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Abstract. In the design of Multiple Gravity Assisted (MGA) trajectories, the most critical and time-
consuming phase is the definition of the sequence of planets at which to perform the flybys. A general
approach tackles the MGA problem using a branch and bound technique to resolve the combinatorial problem
arising by the possible sequences of planets to be flown in order to reach the destination in reasonable amount
of time. It is clear how, depending on the associated launch window and the total time of flight, not a unique
optimal configuration exists. Possible solutions are searched selecting each planet at a time, resolving the
associated Lambert problem for a specific time of flight and choosing the minimum delta-v solution. Such
an approach is extremely expensive from a computational point of view: depending on the orbital distance
to be reached and the associated number of planets that could be flown, the process requires at each stage
the evaluations of the remaining possibilities in cascade and for different encounter epochs. The goal of
this paper is to provide a quick estimate of the possible planet configurations for the preliminary design
of suboptimal MGA trajectories. For such purpose, the syzygy function, commonly used in astronomy for
the identification of planet alignment, is mimicked and adapted to satisfy the needs of trajectory design.
Different strategies to exploit this approach are presented. At a first stage, a simple modification of the
classical syzygy function is considered: the alignment condition is maintained but with a time shift, ensuring
that, between one planet and the following one, the time of flight between two planets is exactly a Hohmann
semi-period. The limitation of this approach, which always enforces a Hohmann transfers between one planet
and the following, is resolved by the use of a shape-based approach for the trajectory model, which modifies
the syzygy line condition into a conic section one. Shaping the trajectory on the eccentricity allows to select
the time of interception by resolving the time equation. The use of additional constraints on the relative
velocity at flyby of the planet belonging to the defined sequence is considered to further limit the number
of preliminary solutions. The proposed approaches is tested on an Venus-Earth-Jupiter trajectory, in the
flavour of the Cassinis mission.

1. Introduction

A method to achieve a fast progress in a specific
discipline is to steal a technique from others and find
a way to apply to the specific problem we are con-
sidering. Several examples comes from the field of
optimization, which mimicked a controlled evolution
process, to develop interesting tools such as genetic
algorithm (GA), differential programming and parti-
cle swarm optimisation, to quote the most famous.
The idea behind the paper is similar, even if less in-
trepid. Looking for a method to compute the synodic
period for more than two planets, we came across to
a method used in astronomy to identify combination
of visible planets. The beauty of the method consists

in describing the problem through a simple function
and study where it tends to zero.
Considering the area of mission analysis and in partic-
ular the design of multiple gravity assisted trajecto-
ries, it would be extremely useful to reduce the prob-
lem of the flyby to a simple zero function.

A general approach infact tackle the problem of
the flyby in a combinatorial manner whose explo-
ration of the full solutions results unpractical not to
say impossible, a fortiori, if it is taken into account
that identification of a sequence must be anyway re-
fined in higher dynamics through optimisations. Over
the years, several methods were proposed to simplify
the design of the flyby in the circular restricted three
body problem dynamics, with the keplerian map [1],
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the Tisserand-Poincaré map [2] and the flyby [3] and
kick map [4] for low energy flyby. Nevertheless, the
above methods offer a solution which depends on the
parameter state vector (e.g. initial epoch, position,
velocity) and therefore require to be repeated for each
initial condition to give a representation of the solu-
tion in ”global” map.

The objective of this paper is to show that it is
possible to construct a simple function to analyse a
broad set of initial/final conditions and quickly iden-
tify planetary configuration for feasible trajectory un-
dergoing a single or multiple flyby and the paper is
organised as follow. In the first section, the usual
syzygy function used in astronomy is presented and
applied to two scenarios (three and four planets). In
the third section, a first attempt to pass from the line
of view to a special conic section is achieved through
the Hohmann-syzygy. In the end, an attempt to pass
from the straight line to a conic condition is analysed.

2. The syzygy

The alignment of three or more planets is usu-
ally called a syzygy in astronomy, from σύζυγoς
(súzugos, ”conjunction”) in Ancient Greek.
Such condition occurs when the planets, 1. 2. and 3.
, form a straight-line while revolving about the Sun.

1. :

{
x1 = r1 cos (n1t+ ϕ1 (t, t0))
y1 = r1 sin (n1t+ ϕ1 (t, t0))

2. :

{
x2 = r2 cos (n2t+ ϕ2 (t, t0))
y2 = r2 sin (n2t+ ϕ2 (t, t0))

3. :

{
x3 = r3 cos (n3t+ ϕ3 (t, t0))
y3 = r3 sin (n3t+ ϕ3 (t, t0))

(1)

Given their positions, x and y, as function of the
orbital radius, r, the angular velocity, n and the phas-
ing angle ϕ measured at time t from the alignment
time t0, see (1), then the line-configuration can be
expressed via the equation of the line passing from
three points, see (2).

x1 − x2

y1 − y2
=
x3 − x2

y3 − y2
(2)

Rearranging (2) by making the denominator vanish-
ing and by exploiting the trigonometric identity, the
syzygy function can be written as a summation of
sine of the angular difference of the planets, see (3):

f123 =
sin [(n3 − n2) t+ ϕ32]

r1
+ ...

sin [(n1 − n3) t+ ϕ13]

r2
+ ... −→ 0

sin [(n2 − n1) t+ ϕ21]

r3

(3)

and identifies a planetary alignment when it tends
to zero, as you can see from Fig. 1 and Fig. 2.
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Figure 1: Evolution of in time of the syzygy function

for Earth, Venus and Mars alignment

19-Oct-2020 22-Mar-2022

Figure 2: Two alignments of Earth, Venus and Mars
identified at the zeros of the syzygy function,
see Fig. 1

The alignment of more than three planets are ex-
tremely rare in occurrence. Nevertheless, it is possi-
ble to build a syzygy function by using the sum of
square principle which measure the non-linearity of
two three-planet Syzygies, see (4):

F (t) = f123 (t)
2

+ f124 (t)
2 −→ 0 (4)

By representing the evolution of the syzygy with
the time, Fig. 3 shows that two possible solutions can
be considered: those identified by a ”perfect” (depen-
dent on the solver tolerance) alignment identified by
the ? marker, and minima that are close to the zero
but that doesn’t nullify the syzygy.
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Figure 3: Evolution of in time of the syzygy function
for Mercury, Venus, Earth and Mars alignment.
The ? markers identifies where F (t) has effec-
tively converged to zero, while the o one shows
local minima, close to zero but not approaching
its value

Despite only ? solutions should be considered as
alignments, for the purpose of sighting, o ones might
represent already good enough one, see Fig. 4. Atten-
tions must be paid in selecting a value close to zero,
due to the composition with the sum square (0.002
was choosen for this particular case).

09-Aug-2023 16-Jan-2026

Figure 4: Two alignments of Mercury, Venus earth
and Mars identified by the ? markers at the ze-
ros of the syzygy function, see Fig. 3

Of course, the syzygy doesnt account for orbital
eccentricities, or for inclinations of the orbits from the
ecliptic, but it does give a general idea of the patterns
of alignment that would be expected for planets with
roughly circular and coplanar orbits.

3. From astronomy to mission design

The beauty of the syzygy function consists in the
ability to identify specific configuration of planets
taking into accounts their dynamics. Therefore, an
application in mission analysis could be interesting
in order to identify in a quick way feasible trajecto-
ries for the exploration of the planets.

3.1 The time augmentation

Since warp drive is still unpractical for actual
space-ship, at least for now, the syzygy function has
to consider the time of flight to reach the planet. Pre-
serving the line-condition imposes to follow Hohmann
trajectory from one planet to the next.

Differently from the sighting problem, it must be
noticed that the dynamics requires the Sun to be in
line with the flown bodies. Such requirement allows
to write the zero function as a simplified version of
the four planets syzygy (5):

F (t) =

nPl−1∑
j=1

(rjrj+1 sin (nj+1tofj + ϕj,j+1 (tj)))
2

(5)

3.2 Limitation

Such expression presents some drawbacks. First
of all, it doesn’t have any information about the
disposition of the bodies under study, which must
be analysed in order to ensure that it respects the
sequence imposed by the time of flights. In other
words, it might occur that the three planets are ac-
tually aligned, as expect from the Hohmann-syzygy
approaching the zero, see Fig.5 but planets are not in
an Hohmann-configuration, which requires to ride on
an unfeasible high-eccentricity and high-inclination
orbit, see Fig.6.

Apr
-1

9

M
ay

-2
1

Ju
n-

23

Ju
l-2

5

Sep
-2

7

O
ct
-2

9

D
ec

-3
1

Ja
n-

34

Feb
-3

6

Apr
-3

8
0

1

2

F
v
a
l 
[~

]

Figure 5: Evolution of in time of the Hohmann-
syzygy function for Earth, Venus, Mars transfer

Secondly, the restriction imposed by the line-
condition limits the possible trajectory to a sequence
of Hohmann transfers. With arrival and departure
velocities at the planet not only parallel but tangen-
tial to the orbit, the flyby flyby gives no contribution,
see (6):

∆vfby = v∞ sin 2δ (6)
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2021-2022 2037-2038

Figure 6: The solutions identified from the
Hohmann-syzygy function: on the left the
correct disposition of the planets allows to
perform two Hohmann to reach Mars, on the
right having Venus and Mars from the same
side results the bouncy trajectory

Therefore the difference in term of heliocentric ve-
locity must be provided by the propulsion system and
in a general sense the trajectory is not optimal. Nev-
ertheless, it has to be considered that if the syzygy
doesn’t converge to zero exactly to zero, then the
flyby does give a contribution, however small, and
that even when it does low-energy flyby could take
place and these effects might modify the Hohmann
transfer in a significant way. It’s clear that Hohmann
syzygy more than a solution to the trajectory design
represents an exercise to apply a resolution method
for a mission design problem keeping a similar for-
mulation of the astrodynamical one, which obviously
has to be modified.

4. From line to conic condition

It’s clear that the line-condition must be aban-
doned in spite of a conic-one. Such improvement
of the policy complicates significantly the search of
feasible transfer. To do that, a staged approached
is applied. The main idea behind this section is to
shape the trajectory and use the new syzygy func-
tion to identify where time of flight meet the time of
interception, similarly to what done previously.

At first, an attempt to determine the configuration
of the planets so that they describe a unique orbit
is performed. Secondly, the orbit is treated as two
distinct trajectories that merge at the flyby.

4.1 One ellipse and three coplanar positions

Considering a single flyby problem, the unique tra-
jectory represents the degenerate solution such that
the flyby gives no contribution. Differently from the
consecutive Hohmann transfers orbit, this time, no

delta-v must be applied to continue to the following
planet. Selected three planets and given the evolu-
tion of their angular position with the respect of the
time, see (7):

1. : r1 L1 = n1t1 + ϕ1 (t0)
2. : r2 L2 = n2t2 + ϕ2 (t0)
3. : r3 L1 = n3t3 + ϕ3 (t0)

(7)

where L represents the true anomaly of the planet
and at the same time the longitude of the transfer
orbit. It is possible to compute the associated semi-
latus rectum, p, eccentricity e and periapsis argument
ω, from the linearised-orbit equation, see (8):

p

ri
− f cosLi − g sinLi = 1 (8)

where f and g constitute the components of the ec-
centricity vector. By applying the Crame’s rule and
classical trigonometry identities [5], it can be shown
that the equinoctial elements can be derived as func-
tion of the true longitudes, L1, L2 and L3, and there-
fore of departure, encounter and arrival time t1, t2
and t3 respectively, see (9):

p = r1r2r3(sinL2−L1+sinL1−L3+sinL3−L2)
r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

f = r1(r2−r3) sinL1+r2(r3−r1) sinL2+r3(r1−r2) sinL3

r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

g = r1(r3−r2) cosL1+r2(r1−r3) cosL2+r3(r2−r1) cosL3

r1r2 sinL2−L1+r1r3 sinL1−L3+r2r3 sinL3−L2

(9)
Since the space triangles are defined by the differ-
ences in true longitude, , and the semi-major axis, a,
the time of flights can be directly derived from the
Kepler’s equation, in fact see (10):

tof21 =

√
a3

µ
(α− β − sinα+ sinβ) (10)

where α and β depend uniquely on L2 and L1 [6].
Similarly for tof32.

Feasible transfer condition (FTC) for the short
transfer arc can be identified where the time of flight
satisfy the time of encounter with the planet, see (11):

FTC12 = cos (n2tof21 + ϕ21 (t1)) +

− cos (L2 (t2)− L1 (t1))

s.t. sin (n2tof21 + ϕ21 (t1)) > 0

(11)

Long transfer solutionscan be obtained substituting
the tof21 with its complementary, with the respect of
the period and changing the sign to the disequality.
The syzygy function for the unique orbit case iden-
tifies unique trajectory where both the FTC tend to
zero, which can be written as, see (12):

F (t) = FTC2
12 + FTC2

23 −→ 0 (12)
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Considering a potential trajectory from Venus
to Jupiter, passing from Earth, in the flavour of
Cassini’s trajectory to Saturn (3rd − 4th legs), a pos-
sible syzygy-solution for the degenerate flyby orbit
can be obtain in 2023, see Fig.7.

Figure 7: The solution for the unique ellipse syzygy
applied to a degenerate Venus-Earth-Jupiter
trajectory.

4.2 Two ellipse and a flyby

Considering the effect of the flyby, requires to eval-
uate two individual orbits whose difference in orbital
elemenets should be addressed to flyby effect. If pre-
viously the number of variables where six (three for
the orbital elements, two for the times of flight and
one for the initial date, which represented the real de-
sign parameter) now it grows to ten (three more for
the post-flyby trajectory and one for the peri-apsis
passage, rp, or turning angle, δ, at the encounter).

As it is the problem admits infinite solutions, since
the number of variables is greater than the number
of unknowns. Therefore, some additional constraints
should be taken into account to balance the two and,
in view of providing a solution as close as possible
to the optimal one, whether it exists, only tangential
arcs are considered at the terminal points (departure
and arrival).

Differently from the single orbit case, in which the
orbital elements were obtained directly as a function
of the time, here, such considerations cannot hold and
an orbital element must be chosen parametric to effi-
ciently shape the orbits. The eccentricity represents
the best option. Considering the tangential arc condi-
tion , the eccentricity and the departure/arrival date
solely, determine in a clear way the two trajectories.

With the semi-major axis depending on the eccen-
tricity only and the argument of the periapsis on the
departure date, see (13), the aperture of space trian-
gle, identified by the difference of the true longitude,
can be obtained replacing the semi-major axis in the
orbit equation and resolving for the true anomaly dif-
ference, see (14).

a1 (e1) =
r1

1− e1
ω1 (t1) = L1 (t1) (13)

cos (∆L21 (e1)) =
1

e1

(
r1

r2
(1 + e1)− 1

)
(14)

It can be noticed that the condition of existence of
the cosine in (14) imposes that the right term cannot
be greater/smaller than +1/−1 from which the min-
imum and maximum eccentricity values are derived,
see (15).

1

e1

(
r1

r2
(1 + e1)− 1

)
=

{
1 −→ em = r2−r1

r2+r1
−1 −→ eM = 1

(15)

The FTC (11) correlates the shaping parameter
with the epoch of departure, see Fig.8 which repre-
sents the solution for the first leg of Venus-Earth-
Jupiter trajectory:
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Figure 8: The solution for the feasible short (light
blue, solid) and long (red solid) transfer con-
dition for the Venus-Earth leg, limited to an
Hohman period time of flight [7].

and provide the solution for the feasible trajectory,
see (16), in term of the semi-major axis, argument of
the periapsis from (13) and arrival epoch from time
of flight from (10).

FTC21 (e1, t1) = 0 −→ [e∗1, t
∗
1, t
∗
2, a
∗
1, w

∗
1 ] (16)
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For the Venus-Earth leg, the constrained value of
the time of flights and the associated semi-major axis
can be represented as eccentricity related parameters,
see Fig.9,
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Figure 9: The dependency of the semi-major axis and
the associated time of flight on the eccentricity
for the Venus-Earth leg tangential at the depar-
ture. In the light blue, solid line the solution
for the short transfers while in red dashed line
the long one

Paying attention to the sign of the sine of the aper-
ture that for negative values imposes to replace the
time of flight with its complementary value with the
respect of the period (long transfer ).

And finally the associated pork-chop expressed in
dates of departure from Venus and pre-encounter
with Earth, t∗1 and t∗2, obtained for the tangential
departure hypothesis, can be represented in Fig.10:
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Figure 10: The pork-chop plot representation of the
short transfer solutions (light blue, solid) and
long arc ones (red solid) for the Venus-Earth
leg

Similar reasoning can be done considering a tan-
gential arrival at Jupiter and, again, parametrising
the Earth-Jupiter leg on the eccentricity, see (17) and
(18):

a2 (e2) =
r3

1 + e2
ω2 (t3) = L3 (t3)

cos (∆L32 (e2)) = − 1

e2

(
r3

r2
(1− e2)− 1

) (17)

FTC32 (e2, t2) = 0 −→ [e∗∗2 , t
∗∗
2 , t

∗∗
3 , a

∗∗
2 , w

∗∗
2 ] (18)

Fig. 11, Fig.12 and Fig.13 display the solution
of the FTC for the eccentricity and post-encounter
epoch, the dependency of time of flight and the as-
sociated semi-major axis on the shaping parameter
and the porkchop plot obtained for the dates of post-
encounter with Earth and arrival at Jupiter:
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Figure 11: The correlation between the date of de-
parture from Earth and the eccentricity for an
orbit tangential at Jupiter, obtained from the
feasible transfer condition. In light blue and
red, respectively the short and long transfers
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Figure 12: The evolution of the semi-major axis and
the time of flight for a short (light blue) and
long (red) transfer on the eccentricity.
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Figure 13: The FTC solutions expressed in depar-
ture/arrival dates for a tangential orbit on the
arrival to Jupiter represented in a pork-chop
plot manner. In light blue and red, respec-
tively the short and long Earth-Jupiter trans-
fers

The syzygy function shall identify where the solu-
tions, described by (16) and (18) in the set of orbital
elements and the departure and arrival time, merge
at the flyby in term of encounter date and its effect
on the variation of the orbital parameters.

The linearized orbit eq. variation

From the linearized orbit equation, see (8), one
can see that at the flyby both conditions has to be
verified, see (19):

p1
r2
− f1 cosL2 − g1 sinL2 = 1

p2
r2
− f2 cosL2 − g2 sinL2 = 1

(19)

whose difference leads to the variational relation for
the linearised orbit, see (20):

∆p

r2
−∆f cosL2 −∆g sinL2 = 0 (20)

Considering that, the flyby occurs almost instan-
taneously, the variation of the equinoctial elements
can be regarded as its derivative with the respect the
time, and viceversa, which allows to rewrite (20) as
function of the standard keplerian elements, see (21):

∆a
(
1− e2

)
r2

−∆e

(
2ae

r2
+ cos (L2 − ω)

)
−

∆w sin (L2 − ω) = 0

(21)

What (20) and (21) enunciate, is that after the flyby
the trajectory must still be a conic which was exactly
the desired policy to replace the initial line condi-
tion. Involving variations of orbital elements raised
questions regarding the ”sanity” of the formulation of
the syzygy function which was tested with the Guass’
planetary equations [5], see (22):

da
dt = 2a2

h

(
e sin far + p

raθ
)

de
dt = r

h

{
p
r sin far +

[(
1 + p

r

)
cos f + e

]
aθ
}

dω
dt = r

he

[
−pr cos far +

(
1 + p

r

)
cos faθ

) (22)

expressed as function of the disturbing accelera-
tion, in radial and ortho-normal components, ar and
aθ respictively. The zero function appears particu-
larly nice since it is automatically satisfied for the
Gauss solutions, meaning that when the syzygy func-
tion tends to zeros, it exists a real value for turning
angle, δ, of the flyby such that the planetary en-
counter from a specific orbit, identified by [a, e, ω],
induces the prescribed variations in orbital elements,
and respectively in semi-major axis, ∆a, eccentric-
ity, ∆e, and peri-apsis argument, ∆ω. In the end,
it can be easily shown that the (21) is automatically
satisfied in the one ellipse case.

The conic-syzygy solution can be written combin-
ing (21) with the FTC solutions, (16) and (18), into
(23):

F =
(a∗∗2 − a∗1)

(
1− e∗1

2
)

r2
+

− (e∗∗2 − e∗1)

(
2a∗1e

∗
1

r2
+ cos (∆L∗21)

)
+

− (ω∗∗2 − ω∗1) sin (∆L∗21) −→ 0

(23)
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Nevertheless, there is a missing information on the
maximum and minimum turning angles.

Gauss’ planetary eq. applied to the flyby

Such problem can be faced studying rather than
whether the value of turning angle associated to a
given conic-syzygy, satisfies the limits, the variations
of the orbital parameters with the respect of their
maximum and minimum values obtained from the
GPE (22).

To do that the disturbing acceleration, expressed
in its radial and ortho-normal components, ar and
aθ respectively, has to be defined for specific problem
of the flyby. Again considering that the infinitesimal
fraction of time during which the probe undergoes a
flyby with the respect of his whole orbits, the deriva-
tive of the orbital element can be regarded as its vari-
ation as well as the acceleration can be interpreted as
the variation of velocities [8]. In the hodograph rep-
resentation [5], the heliocentric and infinity velocity
at the encounter can be written as a function of the
shape parameter, see (24) and Fig. 14:

v (e) = µ
h (e sin f ir + (1 + e cos f) iθ)

v∞ (e) = µ
h

(
e sin f ir +

(
1 + e cos f −

√
p
r

)
iθ
)
(24)
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Figure 14: The entry angle and the relative velocity
in its radial and ortho-normal components as-
sociated to the Venus-Earth leg

Which allows to write the pre- and post-encounter
heliocentric velocity as a function of the components
of the relative velocity, v−r and v−θ , the entry angle
at infinite, γ−, (displayed in Fig.14) and the turning
angle at the flyby, δ, see (25):

v− = v∞ (sin γ−ir + cos γ−iθ)
v+ = v∞ (sin (γ− ± δ) ir + cos γ− ± δiθ)

(25)

where γ is the entry/exit angle described by the ve-
locity at infinite with the respect to the planetary
one, δ is the turning angle and the ± sign considers
whether the flyby is retrograde or prograde.

Substituting the variations in radial and ortho-
normal components, see (26):

δvr = v∞ (sin γ+ − sin γ−)
δvθ = v∞ (cos γ+ − cos γ−)

(26)

and differentiating with the respect of the exit an-
gle, the value associated to the maximum/minimum
variation of the three orbital elements can be iden-
tified by nullifying the derivative as function of the
eccentricity, e, and the true anomaly, f only [7], see
(27):

γ+
∆aMAX

= arctan
(

e sin f
1+e cos f

)
γ+

∆eMAX
= arctan

(
(1+e cos f) sin f

(2+e cos f) cos f+e

)
γ+

∆ωMAX
= arctan

(
− (1+e cos f) cos f

(2+e cos f) sin f

) (27)

Whether those associated to the minimum variation
can be easily obtained at π radiants difference, see
(28):

γ+
∆amin

= γ+
∆aMAX

+ π (28)

and similarly for e and ω.

In our particular case, the problem simplify even
further since the true anomaly is also function
of the eccentricity, thus the exit angle for maxi-
mum/minimum variation can be parametrised as well
and compared with the respect of the turning angle
limits, see Fig.15.

Feasible values of the exit angle, γ+, are those that
satisfy the limits identified by the maximum and min-
imum turning angles, see (29):

{γ+
p | −δMAX < γ+ − γ− ≤ −δmin}

{γ+
r | δmin ≤ γ+ − γ− < δMAX}

(29)

obtained for an encounter at the Sphere of Influence,
associated to δmin, and at the minimum periapsis,
assigned to δMAX , see (30):

δmin =

(
1 +

v2∞apl

µ
4/5
pl µ1/5

)−1

δMAX =
(

1 +
v2∞rpl
µpl

)−1
(30)
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Figure 15: The turning angle, δ, for maxi-
mum/minimum variation obtained from
the exit angle by diminishing its value of the
entry angle. Red, blue and green lines, are
associated to the variation in semi-major axis,
eccentricity and argument of the periaspsis.
Solid and dashed lines distinguish between the
maximum and minimum variations respec-
tively. Light and dark blue areas represent
the limits for retrograde and prograde flyby

Figure 16: On the right, the turning angle for maxi-
mum/minimum variation, on the left, the asso-
ciated range of maximum and minimum vari-
ations. From the top to the bottom, the val-
ues for semi-major axis, eccentricity and peri-
aspsis argument. Blue and red lines distiguish
between retro-/prograde flyby, while solid and
dash lines between the max/min variations.

Defining the value of the turning angle within the
limits, allows to determine feasible range for the as-
sign orbital parameter, in particular see Fig.16

Given the formulation of the syzygy func-
tion, which involves an unconstrained turning an-
gle,requires to evaluate their solutions with the re-
spect to the four sets identified by (31) in term of
matching flyby date and feasible boundary conditions
for the orbital parameters variation:

t2∗∗ == t2∗

∆a∗min ≤ a∗∗2 − a∗1 ≤ ∆a∗MAX

∆e∗min ≤ e∗∗2 − e∗1 ≤ ∆e∗MAX

∆w∗min ≤ w∗∗2 − w∗1 ≤ ∆w∗MAX

(31)

Solving the two orbits and one flyby problem in
such manner is interesting since differently from the
standard approach in which the patching of the hy-
perbolic trajectories has to be ensured, it offers the
possibility to identify solutions with partial agree-
ment with the constraints identified by (31), leaving
the task to an optimizer to identify the overall refined
trajectory, if exists.

5. Results

For the Earth-Venus-Jupiter trajectory, the solu-
tion of the conic-syzygy function can be compared
with those identified by the in-range orbital variation
approach. It must be stated that if the former ap-
proach offer a resolution defined for a unique turning
angle, the latter identifies only upper and lower limits
for the orbital element considered alone or in other
terms that a set of variations [∆a,∆e,∆ω] within the
limit might still produce an non-patched trajectories
(not unique δ). By representing the solution for the
conic-syzygy on top of the fully and partially satis-
fied limits 31, the porkchop plots assigned to first and
second legs, Fig.18, and the shaping parameters map,
Fig.17, display three different situations:

• solutions fully satisfying the boundary condi-
tions, whose orbit sample is represented in
Fig.19;

• solutions partially satisfying the boundary con-
ditions, see Fig.20;

• solutions not satisfying the boundary conditions,
see Fig.21.

.
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Figure 17: The pork-chop plots for the Venus-Earth
and Earth-Jupiter legs. The dark and light
blue circles identifies solutions with partial
(two over three) agreements with the con-
straints, see (31), while the red and yellow ones
the fully compliant ones, respectively for pro-
grade and retrograde motion. The black dots
represents the solutions of the conic-syzygy.

It is interesting to notice from Fig.19 and Fig.20
that, the solutions of the conic-syzygy captures both
areas where the constraints are fully and only par-
tially satisfied. It is highly probable that in the lat-
ter case, the optimiser might require a manoeuvre to
obtain such an orbit, but a small delta-v is expected.

The fact that the fully compliant area in Fig.18
is not covered with black dots, assigned to the solu-
tions of the syzygy function, can be associated to the
fact that the syzygy resolves automatically the tra-
jectory for a unique turning angle while the ranges
don’t. In the end, the out-layers must be analysed

with particular attention but it is expected to iden-
tify an unfeasible solution.

Figure 18: The shaping parameters correlation at the
flyby. The dark and light gray areas repre-
sents the limits identified by the maximum and
minimum variation of eccentricity and semi-
major axis, respectively for prograde and ret-
rogade motion. The dark and light blue cir-
cles identifies solutions with partial (two over
three) agreements with the constraints, see
(31), while the red and yellow ones the fully
compliant ones, respectively for prograde and
retrograde motion. The black dots represents
the solutions of the conic-syzygy.

This can be done by evaluating the orbits associ-
ated to the solutions identified by the conic-syzygy
function, here represented collected by year of depar-
ture for simplification, see Fig.21:

Departure year: 2020

Figure 19: The trajectory obtained for a conic-
syzygy solution fully compliant with the vari-
ational limits, hitting the the red/yellow area
obtained for prograde and retrograde motion.
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Departure year: 2026

Figure 20: The orbit associated to a partial agree-
ment of the constraints identified by the lo-
cation of the syzygy solution over light/dark
blue area assigned to prograde and retrograde
motion.

Departure year: 2028

Figure 21: The trajectory obtained for an outlayer
solution of the conic-syzygy method.

6. Conclusion

In conclusion, the objectve of this paper was to
show the steps that brought to define the conic-
syzygy function from its standard application. Al-
though its results must still be proven to be optimal,
theoretical evidence was provided. In the end, pre-
liminary results show a good adherence between the
solution of the linearised orbit eq. variation and the

in-range approach, which makes the method promis-
ing, considering that no non-linear equation has been
resolved. The outlayers solution represents a draw-
back of the method but the idea behind the paper
was to provide preliminary solutions, which can still
be discarded by the following stage of optimisation.

7. Future work

A way to handle the outlayers is currently under
devolopment. Solutions for the syzygy function that
doesn’t tend to zero but that are within a certain
small range, wants to be analyse in deep and their be-
haviour explained. Opitimality for the conic-syzygy
function will be also checked. In the end, it is forseen
to extend the work to the MGA case, considering a
prescribed variation in eccentricity per flyby.

8. Acknowledgement

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 679086 - COMPASS).

References

[1] Shane D Ross and Daniel J Scheeres. Multiple
gravity assists, capture, and escape in the re-
stricted three-body problem. SIAM Journal on
Applied Dynamical Systems, 6(3):576–596, 2007.

[2] Stefano Campagnola and Ryan P Russell.
Endgame problem part 2: multibody technique
and the tisserand-poincare graph. Journal of
Guidance, Control, and Dynamics, 33(2):476–
486, 2010.

[3] Stefano Campagnola, Paul Skerritt, and Ryan P
Russell. Flybys in the planar, circular, restricted,
three-body problem. Celestial Mechanics and Dy-
namical Astronomy, 113(3):343–368, 2012.

[4] Elisa Maria Alessi and Joan Pau Sánchez. Semi-
analytical approach for distant encounters in the
spatial circular restricted three-body problem.
Journal of Guidance, Control, and Dynamics,
39(2):351–359, 2015.

[5] Richard H Battin. An introduction to the mathe-
matics and methods of astrodynamics. Aiaa, 1999.

[6] John E Prussing and Bruce A Conway. Orbital
mechanics. Oxford University Press, USA, 1993.

IAC–18–C1.9.12 Page 11 of 12



69th International Astronautical Congress, Bremen, Germany.

[7] D Menzio and C Colombo. An analysis of the
pork-chop plot for direct and multi-revolution
flyby missions. In 4th IAA Conference on Dy-
namics and Control of Space Systems (DyCoSS
2018), pages 1–6, 2018.

[8] Camilla Colombo, Gianmarco Radice, and Massi-
miliano Vasile. Optimal trajectory design for in-
terception and deflection of Near Earth Objects.
PhD thesis, University of Glasgow, 2010.

IAC–18–C1.9.12 Page 12 of 12


