with increasing the filter width for all species. Second, looking at major species, it is seen that the
performance of Models B and C is improved compared to the “no model” approach by increasing the
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filter width (see Figure 5a,c). It seems that, locally, the two models are more effective using larger filter
widths. The cumulative local error of the “no model” approach is not much higher than that of other
models and for some species less than Model C (see, e.g., Figure 5a for O2 and H2O). However, one
cannot conclude about the performance of models by only looking at the local errors. The results should
be used together with the first and second moments statistics. For example, although Model B predicts
higher local errors compared to the “no model” approach for H2 species using ∆/∆DNS = 8, the mean
of

.
ωH2 is in a very good agreement with filtered DNS data (see Figure 3a). It can be concluded that the

SS Model B produces data with the same mean as the exact filtered DNS, but with higher deviations.
Third, looking at radicals, local errors are much higher than that for major species. The prediction for
the OH is the worst. This is the result of errors in both mean and RMS profiles.
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Figure 5. Cumulative local errors incurred using different models in prediction of different species
net formation rates: (a–c) logarithm of errors for all models; and (d–f) the errors divided by the “no
model” approach error. Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and
(c,f) ∆/∆DNS = 18. The data are extracted at t = 20tj.
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Model A, independently of the filter width, results in the lowest cumulative local error for all
major species except O2. It is reasonable to conclude that, since Model A predicts the mean with a good
accuracy (see, e.g., Figure 3) and the lowest local errors, this model is preferable for major species.

Looking at radicals, Model B has the least local error. Considering that Model B has high accuracy
in predicting mean of the radicals’ net formation rates, it can be concluded that Model B is a better
model to capture radical net production/consumption rates. Detailed analysis of the rate of reactions
(Equation (3)) involved in the syngas mechanism shows that O2 is mainly consumed through H + O2 =
O + OH and H + O2 (+M) = HO2 (+M) reactions. The contribution of all other reactions is very small.
As a result, O2 net consumption rate is linked to radical formation rates. Since Model B is the best
model to capture radicals net formation rates, the same is true for O2.

Further, in Figure 5d–f, the performances of different SS models are compared with the “no model”
approach by dividing their cumulative local errors to the one of “no model” approach. The value of 1
in this figure shows that the models have the same cumulative local error as the “no model” approach.
It is now clearly seen that Models B and C are filter dependent, i.e., increasing the filter width decreases
their local error values compared to the “no model” approach. However, the relative performance of
Model A remains approximately constant. It is observed that the sum of local errors approximately
improved by 25% using Model A. For radicals, it is evident that Model B has the best performance by
decreasing the errors more than 50% compared to using no SGS model for combustion.

5.2. Heat Release Rates Predictions in Extinction Time

Concentrating now on the filtered heat release rate in energy equation, Figure 6 depicts the mean
and RMS of filtered heat release rates per unit volume computed using different models and filter

widths. It should be noted that, to compute
.

Q (mean of the filtered heat release rate),
.

Q from DNS is
first directly filtered and afterwards the mean is determined, as described in Section 4.3. To get the
heat release rates from the models, the related modeled

.
ω j, respectively, from Equations (4), (6) and (8),

is inserted into Equation (19).

Energies 2018, 11, x 11 of 20 

 

 

Model A, independently of the filter width, results in the lowest cumulative local error for all 

major species except O2. It is reasonable to conclude that, since Model A predicts the mean with a 

good accuracy (see, e.g., Figure 3) and the lowest local errors, this model is preferable for major 

species.  

Looking at radicals, Model B has the least local error. Considering that Model B has high 

accuracy in predicting mean of the radicals’ net formation rates, it can be concluded that Model B is 

a better model to capture radical net production/consumption rates. Detailed analysis of the rate of 

reactions (Equation (3)) involved in the syngas mechanism shows that O2 is mainly consumed 

through H + O2 = O + OH and H + O2 (+M) = HO2 (+M) reactions. The contribution of all other reactions 

is very small. As a result, O2 net consumption rate is linked to radical formation rates. Since Model B 

is the best model to capture radicals net formation rates, the same is true for O2.  

Further, in Figure 5d–f, the performances of different SS models are compared with the “no 

model” approach by dividing their cumulative local errors to the one of “no model” approach. The 

value of 1 in this figure shows that the models have the same cumulative local error as the “no model” 

approach. It is now clearly seen that Models B and C are filter dependent, i.e., increasing the filter 

width decreases their local error values compared to the “no model” approach. However, the relative 

performance of Model A remains approximately constant. It is observed that the sum of local errors 

approximately improved by 25% using Model A. For radicals, it is evident that Model B has the best 

performance by decreasing the errors more than 50% compared to using no SGS model for 

combustion.  

5.2. Heat Release Rates Predictions in Extinction Time 

Concentrating now on the filtered heat release rate in energy equation, Figure 6 depicts the mean 

and RMS of filtered heat release rates per unit volume computed using different models and filter 

widths. It should be noted that, to compute �̇� (mean of the filtered heat release rate), �̇� from DNS 

is first directly filtered and afterwards the mean is determined, as described in Section 4.3. To get the 

heat release rates from the models, the related modeled �̇�𝑗, respectively, from Equations (4), (6) and 

(8), is inserted into Equation (19).  

(a) (b) (c) 

(d) (e) (f) 

Figure 6. Heat release rate with units (kg/(ms3)): (a,b,c) Mean; and (d,e,f) RMS. Different filter widths 

are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18. The data are extracted at 𝑡 = 20𝑡𝑗. 

Vertical lines are the same as in Figure 3. 

In Figure 6a–c, the failure of the “no model” approach to predict the correct mean heat release 

rate is observed. It can be concluded that, without using SGS combustion model in the current case, 

Figure 6. Heat release rate with units (kg/(ms3)): (a–c) Mean; and (d–f) RMS. Different filter widths
are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18. The data are extracted at
t = 20tj. Vertical lines are the same as in Figure 3.

In Figure 6a–c, the failure of the “no model” approach to predict the correct mean heat release
rate is observed. It can be concluded that, without using SGS combustion model in the current case,
the amount of local extinctions is not correctly captured. Higher prediction of heat release rate means
that the lower number of computational cells are predicted to be in extinction mode. On the contrary,
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Models A and B can predict the mean filtered heat release rates with a very good accuracy. As expected,
the predictions of Model C are not satisfactory.

5.3. Combustion Rates Predictions in Re-Ignition Time

The same analysis proposed in Section 5.1 is repeated here for the time at which the flame
experiences re-ignition from the core region of the jet. The flame interacts with fully developed
decaying turbulence at this time instant [48].

In Figure 7 the modeled filtered rate of consumption of H2 (fuel) is compared with the exact
values obtained by filtering the DNS data. In Figure 7a,d, it is evident that, for a small filter
width (∆/∆DNS = 8), all models predict almost the same mean and RMS. Moreover, the error of
using no SGS model is very low. This shows that, for the current time instant/regime, by using
∆/∆DNS = 8, in mean, the interaction of turbulence and chemistry is not high. SGS effects are
negligible and filtered production/consumption rate of fuel can be evaluated by using filtered scalar
fields. It should be considered that ∆/∆DNS = 8 admits the criteria of Pope [50] (see Figure 1a) for
TKE resolution, however, if one wants to assess the performance of combustion models in the current
case, it is needed to increase the filter width to see the effects of unresolved flame in mean filtered
production/consumption rate of fuel. By using ∆/∆DNS = 8 and looking at mean filtered fuel net
formation rate (Figure 7a), one can only conclude that the SGS combustion models which are tested
can adapt themselves to the condition that there is no need to do SGS modeling. In other words, they
can switch themselves off automatically. In the current study two larger filter widths are also applied.
By increasing the filter width, the “no model” approach error increases slightly in both mean and RMS
(see Figure 7c,f), although it can still predict the profile qualitatively. This is also true for other three
models, however the increase of the error is less for SS models. It should be mentioned that, for other
major species, e.g., CO, O2, CO2 and H2O, the same performance as described in Figure 7 for H2 is
observed. Thus, for the sake of brevity, only the results for

.
ωH2 are presented.
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Filtered H radical production/consumption rate is analyzed in Figure 8. Compared to Figure 4, 

it is evident that the flame is in re-ignition phase, where the rate of production of H radical increased 

in the core of the jet. The maximum error of the “no model” approach is around the mean 

stoichiometric plane and the region between this plane and the maximum of mean temperature 

Figure 7. Production/consumption rate of H2 with units (kg/(m3s)): (a–c) Mean; and (d–f) RMS.
Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18.
The data are extracted at t = 35tj. Vertical lines are the same as in Figure 3.

Filtered H radical production/consumption rate is analyzed in Figure 8. Compared to Figure 4,
it is evident that the flame is in re-ignition phase, where the rate of production of H radical increased in
the core of the jet. The maximum error of the “no model” approach is around the mean stoichiometric
plane and the region between this plane and the maximum of mean temperature fluctuations. In the
core of the jet, the “no model” approach can predict the true mean regardless of the applied filter
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width. It seems that, in the core jet region, due to perfect mixing and the lack of gradients, the flame is
in “perfectly stirred reactor” [1] regime.

Contrary to the “no model” approach, the SS Models A and B predict the mean formation rate
.

ωH
with good accuracy regardless of the applied filter width. Similar to Figure 4, Model C fails to predict
the mean with good accuracy.

In terms of the second moment, all models predict the qualitative behavior. The deviation from
the exact RMS increases by increasing the filter width. Similar to previous observations with respect to
radicals in the current study, Model B better predicts the RMS of H radical compared to other models.
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Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS = 18.
The data are extracted at t = 35tj. Vertical lines are the same as in Figure 3.

In Figure 9a–c, models are assessed based on their local results compared to the “no model”
approach. As shown, by using ∆/∆DNS = 8 (Figure 9a), the “no model” approach performs with
a reasonable error and interestingly with local errors less than Models B and C for some species.
The least local error is realized by Model A in agreement with the results for major species in the
previous subsection in the instant of maximum local extinction. Further, the relative behavior of
Model A remains the same when the filter width increases. The results of Models C and B show
the dependency to the filter width. The local error incurred by using these two models for some
species are first higher than the “no model” approach (see Figure 9a for H2 and O2). They become less
than it is in Figure 9c, where the filter width increases. Similar to Figure 5, the error in prediction of
radicals is much higher than that for major species. Compared to results in extinction time (Figure 5),
the cumulative local errors are lower. It is revealed that the turbulence–chemistry interaction is lower
in re-ignition than the extinction time. Further, in Figure 9d–f, the relative performances of different SS
models compared to the “quasi laminar” or “no model” approach are shown. Compared to Figure 5d–f,
the same behavior is observed for Model A, i.e., improvement of approximately 25% for major species
and radicals independent of filter width applied.
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Figure 9. Cumulative local errors incurred using different models in prediction of different species net
formation rates: (a–c) logarithm of errors for all models; and (d–f) the errors are divided by the “no
model” approach error. Different filter widths are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and
(c,f) ∆/∆DNS = 18. The data are extracted at t = 35tj.

5.4. Heat Release Rates Predictions in Re-Ignition Time

In Figure 10, the filtered heat release rates are depicted. It is observed that, using ∆/∆DNS = 8,
the “no model” approach can predict mean filtered heat release rate with a good accuracy compared to
the filtered DNS data. The RMS shown in Figure 10d is a bit higher in the outer flame region which
can be corrected by using SS Models A and B. It should be noted that the flame re-ignites from the
center of the jet (regions between two vertical green lines). This is evident in high heat release rates
in this region. Increasing the filter width increases the error of the “no model” approach (compare
Figure 10b,c with Figure 10a). However, SS Models A and B correctly predict the mean filtered heat
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release rates. In RMS, discrepancies exist compared to the exact filtered DNS data; however, as can be
seen in Figure 10d–f, SS models effectively try to decrease the error.
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Figure 10. Heat release rate with units (kg/(ms3)): (a–c) Mean; and (d–f) RMS. Different filter widths
are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS =18. The data are extracted at
t = 35tj. Vertical lines are the same as in Figure 3.

As it can be inferred from the results in the two previous subsections, both SS Models A and B can
predict well the mean filtered production/consumption rate of major species and radicals compared
to the “no model” approach, in both extinction and re-ignition times. The RMS is captured with
a reasonable accuracy by both models. It is found that SS models are able to detect the locations where
SGS effects prevail in the flame. As an example, Figure 11 shows the exact SGS or residual scalar
field for production/consumption rate of H2O at time t = 20tj in the xy plane at z = 0. The SGS field

is obtained by subtracting
.

ωH2O(ϕ
f ) from

.
ω

A
H2O(ϕ) where ∆/∆DNS = 12 is used as the filter width.

The performance of SS Model A is assessed by comparing the exact SGS field with L .
ω

A . Note that L .
ω

A

is the residual field predicted by Model A and is defined in Equation (7). In Figure 11, it is evident that
the SGS structures are captured. The locations of the predicted peak residual field (Figure 11b) are in
agreement with the exact residual field (Figure 11a).

Energies 2018, 11, x 15 of 20 

 

 

(a) (b) (c) 

(d) (e) (f) 

Figure 10. Heat release rate with units (kg/(ms3)): (a,b,c) Mean; and (d,e,f) RMS. Different filter widths 

are applied: (a,d) ∆/∆DNS = 8; (b,e) ∆/∆DNS = 12; and (c,f) ∆/∆DNS =18. The data are extracted at 𝑡 = 35𝑡𝑗. 

Vertical lines are the same as in Figure 3. 

As it can be inferred from the results in the two previous subsections, both SS Models A and B 

can predict well the mean filtered production/consumption rate of major species and radicals 

compared to the “no model” approach, in both extinction and re-ignition times. The RMS is captured 

with a reasonable accuracy by both models. It is found that SS models are able to detect the locations 

where SGS effects prevail in the flame. As an example, Figure 11 shows the exact SGS or residual 

scalar field for production/consumption rate of H2O at time 𝑡 = 20𝑡𝑗 in the xy plane at z = 0. The SGS 

field is obtained by subtracting �̇�𝐻2𝑂(�̅�𝑓) from �̅̇�𝐻2𝑂
𝐴 (𝝋) where ∆/∆DNS= 12 is used as the filter 

width. The performance of SS Model A is assessed by comparing the exact SGS field with ℒ�̇�𝐴. Note 

that ℒ�̇�𝐴   is the residual field predicted by Model A and is defined in Equation (7). In Figure 11, it is 

evident that the SGS structures are captured. The locations of the predicted peak residual field (Figure 

11b) are in agreement with the exact residual field (Figure 11a). 

 
(a) 

 
(b) 

Figure 11. Residual �̇�𝐻2𝑂 with units (kg/(m3s)) when DNS is filtered by using ∆/∆DNS= 12 at 𝑡 =

20𝑡𝑗: (a) Exact; and (b) Predicted by Model A. Cut-off plane is the central xy plane. 

6. Conclusions 

In the present paper, finite-rate SGS scale similarity combustion models have been used to 

calculate the filtered combustion and heat release rates of a non-premixed jet flame exhibiting high 

level of local extinction and re-ignition. Thereby, the performance of three SS type combustion models 

Figure 11. Residual
.

ωH2O with units (kg/(m3s)) when DNS is filtered by using ∆/∆DNS = 12 at
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6. Conclusions

In the present paper, finite-rate SGS scale similarity combustion models have been used to
calculate the filtered combustion and heat release rates of a non-premixed jet flame exhibiting high
level of local extinction and re-ignition. Thereby, the performance of three SS type combustion models
for LES have been evaluated by means of an a priori assessment using numerical experiment from
DNS database of a temporally evolving syngas jet flame [30]. Two SS models, namely the SSRRRM [11],
called Model A, and the SSFRRM [11], called Model B, were considered, together with a third model,
called Model C, which was derived following the Germano’s/Liu’s approach [25,51]. To summarize,
the following conclusions could be drawn:

(1) When looking at mean profiles, it is found that, regardless of the filter width (∆) applied and
the flame regime, Models A and B predicts similar results with good accuracy for both major and
minor species. On the contrary, the predictions of Model C for major species have larger errors,
especially when using large ∆. Moreover, for radicals, Model C fails to predict the correct mean
(see Figures 4 and 8). The failure of Model C is also in line with observations reported in [51], where
the Model C performance was found to be very sensitive to the filter width. For small ∆, the incurred
error of Model C is higher than using no SGS model. However, by increasing ∆, the error becomes less
than the so-called “quasi laminar” or “no model” approach.

(2) In terms of RMS and local errors, Model A performs better than Model B, with smaller local errors
for major species such as CO, H2, CO2 and H2O. However, for radicals, the performances of Model B
are locally better.

(3) It is found that SS models are able to detect the locations where SGS effects prevail in the flame.
This is the advantage of SS models which can accurately detect the locations where SGS effects are
high and a model for residual field is needed. The differences in predicting mean and RMS of filtered
combustion and heat release rates among the adopted models result from the way that they compute
the residual field at the same detected locations. In the current study, it is found that the SS type
models which are derived according to “double filtering” approach of Bardina et al. [23] (i.e., Models
A and B) have the ability to predict mean profiles with good accuracy at the instant of extinction and
re-ignition of the flame. The good agreement is observed even when large filter widths are applied.

The coefficient of similarity in Models A and B (i.e., C∆
A and C∆

B in Equations (4) and (6),
respectively) were set equal to one in the present study. The effect of modifying this coefficient was not
studied since the main focus was the assessment of capability of standard SS models. This analysis is
currently in progress.
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Nomenclature

∆h0
j enthalpy of formation of species k

hS sensible enthalpy
Dk molecular diffusion coefficient of species k
KFj forward kinetic constants of reactions j
KRj backward kinetic constants of reactions j
NR total number of reactions
Ns total number of species
RRj rate of reactions j
Ret turbulent Reynolds number
Wk molecular weight of species k
Yk mass fraction of species k
ui velocity in ith directions
xi ith directions coordinate
υ”;

kj backward stoichiometric coefficients of species k

υ′kj forward stoichiometric coefficients of species k
∆U difference of fuel and oxidizer streams velocities
H the height of the initial fuel stream
h enthalpy
p pressure
T temperature
C similarity coefficient
E energy in wave number space
Z mixture fraction
t time
tj transient jet time

Greek symbols
.

ωk net formation/consumption rate of species k
∆LES LES grid size
L .

ω residual net production/consumption rate
.

Q heat release rate
αk thermal diffusivity of species k
∆ filter width
∆DNS DNS grid size
Cp heat capacity
ρ density
ε cumulative local error
λ thermal conductivity
ϕ composition vector
ε turbulent kinetic energy dissipation rate
η Kolmogorov length scale
κ Wave number

Superscripts
A scale similarity Model A or SSRRRM
B scale similarity Model B or SSFRRM
C scale similarity Model C
f using Favre operator

Subscripts
i coordinate directions identifier
j reactions identifier
k species identifier
n cell number identifier
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Operators
(.) simple (top-hat) filter
=
(.) double grid filter
ˆ(.) test grid filter

(.)
f simple Favre filter

(.) Reynolds spatial average in homogenous directions
(.)

f Favre spatial average in homogenous directions

‖.‖2 L-2 norm

Acronyms
CFD computational fluid dynamics
DNS direct numerical simulation
EDC eddy dissipation concept
FSD flame surface density
LES large eddy simulation
PaSR partially stirred reactor
RANS Reynolds averaged Navier–Stokes
SGS sub-grid scale
SS scale Similarity
SSFRRM scale similarity filtered reaction rate model
SSRRRM scale similarity resolved reaction rate model
TFM thickened flame model
TKE turbulent kinetic energy
TPDF transported probability density function
VLES very-large-eddy simulation
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