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Abstract. Modern Systems-on-Chip (SoC) architectures and CPU+FPGA com-
puting platforms are moving towards heterogeneous systems featuring an increas-
ing number of hardware accelerators. These specialized components can deliver
energy-efficient high performance, but their design from high-level specifications
is usually very complex. Therefore, it is crucial to understand how to design and
optimize such components to implement the desired functionality.

This paper discusses the challenges between software programmers and hard-
ware designers, focusing on the state-of-the-art methods based on high-level syn-
thesis (HLS). It also highlights the future research lines for simplifying the creation
of complex accelerator-based architectures.

Keywords. high-level synthesis, accelerators, heterogenous systems

1. Introduction

Due to the end of Dennard’s scaling, specialized hardware accelerators are increasingly
used in heterogeneous System-on-Chip (SoC) architectures and CPU+FPGA platforms
to execute selected computational kernels more efficiently. These components can be
then turned off when unused to alleviate the power density problem [9]. However, the
complexity of these components is growing exponentially, which in turn increases both
design and verification costs. Conversely, the market requires such systems to be pro-
duced in a shorter time. So, designers are increasingly adopting Electronic System Level
(ESL) methodologies based on High-Level Synthesis (HLS) to raise the abstraction level.
With HLS, the designer can focus on the high-level description of the functionality to
implement, express it in a high-level language (e.g., C, C++, SystemC, etc.), and then
use automated methods and tools for the automatic creation of the corresponding spe-
cialized hardware [2]. However, this process is complex, especially because the most of
the code and semantics used by software programmers is often difficult to be translated
into efficiently hardware [25,27]. For instance, the synthesis of pointers requires to un-
derstand which data structures are effectively addressed at runtime [27], while different
data access patterns may impact on the data layout and, in turn, on the size of the on-chip
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memory [29]. So, HLS developers often impose severe limitations that require extensive
and error-prone code rewriting of the high-level specification before the use of HLS. In
addition, the interdependence of many optimizations is often unclear and the evaluation
of their impact on performance and cost (area or power) generally requires a complete
synthesis and simulation. Therefore, an extensive design space exploration is very time
consuming since it requires many iterations between code transformations and hardware
synthesis [22,30].

This paper presents an overview of recent achievements in high-level synthesis to
bridge the gap between software programmers, who are in charge of writing the high-
level specification, and hardware designers, who are responsible for developing or us-
ing HLS tools to generate efficient accelerator-based systems. This discussion will cover
both algorithmic solutions to synthesize efficient components and methodologies to in-
telligently use existing tools and improve the design of complex accelerators.

So, after presenting an overview of the high-level synthesis process (Section 2),
the two main contributions of this paper are presented: (1) the presentation of current
achievements in the design of complex accelerators, including a system-level method-
ology for the optimization of the local memory (Section 3), and (2) the discussion of
the open challenges and the future research lines that we expect for high-level synthesis
(Section 4 and Section 5, respectively).

2. Hardware Accelerators and High-Level Synthesis

A hardware accelerator is a component tailored to execute only the specific function-
ality for which it has been designed. Thanks to its specialized microarchitecture, it is
usually able to achieve better performance (up to 10-100×) and lower energy consump-
tion (up to 100-1,000×) than the corresponding software execution [9]. However, this
comes at the cost of flexibility: the designer must carefully determine the accelerator’s
microarchitecture at design time to maximize the performance (by exploiting hardware
parallelism), without any possibility of executing a different functionality at runtime.
Conversely, adding an extra functionality requires the implementation of extra logic.

Complex accelerators are organized with submodules to reduce the design com-
plexity. Each module is based on the classical Finite State Machine with Data (FSMD)
model [39] and includes the following components:

• a controller, which determines the operations to execute in each clock cycle. The
control flow is represented by a finite state machine that sends proper command
signals to the datapath resources based on a set of conditions;

• a datapath, which contains the functional units to implement the functionality on
the input data and the registers to contain temporary values for the computation.
Multiplexers are used to drive the values based on the control flow;

• memory elements, which include scratchpad memories (SPMs) to locally store
data and a memory interface to access the external data (e.g., in DRAM).

Each computational resource of the datapath exchange information through registers,
local SPMs, or DRAM. Input data are provided through the configuration registers or
stored in DRAM and accessed through the memory controller. In particular, local SPMs
are heterogeneous and distributed memories, tailored on the data structures to be stored.
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These memories are used to execute multiple memory operations in parallel on differ-
ent data with fixed latency [20,27,29,36], enabling more hardware parallelism. How-
ever, such memory blocks requires specialized microarchitecture in case of parallel ac-
cesses [27,29]. Memory architectures have been recently proposed to support almost any
input specifications, enabling computation even on memory addresses (e.g., pointer arith-
metic) [27]. To this end, such memory architectures create a daisy chain with all memory
components, including both local memories and controllers for the external memory. An
accelerator can thus automatically identify the memory location accessed by a memory
request based on the value of the address given at runtime. This allows the implementa-
tion of software code with no semantic changes, enabling the possibility of dynamically
changing the execution of one task between software and hardware.
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Figure 1. Typical organization of a high-level synthesis tool.

A traditional HLS flow is shown in Figure 1. It interfaces with state-of-the-art com-
pilers (e.g., GCC or LLVM) to parse the input C code, apply compiler optimizations,
and extract the resulting IR [20]. They usually leverage the Single Static Assignment
(SSA) form [21], which is a machine-independent form that can be easily manipulated
and translated into hardware. The SSA form generates a unique identifier for each assign-
ment to the same variable, increasing the number of temporary values but simplifying the
subsequent HLS steps. In particular, after the allocation phase, which includes the se-
lection of resources (module allocation) and memories memory allocation, the schedul-
ing is performed to determine the operations to be executed in each clock cycle. Opera-
tions scheduled in different clock cycles can potentially reuse the same resources (mod-
ule binding), while temporary values crossing the clock boundaries must be assigned to
different registers to be stored (register binding) [34]. The last step in the datapath is the
interconnection binding, where the different resources are interconnected and the corre-
sponding control signals are generated together with the controller (controller synthesis).

The synthesis of each accelerator is performed hierarchically, starting from the in-
nermost C functions. In this way, when generating a module, all its submodules have
been already generated and they can be properly interconnected as any other datapath
resource. Testbenches and interfaces can be also automatically generated for verification
and system-level integration, respectively [26].
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3. Achievements in the Generation of Accelerator-Based Systems

Raising the abstraction level and using Electronic System Level (ESL) methodologies
based on high-level synthesis (HLS) to automatically generate configurations for FPGAs
is helping in tackling the current gap in the design complexity. HLS offers benefits to
software engineers, enabling them to achieve speed and energy benefits of hardware with
limited hardware expertise [20]. HLS also offers benefits to hardware engineers, by al-
lowing them to design systems faster at a high-level abstraction and rapidly explore the
design space [22]. This is crucial in the design of complex systems [2] and especially
suitable for FPGA design where many alternative implementations can be easily gener-
ated, deployed, and compared. HLS has been thus recently applied to a variety of appli-
cations (e.g. medical imaging, convolutional neural networks, machine learning), with
significant benefits in terms of performance and energy consumption [31,38].

Design space exploration is, indeed, an important step in the design of architectures
to understand how to trade off cost (e.g., resources or power) and performance (e.g., la-
tency or throughput). Composable DSE methods are gaining a lot of attention in the past
few years [12], together with solutions to speed-up the exploration with estimation mod-
els [16]. However, this process is not simple and requires evaluating the impact of the
combined transformations towards several optimization goals (e.g., maximizing perfor-
mance/watt). For instance, applying aggressive loop transformations require more logic
to exploit the increased hardware parallelism, but they can bring performance improve-
ments only when supported by a proper multi-port local memory [29].
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Figure 2. Example of target heterogeneous architecture: an accelerator is composed of submodules hierarchi-
cally organized. Each of them may contain one or more scratchpad memories (SPMs) to store local data. Rest
of the data is stored in DRAM.

Accelerators are usually integrated in heterogeneous architectures in a way similar
to the one shown in Fig. 2. The processor core (CPU) executes a software application to
prepare the data and configure the accelerator with memory-mapped operations on the
configuration registers through the interconnection system (e.g., a bus or a network-on-
chip) [15]. The data stored in the shared memory (DRAM) are accessed through one or
more memory controllers [13]. Accelerators may adopt DMA mechanisms to exchange
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large data blocks with DRAM [4,29] or SPMs can be used to locally store entire data
structures for the entire execution of the accelerator [27]. So the designer must decide
partition the data structures at design time and determine where to store each of them.
This is usually a trade-off between predictable memory accesses, which are possible
when the given structure is stored in a dedicated SPM, and size of the accelerator, which
can be reduced by storing more data structures in DRAM. In such architectures, SPM
data are accessed with a known latency (e.g., one or two cycles), which greatly simplifies
the scheduling of the memory operations and the controller creation. Conversely, it is not
possible to guarantee a known latency for external memory accesses. So, the accelerator
must implement a memory interface with a latency-insensitive protocol to access the data
without affecting the execution correctness, accordingly scheduling the corresponding
memory operations [24].

In fact, memory optimization is another important aspect of accelerator design.
Since accelerator-based architectures are usually characterized by a huge amount of data
to elaborate, the optimization of memory accesses plays a key role in the design of ef-
ficient heterogeneous systems [13,29]. However, the memory behavior of an application
is highly dependent on the characteristics of the applications, ranging from statically
predictable patterns [38] to irregular memory accesses [3], depending on the application
domain. The former can be easily optimized with polyhedral-based transformations [37]
associated with multi-port memories [29] to satisfy the requirements in terms of par-
allel accesses. The latter, instead, require dedicated micro-architectures to schedule the
memory accesses and hide the latency of the communication with the memory [24].

4. Open Challenges between Software and Hardware Designers

4.1. Memory Synthesis and Optimization

Memory elements are usually responsible for most of the accelerator area and power
consumption [4,29] and in the era of the Internet of Things they will become more and
more critical. Despite the huge progress made by HLS tools in the recent years [20],
very limited attention has been devoted to the concurrent optimization of the accelerator
logic and the memory accesses [22]. Pre-synthesis transformations have been proposed
to optimize the loops and the memory accesses [37], and to generate resource-efficient
multi-port memories [29]. However, modern accelerators must include innovative and
dedicated micro-architectural solutions to better manage the memory accesses with re-
spect to the available memory technologies in terms of energy consumption [23] and
read/write latency. Future heterogeneous systems will, indeed, feature (1) hybrid mem-
ory architectures with different on-chip memories [17], (2) multiple memory controllers
that can provide physical access to external memories implemented with different tech-
nologies, and (3) adaptive runtime environments to better manage and interleave the
memory accesses. Combined this architecture is the only viable solution to exploit much
more data parallelism with limited cost in terms of resources and energy consumption.
On the other hand, the memory accesses must be analyzed on a larger scale since the
compilation phase to better understand the global requirements and match them with the
characteristics of the available memories.
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4.2. Design and Verification

High-level synthesis provides an important support for the design of heterogeneous ar-
chitectures. However, this also exacerbates verification issues for the application pro-
grammers, especially when the computation is distributed in both software and hardware
tasks, and the accelerators are provided by different toolchains. Fast, efficient, and pre-
cise methods for debugging are required, featuring the possibility to backtrack the origin
of a bug to the exact point of failure [1,5]. Since the amount of computation to be per-
formed in modern heterogeneous applications before activating the bug may be consid-
erable, simulation-based approaches have limited applicability and on-chip debugging is
gaining a lot of attention [18,6]. Current methods usually allow hardware designers to
add extra logic for on-line monitoring of signals, but there is limited possibility to auto-
matically identify discrepancies with the expected behavior and restrict the area where
the error is originated, especially when combining hardware and software execution of
multiple IP components.

4.3. Emerging Trends for Hardware Generation and Integration

High-level synthesis tools often rely on state-of-the-art compilers for implementing ag-
gressive code optimizations and improve the generated hardware [20]. Several transfor-
mations have been proposed, ranging from speculative code transformations [11] to ag-
gressive loop transformations with polyhedral models and multi-port memories for in-
creasing the hardware parallelism [29,37]. However, such approaches are often limited
to specific domains (e.g., stencil computation [32]) and they never consider the use of
heterogeneous memory architectures.

To provide effective abstractions exposed to the programmer, future HLS tools must
leverage recent developments in heterogeneous programming models (e.g., SYCL) as
well as in domain-specific languages (DSLs), which have been successfully demon-
strated in different relevant areas such as image pipelines, graph analytics, linear algebra,
and finite element methods. Skeleton approaches have also been successfully applied
to provide high-performance computing from functional specifications, or via template
meta-programming. Domain-specific language (DSL) extensions will be used to better
support the semantics of memory accesses, together with specific code optimizations to
match the requirements of the applications and the characteristics of the memories. Such
extensions will be also used to specify hardware/software partitioning and automatically
generate the corresponding code based on existing parallel programming models.

HLS tools are thus increasingly integrating a wide range of source-to-source trans-
formations to integrate the domain-specific information provided by the application pro-
grammers, to make explicit transformations and to enable the efficient use of alternative
memory technologies. These transformations will focus on the optimization of resources
and the memory accesses, but the approach can be easily extended towards other design
goals. In such context, co-design methods will be more and more important to simplify
the integration of such components with transparent hardware services [2,15].
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5. Future Research Lines for High-Level Synthesis

5.1. Emerging Technologies

Emerging technologies will play a key role in the design of efficient accelerators. First,
fine-grained power management will be increasingly exploited by combining integrated
voltage regulators for implementing dynamic voltage-frequency scaling [35,14], and
dual-rail SRAMs to reduce the static power of memory elements [23]. Then, memory
design is a key element in the creation of efficient hardware components because these
components require elaborating a huge amount of data often beyond the capabilities of
current systems. This easily leads to critical issues in terms of performance and energy,
while the speed of DRAM memories is not increasing with the cumulated processor fre-
quency (especially in case of parallel or heterogeneous computing), leading to the so-
called memory wall where the overall performance becomes limited by the latency of
the memory accesses. In addition, extreme-data applications require frequent memory
accesses to off-chip memory, whose I/O circuitry and refresh activities is responsible for
up to 30% of the system energy consumption (power wall). Such issues can be miti-
gated only with a fundamental redesign of the memory architecture with the inclusion of
emerging memory technologies. However, novel current ideas include 3D packing and
hybrid on-chip memory architectures [17], but they are usually limited in terms of capac-
ity. For instance, HMC and HBM can store data only up to 4GB, whereas DDR4 is up to
128GB (capacity wall). Non-volatile technologies (NVM), which require no refresh and
therefore reduce the power wall, can be combined with DRAM to reach capacities up to
TB, potentially breaking also the capacity wall. The recent emergence of a rich alterna-
tives for memory technologies have spawn a lot of research in memory architectures, but
there is no clear winning yet and systems will combine, instead, different more and more
technologies including resistance-based memories like Phase Change Memory (PCM),
3D XPoint (3DX), Spin Transfer Torque (STT), and Resistive Random Access Memory
(RRAM). However, these memory technologies have different characteristics in terms
of read/write latency and energy, leakage power, write endurance, resiliency [17], open-
ing fundamental programmability issues to understand how to balance such conflicting
characteristics and match them to different application requirements.

5.2. Domain-Specific Languages for Better Optimizations

Since heterogeneous systems are expected to become more and more complex, the ef-
ficient composition of different components will be critical. Domain specific languages
(DSLs) will be used by application engineers to specify the algorithmic core of the com-
putation. They will be increasingly used to provide rich information to the compiler and
lower-level tools about the high-level semantics of the algorithms. However, DSLs are
usually hard to be accepted by software programmers and they may create integration
issues. So, they will be necessarily embedded into existing languages, e.g., via template
metaprogramming in C++/SYCL to easy programming. Memory-specific transforma-
tions will be then enabled in the front-end phase. Such optimizations will include both
loop transformations to improve the memory accesses with respect to the characteris-
tics of the available technologies and code transformations to enable more optimizations
during hardware generation. Rich information about the memory access patterns of the
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algorithm allows the compiler to automatically optimize the loop structure, thereby mod-
ifying the memory access pattern while preserving semantics. Annotations can be then
provided for a variety of functional and non-functional requirements (e.g., power con-
sumption, security, reliability, etc.) and for user-driven hardware-software partitioning.
Additional annotations can be also used to specify where to perform selective profiling
and debugging, reducing the cost of design and verification of such components. Finally,
heterogeneous programming models (e.g., OpenCL or SYCL) will be used to express
functionality and to enforce portability.

5.3. Hardware Security

Heterogeneous architectures are increasingly leveraging hardware accelerators and such
components are thus becoming an easy target for malicious attacks [28]. In fact, most
of the current protection mechanisms are manually implemented [7] or introduce large
overheads [10], and this is clearly not efficient nor scalable and hardware vulnerabilities
can be exploited to perform software-based attacks. Even if it is not possible to perform
code injection, malicious configuration parameters or memory values can be used to ex-
ploit design errors. For example, attackers may exploit don’t vulnerabilities in the ac-
celerator’s FSM to alter the accelerator’s behavior [19]. Physical attacks can exploit the
weaknesses of a given hardware implementation for information leakage. Side-channel
attacks have proven to be a powerful mechanism to extract secret data from both em-
bedded devices and high-end cloud servers. Accelerators can help avoiding side-channel
attacks, for instance ensuring constant execution time and thus making timing attacks
infeasible. However, accelerators must be protected from a variety of other attacks, in-
cluding fault-based and side-channels ones [33]. If not adequately protected, a circuit
completely separated by the rest of the processor can be localized more easily, becom-
ing the target of more precise power measurements. Another critical issue is IP theft: an
efficient and secure accelerator is a complex task whose outcome should be protected
from reverse engineering and unauthorized copy, which can create billions of dollars of
economical damages for the companies [8].

6. Conclusions

This paper describes the gap that has been created between software and hardware devel-
opers due to increasing use of heterogeneous computing platforms. This can be partially
solved by the use of high-level synthesis, which allows the automatic creation of hard-
ware components starting from high-level descriptions. However, design and verification
challenges are still open for these systems, while new challenges in terms of hardware
security must be investigated.
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