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Abstract This work aims at introducing stress responses

within a topology optimization framework applied to

the design of periodic microstructures. The emergence

of novel additive manufacturing techniques fosters re-

search towards new approaches to tailor materials prop-

erties. This paper derives a formulation to prevent the

occurrence of high stress concentrations, often present

in optimized microstructures. Applying macroscopic test

strain fields to the material, microstructural layouts, re-

ducing the stress level while exhibiting the best overall

stiffness properties, are sought for. Equivalent stiffness

properties of the designed material are predicted by

numerical homogenization and considering a metallic

base material for the microstructure, it is assumed that

the classical Von Mises stress criterion remains valid to

predict the material elastic allowable stress at the mi-

croscale. Stress constraints with arbitrary bounds are

considered, assuming that a sizing optimization step

could be applied to match the actual stress limits un-
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der realistic service loads. Density–based topology op-

timization, relying on the SIMP model, is used and the

qp–approach is exploited to overcome the singularity

phenomenon arising from the introduction of stress con-

straints with vanishing material. Optimization prob-

lems are solved using mathematical programming schemes,

in particular MMA, so that a sensitivity analysis of

stress responses at the microstructural level is required

and performed considering the adjoint approach. Fi-

nally, the developed method is first validated with clas-

sical academic benchmarks and then illustrated with an

original application: tailoring metamaterials for a mu-

seum anti–seismic stand.

Keywords density–based topology optimization ·
material design · periodic microstructures · stress

constraints · homogenization

1 Introduction

Nowadays, additive manufacturing allows fabricating

high performance components with complex shapes in-

cluding porous, graded or composite material archi-

tecture. It is well–known from nature that the most

efficient materials, to address given requirements, are

obtained by a tailored distribution of porous or ori-

ented material, e.g. bones or wood structures. The mi-

crostructural material distribution defines the macro-

scopic behavior of the structure. It follows that an ap-

propriate design of the microstructure and its distribu-

tion allow for the achievement of desired properties at

the macroscopic level.

Since the seminal work by Bendsøe and Kikuchi

(1988), porous microstructures have held a prominent

importance in the research tied to the design of optimal

topologies. Bendsøe and Kikuchi exploited numerical
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homogenization to compute equivalent elastic proper-

ties of parametrized porous microstructures used in the

optimization process. Large grey regions frequently oc-

curred in the optimized layouts. These zones were orig-

inally interpreted as porous material, thus generating

troubles during manufacturing. The interested reader

is also referred to the works by Hassani and Hinton

(1997, 1998a,b) providing a comprehensive review of

the homogenization theory for topology optimization.

To overcome this difficulty and generate black and white

layouts which were easier to manufacture using classical

machine tools, Bendsøe (1989) proposed an efficient ma-

terial model for porous microstructures. He introduced

a power–law to interpolate the material elastic proper-

ties and penalize intermediate densities. This material

interpolation scheme was later noted as Solid Isotropic

Material with Penalization (SIMP), see Bendsøe (1989)

and Rozvany et al (1994), and its physical meaning was

afterwards discussed in Bendsøe and Sigmund (1999).

Since then, the SIMP model has been largely exploited

in various extensions of the topology optimization method,

see for instance Sigmund and Maute (2013) and Deaton

and Grandhi (2014). Homogenization and microstruc-

tural design have been receiving a revival interest for

several years, as attested by recent works by Xia (2015)

or Andreassen et al (2015).

The homogenization theory plays a key role in engi-

neering problems involving a multiscale character. The

method usually assumes that the structure can be de-

scribed by a periodic Representative Volume Element

(RVE) or a Representative Unit Cell (RUC). A distinc-

tion between RVE and RUC is provided in Aboudi et al

(2012) and the concept of RUC is exploited in this pa-

per to meet the definition given in the aforementioned

contribution. Periodic boundary conditions are imposed

on the RUC and the latter is analyzed to extract the ef-

fective properties of the microstructure. The method is

based on the separation of scales, i.e. the characteristic

size of the RUC must be much smaller than the struc-

tural dimensions at the macroscopic scale. In-depth ex-

planations of the method can be found in Besoussan

et al (1978), Sanchez-Palencia (1983), Suquet (1982)

or Torquato (2000). The equivalent material proper-

ties can be computed analytically, although numerical

analysis, based on the finite element method, are used

for more complex microstructures. Numerical homog-

enization techniques are further discussed in Guedes

and Kikuchi (1990), Mlejnek and Schirrmacher (1993)

or, more recently, in Andreassen and Andreasen (2014),

who provide an academic homogenization code.

The pioneering work by Sigmund (1994) initiated a

new way of tailoring materials for prescribed proper-

ties and extremal features. Taking advantage of topol-

ogy optimization and the SIMP model as design tools,

Sigmund (1994) introduced the concept of inverse ho-

mogenization. Numerical homogenization is exploited

to extract the equivalent elastic properties of the mi-

crostructure through the material distribution process

and, comparing the achieved results with respect to tar-

get values. However, the target value must be known

in advance and this is not always trivial. An alterna-

tive formulation consists in directly using the homog-

enized material properties as objective function while

constraining the volume constraint or enforcing addi-

tional requirements, see Bendsøe and Sigmund (2003).

Later, Sigmund (1999) used the former method for the

design of extremal composite materials. This approach

was further extended to consider various and more com-

plex fields of applications. Among others, the work of

Jensen et Sigmund (2011) addresses the design for opti-

mal electromagnetic and phonic properties. Multiphase

elastic materials were explored in the work by Gibian-

sky et Sigmund (2000), whereas Guest et Prévost (2006)

investigated the design for multiple properties such as

fluid permeability and stiffness. Sigmund et Torquato

(1999) handled the design of microstructures exhibit-

ing prescribed thermal and electrothermal properties,

whereas Liu et al (2016) explored concurrent topol-

ogy optimization of macrostructures and material mi-

crostructures for natural frequency. Jia et al (2017) used

granular micromechanics to cope with the optimal de-

sign of materials with micro-scale tension-compression

asymmetry. Interested readers may refer to Cadman et

al (2013) for a comprehensive review on the topic.

Besides the numerous compliance–based design for-

mulation in topology optimization, Duysinx and Bendsøe

(1998) introduced stress constraints in the framework

of density–based topology optimization to assess the

structural integrity of the optimized layouts. They pro-

posed a stress criterion for the optimal rank-2 material,

before investigating a relevant stress measure to be used

along with the SIMP model. In this milestone work,

the stress constraints are enforced locally and the well–

know singularity phenomenon is overcome through the

ε-relaxation (Kirsch (1990); Cheng and Guo (1997)).

An alternative technique, to address the relaxation of

the constraints, is the so–called qp–approach proposed

by Bruggi (2008). The latter is based on a suitable

choice of the exponents in the interpolations of the local

apparent stresses (q) and the stiffness (p) when dealing

with the SIMP model and provides a strong relaxation

in low density regions, without introducing any bias at

full density.

Even if the need for a mathematical relaxation of the

constraints is well–known, the issue of efficiency is still

not fully solved. To circumvent some numerical bur-



3

den, Duysinx and Sigmund (1998) introduced global p–

norm and p–mean stress measures and proposed to con-

sider a single constraint aggregating the local stress con-

straints. Although significantly reducing the CPU time,

the high non-linearity associated with the global con-

straint might lead to convergence issues. Other aggre-

gate functions, such as the Kresselmeier–Steinhauser

(KS) function used in Yang and Chen (1996) and Luo

et al (2013), were subsequently exploited to try to over-

come the high CPU cost. At the crossroad between the

local and the global approaches, Paris et al (2010);

Holmberg et al (2013) proposed some clustering ap-

proach. The local apparent stress constraints are sorted

and aggregated in clusters or groups. Local and global

approaches are recovered if the number of clusters is

equal to the number of design variables or to one, re-

spectively. The method shows promising results, although

its effectiveness may be strongly dependent on the defi-

nition of the clusters. Bruggi and Duysinx (2012) adopted

a global compliance constraint in the optimization frame-

work while processing local stress constraints follow-

ing an active set selection strategy. The CPU time is

lower than classical local approaches while allowing for

the design of a structure that fulfills stiffness require-

ments. Recently, Bruggi (2016) extended the approach

and adopted stresses as main variables for both the op-

timization and the analysis problems.

Few investigations on microstructural design sub-

ject to stress requirements are available in the litera-

ture. Lipton and Stuebner (2006, 2007) employed ho-

mogenization solutions in an inverse procedure to iden-

tify graded microstructures providing expected struc-

tural response while ensuring a local stress control in

the vicinity of singularities between structural elements.

This method considers local stress amplifications due to

the porous microstructure, measured through new mul-

tiscale quantities. Microstructural design with stress

constraints has also been studied using level set method.

One can cite, for instance, the work by Noël and Duys-

inx (2016), where the topology optimization is performed

with a XFEM–level set formulation on benchmarks of

the literature as well as multi–inclusion problems. The

results show that the method is robust and flexible and

can reproduce analytical solutions. The present contri-

bution focuses on the introduction of stress constraints

in the SIMP–based material design problem. The au-

thors would like to emphasize that the goal of the pa-

per is to focus on the optimization of the material con-

figuration at microscopic level in order to obtain pre-

scribed stiffness properties while avoiding layouts with

high stress concentrations. The pursued objective is to

keep the local stresses below a prescribed stress limit

thereby enabling to mitigate high stress intensity. Such

undesirable features are encountered in theoretical de-

signs, such as rank-2 materials (Bendsøe and Sigmund

(2003)) or octree lattice structures (Deshpande et al

(2001)). Since the far field is not known, i.e. is not com-

puted through a macroscopic finite element analysis,

some arbitrary strain fields are applied to produce the

stress field within the optimized layouts. Consequently,

an arbitrary stress limit is chosen as upper bound of the

local stress values and does not stands for the real yield

stress of the material. The paper does not constitute an

attempt to determine an equivalent plasticity criteria or

a first point failure criteria, evaluated in terms of macro-

scopic (average) stress, to predict the plasticity regime

in the periodic cell. Further details are discussed in the

subsequent sections of this paper.

The paper is organized as follow. Section 2 recalls

the basics of numerical homogenization techniques for

periodic microstructures. Section 3 introduces the for-

malism to tackle stress constraints, adopting a Von Mises

stress measure. Section 4 presents the optimization prob-

lem addressed in this work. In particular, Section 4.2

derives the sensitivity analysis of the stress constraints

in the context of microstructural design. Section 4.3

investigates numerical issues related to the considered

optimization problem. Section 5 illustrates the method

with classical benchmarks from the literature before in-

vestigating application dedicated to seismic insulation

device.

2 Homogenization

The homogenization theory was developed to calcu-

late the overall behavior of complex microstructural

geometries and evaluate their effective properties at

the macroscopic level. Although applicable to hetero-

geneous media, the particular case of periodic materi-

als, built from the repetition of a RUC in the two or

three directions of space, is generally considered as de-

scribed in Besoussan et al (1978); Sanchez-Palencia

(1983); Suquet (1982). Taking advantage of the period-

icity, the effective properties of periodic media can be

extracted analytically or numerically from the analysis

of a single RUC. The homogenization theory of periodic

media states that the response of the periodic unit cell

is meaningful only if the two considered scales are well

separated, i.e. lRUC � lmacro, where lRUC and lmacro
stand respectively for the RUC length and the char-

acteristic length on which the macroscale loading (or

the macroscale deformation gradient) varies in space as

showed by Kouznetsova et al (2001). In practical ap-

plications, this assumption might not be verified in the

presence of localized actions, e.g. high strain gradient,
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boundary effects, etc. Nevertheless, the homogenization

theory is assumed to remain valid within this work.

Numerical homogenization techniques refer to the

numerical handling of the partial differential equations

used to describe highly heterogeneous media, see for in-

stance Guedes and Kikuchi (1990); Mlejnek and Schirrma-

cher (1993) or Andreassen and Andreasen (2014). In

the following, we recall the main results useful to our

investigations. In particular we address the numerical

computation of the homogenized elastic tensor and of

the load vector. To avoid any ambiguities between the

different stresses at the various scales, we introduce the

relations existing between these ones in Fig. 1. At the

macroscale, a structural stress Σ can be computed by

averaging the stress 〈σij〉 evaluated at the microscale.

The microstructural stresses are related to a local stress

measure σij that refers to the porous material consti-

tuting the RUC. In the present contribution, we only

consider the local and the microstructural stresses (σij
and 〈σij〉 respectively), since the design domain is re-

stricted to the RUC. The homogenized stress (Σ) is not

considered here as our investigation remain focused to

the RUC level. More details are provided in Section 4.

This work focuses on orthotropic macroscopic ma-

terials. Their constituents, at the microscale, are as-

sumed to be linear elastic and their constitutive equa-

tion reads:

σ = H ε, (1)

where H is the Hooke’s matrix, σ and ε the microscopic

stress and strain respectively.

To evaluate the equivalent homogenized elastic prop-

erties and focusing on two dimensional (2D) RUC, three

independent strain fields are required: ε01 = [1 0 0]T ,

ε02 = [0 1 0]T and ε03 = [0 0 1]T , see for instance Sanchez-

Palencia (1983). We note that for three dimensional

problems, six independent strain fields should be ap-

plied. An effective way to compute the homogenized

elastic properties HH
ij is detailed in Bendsøe and Sig-

mund (2003) and is recalled in Eqn. (2):

HH
ij =

1

Y

∫
Y

(ε0i − εi)T H (ε0j − εj) dY,

i, j = 1, 2, 3,

(2)

where Y is the volume of the RUC, ε0i are the prescribed

unit strain fields, and εi are the strain fields induced in

the RUC when submitted to ε0i .

To satisfy the periodicity of the material, the analy-

sis can be restricted to a single RUC through the appli-

cation of periodic boundary conditions. Working with

regular periodic meshes, boundary conditions are con-

veniently enforced by the deletion of redundant degrees

of freedom (dofs), (see e.g. Sigmund (1994, 1999); An-

dreassen and Andreasen (2014)). Specific procedures,

relying on the introduction of Lagrange multipliers (Michel

et al 1998; Miehe et Koch 2002) or polynomial inter-

polations (Nguyen et al 2012; Tyrus et al 2007) were

developed to handle more general configurations, such

as non–periodic or non–regular meshes.

In this work, the dofs deletion strategy is adopted, as

illustrated in Fig. 2. The periodic boundary conditions

are enforced by suppressing redundant nodes located

at opposite sides of the RUC. Hence, the number of

dofs associated to the RUC, and thus the size of the

system to solve, are reduced. Eventually, the analysis is

restricted to the dashed region in Fig. 2. The obtained

displacements uP can be extended in a post–processing

step to recover the initial size of the problem uNP.

Eqn. (2) can be rewritten to introduce the displace-

ment field ui undergone by the RUC when acted upon

by the unit strain field εi0:

HH
ij =

1

Y

∫
Y

(u0
i − ui)

T BT H B (u0
j − uj) dY,

=
1

Y
(u0
i − ui)

T K (u0
j − uj),

i, j = 1, 2, 3,

(3)

where B is the strain-displacement matrix and K the

stiffness matrix associated to the RUC.

To evaluate the displacement field ui, the following

static equilibrium equation has to be solved:

K ui = f0i , i = 1, 2, 3, (4)

where f0i is the force vector equivalent to the application

of the prescribed unit strain field ε0i . The latter can be

expressed as:

f0i =

∫
Y

BT H ε0i dY, i = 1, 2, 3,

≈
∑
ngp

wgp BT H ε0i det (J) ,
(5)

where wgp is the weight associated to each Gauss point,

det (J) is the determinant of the Jacobian matrix. One

should remark that the equivalent force vector f0i de-

pends on the Hooke’s tensor, itself depending on the

design variables, i.e. the densities.

This optimization problem thus involves a design–

dependent load.

3 Stress constraints in density–based topology

optimization

Handling stress constraints in topology optimization,

using the SIMP model, is not straightforward. One faces
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Macroscale:
Structural level

Σij macroscopic stress
at the structural level

Microscale:
RVE level

〈σij〉 microscopic stress
at the microstructural level

Constituent material:
Porous SIMP material

σij local apparent stress
in the constituent material

Σij =

∫
〈σij〉dY
Y

σij =
〈σij〉
xqe

Fig. 1 Illustration of separation of scales when considering stress constraints. Within the macrostructure made of repeated periodic
unit cells, a structural stress Σij is evaluated as the average of the microstructural stress 〈σij〉 within the RUC. The latter is known

by accounting for the local stress measure σij within the porous SIMP material.

•
1

•
2

•
3

•
4

•
5

•
6

•
7

•
8

•
9

•
10

•
11

•
12

•
13

•
14

•
15

•
16

•
1

•
2

•
3

•
1

•
4

•
5

•
6

•
4

•
7

•
8

•
9

•
7

•
1

•
2

•
3

•
1

Fig. 2 Enforcing periodic boundary conditions to a square RUC

by applying a dofs deletion strategy: corresponding nodes are

associated leading to the elimination of redundant dofs.

at least three main difficulties, as reported by Duysinx

and Bendsøe (1998). First of all, generalized stress fail-

ure criteria for porous media need to be defined. Second

the so–called stress singularity phenomenon has to be

overcome to prevent the optimization algorithms from

removing vanishing members. Finally, the introduction

of stress restrictions results in a drastic increase in the

problem size and a high CPU time is required to eval-

uate the local stress constraints and their derivatives.

Duysinx and Sigmund (1998) derived a strength cri-

terion for SIMP–based materials, inspired by the me-

chanics of layered composites. They computed analyti-

cally the stresses in each layer of a reference rank 2 mi-

crostructure (micro-stresses) and enforced a Von Mises

criterion over them, see also Aboudi et al (2012). An

overall strength domain was defined in terms of macro-

stresses and porosity, to introduce the well–known stress

criterion for power–law materials.

In this paper, we focus on an RUC made of a porous

SIMP material. To perform stress–constrained optimiza-

tion at the RUC level, the latter must comply with two

hypotheses. It should be large enough, compared to the

SIMP material scale, to retain the material properties

of a bulk medium as stated in Aboudi et al (2012).

Simultaneously, the dimensions of the RUC should re-

main much smaller than those of the macrostructure,

so that the homogenization theory can be exploited to

extract the RUC equivalent elastic properties.

Considering that the scale separation is satisfied and

that the RUC bulk material properties are known, a

stress–constrained optimization framework can be de-

rived. As in Duysinx and Sigmund (1998), we assume

that the base material of the porous microstructure is

metallic, i.e. has a ductile behavior, and that the local

failure can be predicted by a Von Mises criterion. Thus

the stress state can be controlled by defining a stress

criterion in terms of the computed microstresses and

the density unknowns.

Working in a 2D setting and assuming a plane stress

state, the equivalent Von Mises stress is expressed as:

σVM =
√
σ2
x + σ2

y − σxσy + 3σ2
xy,

=
√

3 J2, (6)

where J2 is the second invariant of the stress tensor.

Performing density–based topology optimization, a

well–posed problem is obtained by introducing an inter-

polation law expressing physical quantities, such as the

material stiffness, as a function of the density variables

x. As proposed by Bendsøe (1989), the SIMP scheme is

adopted in this paper and the components of the elas-

ticity tensor Hij(x) are given as:

Hij(x) = xp H0
ij , (7)

where H0
ij is the Hooke’s matrix of the solid material,

and p the penalization factor taken equal generally to

3 (Bendsøe and Sigmund 1999, 2003).
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Introducing Eqn. (7) in Eqn. (1), the stress tensor

can be written as:

σ = xp H0 ε = xp T0 u, T0 = H0 B. (8)

Following the approach of Duysinx and Sigmund

(1998) and considering a local constraint at the cen-

troid of the e–th element associated with density xe,

the equivalent stress measure reads:

〈σVM

e 〉 = xpe

√
uTe M0

e ue = xpe σ
VM

e (9)

where

M0
e = T0,T

e V T0
e, V =

 1 −1/2 0

−1/2 1 0

0 0 3

 . (10)

A proper failure criterion must be accounted for

in the porous SIMP material. Following Duysinx and

Bendsøe (1998), a so–called local stress measure σij is

assumed:

σij = 〈σij〉/xqe, with q > 1. (11)

Finally, a suitable stress criterion, to be implemented

in a density–based topology optimization framework, is

derived:

σVM
e

σ0
y

=
〈σVM
e 〉

xqe σ0
y

= xp−qe

σVM

e

σ0
y

≤ 1, (12)

where σ0
y is a prescribed stress limit under which the

local stress should remain to mitigate the stress con-

centrations.

In this work, the design domain is restricted to the

RUC and the macroscopic structure is not considered.

Nonetheless, it remains legitimate to consider stress

constraints to predict failure at the microscopic level. In

fact, the homogenization theory assumes well–separated

scales, but does not require an infinitesimal dimension

of the microstructure, see Sanchez-Hubert and Sanchez-

Palencia (1998), Hassani and Hinton (1997). Since the

RUC can keep a finite dimension, we assume that con-

tinuum mechanics hypotheses remain valid. Therefore

an equivalent Von Mises stress measure can be defined

at every point in the microstructure similarly to the

works of Gurson (1977), Michel et Suquet (1993) or

Ponte-Castenada and De Botton (1992), where a fail-

ure criterion is used to predict plasticity. Conversely

to these latter works, a first point failure criterion, as

in Duysinx and Bendsøe (1998), is considered here to

predict the end of the elastic regime.

4 Optimization framework

The literature devoted to material tailoring mainly fo-

cuses on designing metamaterials with prescribed ho-

mogenized elastic properties. Optimization problems seek

for material distributions in the RUC, which maximize

selected stiffness properties. In many examples, achieved

designs exhibit small sections or geometrical singulari-

ties, where stress concentrations arise causing the lay-

outs to fail even under small structural loads. Detecting

and controlling weak design features, i.e. weak in terms

of strength, can not be achieved through conventional

energy–based formulations, but requires the introduc-

tion of stress responses in the optimization problem. In

this work, we aim at designing microstructures that ex-

hibit the best overall stiffness properties while keeping

the stress state at an admissible level.

Material tailoring problems usually carry out the

microstructural design prior to the structural analysis,

i.e. the actual structural loads remain undetermined.

As the structural strain field is a priori unknown, stress

constraints are evaluated for a set of test strain fields.

In this context, the bounds imposed on the stress mea-

sures are arbitrary. The problem is then formulated as

in (13). To deal with the actual stress values under re-

alistic loadings, a second optimization stage could be

considered. Optimized layouts would then be subjected

to a further optimization step adapting the RUC mate-

rial volume or the size of the microstructural members

to satisfy the material stress limits under the realistic

structural strain field.

P1 : max properties

s.t. stress < bound

volume < V ?
(13)

P2 : min stress

s.t. properties > bound

volume < V ?
(14)

An alternative formulation, in (14), could minimize

the maximum stress measure under a set of test strain

fields, subject to restrictions on the volume and the ef-

fective stiffness properties. This min–max problem is

solved by exploiting the so–called bound formulation,

see e.g. Bendsøe and Sigmund (2003), or by replacing

the maximum function by a smoothed continuous func-

tion, see e.g. Chen (1985). However, selecting proper

bounds for the effective stiffness properties a priori might

be difficult from an engineering point of view and would

also introduce arbitrary parameters in the problem. From

a mathematical perspective, both formulations are equiv-

alent provided that appropriate bounds are prescribed
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for the volume, the stress constraints or the effective

stiffness coefficients. It can be shown that swapping

the constraint and the objective results in equivalent

problem formulations (see Appendix B). Therefore, en-

forcing stress constraints does not restrict the general

character of the approach developed here. Numerical

tests reveal that solving the min–max formulation with

MMA has a high computational cost, as a large num-

ber stress constraints are active during the first itera-

tions. Constraining the stress responses generally leads

to a more computationally effective scheme while using

MMA. This observation leads us to consider the for-

mulation presented hereunder, which look for a design

with maximum effective stiffness properties subject to

volume and stress constraints.

In the following, we address stress–constrained mi-

crostructural design through the selected optimization

formulation. Special attention is devoted to the sensitiv-

ity analysis of the stress constraints. Numerical issues

inherent to the problem definition are discussed and

detailed: the stress singularity phenomenon, the active

restriction strategy and the accuracy of the computed

stresses.

4.1 Topology optimization problem

Let’s consider f(HH
ij ) as a generic form of the objective

function depending on the target homogenized prop-

erties.The resulting 2D optimization problem can be

formulated as:

min
x

f(HH
ij ) i, j = 1, 2, 3 (15a)

s.t. K(x) ui = f0i (x), i = 1, 2, 3 (15b)

K(x) χs = fs(x), s = 1, . . . , ns (15c)

xp−qe σVM

e,s ≤ σ0
y, e = 1, . . . , ne (15d)

s = 1, . . . , ns

V (x) ≤ V ?, (15e)

0 ≤ xmin ≤ xe ≤ 1, e = 1, . . . , ne (15f)

In (15),

– (15b)) is used to determine the homogenized prop-

erties of the RUC, see (4).

– (15c) refers to ns load cases applied to the RUC

as external strain fields. The load vectors fs are

computed following the same procedure introduced

for the evaluation of f0i . These load cases generate

stresses within the base cell and the latter ones will

be bounded by the imposition of stress constraints.

– (15d) introduces ne × ns local stress constraints,

where ne is the number of elements. To reduce the

computational effort related to the imposition of a

large number of constraints, an active set selection

strategy is exploited in this work. The number of

constraints na, actually supplied to the optimizer,

is then lower than the maximum number of con-

straints ne × ns. The adopted selection strategy is

further detailed in Section 4.3.

– (15e) enforces a volume restriction on the design.

– (15f) introduces a lower bound xmin on the values of

the design variables. This lower bound allows us to

avoid a potential singularity of the global stiffness

matrix. In Section 5, xmin is fixed to 10−3, as rec-

ommended by Bendsøe and Sigmund (2003) for raw

material exhibiting a Poisson’s ratio equal to 0.3.

As detailed in Sigmund and Petersson (1998), the fi-

nite element discretization can be affected by numerical

issues such as checkerboard and mesh–dependence. To

address these issues, we adopt a density–based filtering

technique, as proposed by Bruns and Tortorelli (2001)

and Bourdin (2001). The original design variables xe
are mapped into a new set of physical unknowns x̃e:

x̃e =

∑
i∈Ve

Wi xi,∑
i∈Ve

Wi
,

Wi = max(0, rmin − dist(e, i)),

(16)

where Ve is a set of elements located in the neighbor-

hood of the e–th element, dist(e, i) is the distance be-

tween the centers of the e−th and i−th elements, rmin
is the filter radius. The latter is chosen such that rmin >

dm, where dm is the element size. For the simulations

in Section 5, the filter radius is set to rmin = 2.5 dm.

4.2 Sensitivity analysis

The microstructural design problem, described in (15),

are solved resorting to gradient–based algorithms and

a sensitivity analysis is required. Since the differenti-

ations of homogenized properties are classical results

available in the literature (see Bendsøe and Sigmund

(2003)), they are not further discussed here. This sec-

tion focuses on the formulation and computation of the

sensitivity analysis for imposing stress constraints in

the context of density–based techniques.

For each load case s, the derivative of the stress

measure for porous SIMP material, proposed in (12),

can be written, using the classical chain rule, as :

∂σVM
e,s

∂xk
= (p− q) xp−q−1e σVM

e,s δek + xp−qe

∂σVM

e,s

∂xk
, (17)

where δek is the Kronecker delta. In the following dis-

cussion, the subscript (.)s is dropped to simplify the

notations.
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To evaluate the sensitivities, we exploit the adjoint

approach:

∂σVM

e

∂xk
−λT

(
∂K

∂xk
χ− ∂f

∂xk

)
+

(
dσVM

e

dχ
− λTK

)
dχ

dxk
= 0,

(18)

where λ is the adjoint response.

The implicit part of (18) is eliminated by defining

an appropriate adjoint vector λ such that:

dσVM

e

dχ
− λTK = 0. (19)

Finally, the derivatives of σVM

e with respect to the

design variable xk is obtained by including the solution

of (19) in (18):

∂σVM

e

∂xk
= λT

(
∂K

∂xk
χ− ∂f

∂xk

)
, (20)

where

∂K

∂xk
= p xp−1k K0

e,
∂f

∂xk
= p xp−1k f0e . (21)

An evaluation of the pseudo–load λ is required for

each active constraint and is expressed as:

K λ = −
[

M0
e χe√

χTe M0
e χe

]T
. (22)

4.3 Numerical issues and remarks

In this section, we discuss some of the issues related to

a stress–based topology optimization approach. In par-

ticular the prevention of the singularity phenomenon is

exposed, as well as the method used to address CPU

requirement. Finally we draw a remark concerning the

accuracy of the analysis.

Overcoming the singularity phenomenon To provide me-

chanical consistency, the same penalization should be

adopted for both the stiffness and the local stress inter-

polations, as explained by Duysinx and Bendsøe (1998).

However, under this assumption, gradient–based algo-

rithms are likely to end up in local optima, associ-

ated with designs exhibiting massive grey regions. This

problem, known as the singularity phenomenon, is due

to the presence of degenerated sub–domains, arising

within the feasible design space, when handling stress

constraints with p = q, as explained in Kirsch (1990)

or Cheng and Guo (1997). In this paper, the singular-

ity phenomenon is overcome by adopting a relaxation

technique, here the qp–approach proposed by Bruggi

(2008). The latter is based on an adequate choice of

the penalization q < p. Selecting 2.5 ≤ q < 3 provides a

strong relaxation in the regions of low density without

introducing any bias at full density. In the examples of

Section 5, we fix q = 2.5.

Reducing the computational cost via an active set se-

lection strategy In this work, we exploit an active set

selection strategy to reduce the CPU effort inherent

to stress–based optimization problem. During the first

iterations, we only consider the constraints, which val-

ues are larger than a given threshold, chosen as σth,1 =

0.65. The threshold value is then progressively increased

to σth,2 = 0.95 during the first niter iterations here set

to niter = 10. This strategy results in a modification of

the active set of constraints and thus introduces discon-

tinuities in the optimization process, that may trigger

convergence issues. However, to the authors knowledge,

no such convergence issue was encountered in the nu-

merical investigations. The update rule of the threshold

along the iteration process, σth(iter), is given in (23)

σth(iter) = min

(
σth,2 − σth,1

niter
· iter + σth,1;σth,2

)
(23)

Accuracy of the stress analysis A crucial issue, when

dealing with stress constraints, is the accuracy of the

stress analysis. The displacement–based discretization,

adopted in this work, is known to suffer from a lack

of accuracy in the approximation of the stress field.

Moreover, inaccuracy of the evaluated stress field, in

the context of density–based topology optimization, is

also due to the jagged nature of the optimal structure.

Mesh refinement can be used to overcome this issue,

but highly increases the CPU time required. Though

conventional discretization methods fail to predict ex-

act stress concentration value, they allow detecting the

stress peaks locations to mitigate through the optimiza-

tion process. Interested readers may refer to Le et al.

(2010) for a comprehensive review on numerical exper-

iments using displacement–based finite elements. Sev-

eral research works focus on overcoming these inaccu-

racy issues in the context of stress–based topology op-

timization. For example, Bruggi (2016) used stresses as

primary variables, whereas Svärd (2015) proposed an

interior value extrapolation of the stresses across the

boundary of the design.

5 Numerical examples

In this section, the developed methodology of microstruc-

tural design with control of the stress level is illustrated
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with two–dimensional numerical examples. First, some

classical benchmarks inspired from the literature are

investigated to assess the algorithm. Then, an original

material design problem with application to seismic in-

sulation is addressed, involving multiple load cases.

For each example, the discretization of the periodic

design domain consists of 64 × 64 square Q4 elements

with bi–linear shape functions. The initial periodic base

cell presents a circular hole at its center. To validate the

choice of the mesh, i.e. make sure that the stress fields

are evaluated with a sufficient accuracy, a comparison

against a finer mesh (128 × 128 elements) is provided

in Appendix A.

The constituent material is assumed linear elastic

and isotropic and normalized reference properties are

used to carry out the simulations without any loss of

generality. In particular, we consider a reference mate-

rial characterized by a Young modulus E = 1N/m2 and

a Poisson’s ratio ν = 0.3. The stress limit σ0
y = 5N/m2

is enforced in stress–constrained optimization. Strain

fields with a suitable magnitude are applied to the unit

cell to ensure that the imposed stress constraints be-

come active and are thus effective in removing stress

peaks arising within the RUC.

The stress–constrained microstructural design prob-

lem in (15) is solved resorting to the Method of Mov-

ing Asymptotes (MMA) developed by Svanberg (1987).

The stopping criterion is chosen such that the maximal

variation of the design variables between two successive

iterations, max(|xiter+1−xiter|), should drop to 0.005.

Throughout the paper, the stress maps show the

equivalent Von Mises stress normalized by the selected

stress limit, i.e. σVM/σ0
y. For convenience, identical color

bars are used for optimal layouts achieved with and

without stress constraints. The proposed procedure is

implemented and tested in an academic version of Mat-

lab R2015b.

5.1 Maximization of the bulk modulus

This first example deals with the maximization of the

material bulk modulus under hydrostatic loading. This

benchmark was extensively studied in the literature, see

e.g. Sigmund (1999), Andreassen et al (2015), or Noël

and Duysinx (2016). This problem consists in finding

the optimal contour of a hole in a plate undergoing a

single hydrostatic load. Vigdergauz (2001) provided an

analytical solution describing the optimal contour of the

single hole inclusion depending on its volume. Also, the

bulk modulus achieved numerically can be conveniently

compared with the theoretical upper bound of Hashin

and Strickman (1963).

The objective function to be maximized is the equiv-

alent effective bulk modulus, expressed as a linear com-

bination of its homogenized elastic properties as:

f(HH
ij ) = (EH11 + EH22). (24)

The boundary conditions, the mesh and the initial

configuration are given in Fig. 3. An isotropic strain ε1
is applied to the periodic cell and considered as a single

load case for the enforcement of strength constraints.

The problem is solved for different values of the maxi-

mum volume V ? allowed in the RUC.

ε1 = [−3.57,−3.57, 0]T

Solid

Void

Fig. 3 Maximization of the bulk modulus under hydrostatic

loading: initial guess, mesh and boundary conditions.

The results of the optimization procedure, for a tar-

get volume V ? = 0.6, are presented in Fig. 4(a) and 4(b)

without and with stress constraints respectively. The

relevant maps of the non–dimensional equivalent Von

Mises stress measure σVM/σ0
y are given in Fig. 4(c)

and 4(d). The stress map associated with the conven-

tional design in Fig. 4(a) reports stress concentrations

along the hole edge, where σVM/σ0
y > 1. Conversely,

in Fig. 4(c), the stress-constrained formulation for bulk

maximization leads to a more squared layout, where the

maximum stress does not exceed the prescribed limit

σ0
y.

According to Vigdergauz (2001) and Grabovsky and

Kohn (1995), a family of elliptical shapes evolving from

circles, for small cavities, to squares with rounded cor-

ners, for large cavities, maximizes the effective bulk

while minimizing the stress concentrations around the

hole. The optimized shapes shown in Fig. 4(a) and 4(b)

are quite similar, and in rather good agreement with

the theoretical and numerical results. Nonetheless, the

stress-constrained design exhibits a more square-shaped
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(a) (b)

(c) (d)

1.2 1 0.8 0.6 0.4 0.2

σVM/σ0
y

Fig. 4 Maximization of the bulk modulus under hydrostatic

loading: a) optimized layout without stress constraints; b) op-
timized layout with stress constraints; c) scaled Von Mises stress

map, for the optimized layout without stress constraints; d)

scaled Von Mises stress map for the optimized layout with stress
constraints.

hole, able to modify the stress field so as to satisfy the

prescribed stress constraints at the price of a decrease

in the objective function value, i.e. the bulk modulus

value. These minor shape differences are certainly due

to the approach followed in this paper. In fact, we are

not solving the original problem of Vigdergauz (2001)

and Grabovsky and Kohn (1995), who sought an opti-

mal shape of the hole minimizing the elastic energy or

minimizing the stress concentrations around the hole.

In this contribution, a prescribed value of the stress

limit has to be reached by enforcing stress constraints.

This formulation renders the problem more restrictive

and steers the optimization towards a less optimal lay-

out. Despite this difference, a solution, consistent with

the theoretical expectations and fulfilling the strength

requirements, is achieved.

An additional assessment of the achieved layouts

can be provided by comparing their bulk modulus with

respect to the HS bound KHSu . In the case of plane

stress, the equivalent bulk modulus KH (Bendsøe and

Sigmund (1999)) is given by:

KH =
EH

2 (1− νH)
. (25)

The HS upper bound on the bulk modulus KHSu is ex-

pressed as:

KHSu =
ρKG

G +K (1− ρ)
, (26)

where ρ is the material volume fraction, K and G are

the bulk and the shear moduli of the base material re-

spectively.

Table 1 reports the values of the equivalent bulk

modulus computed for the optimal layouts generated

for different target volumes V ?, and in particular for

the case V ? = 0.6. Regardless of the adopted formu-

lation, the equivalent bulk modulus KH matches quite

well the corresponding theoretical upper bound KHSu .

As expected, for a given volume, the stress–constrained

formulation generally finds a layout with a bulk mod-

ulus lower than the corresponding one for the uncon-

strained design. Minor biases with respect to the the-

oretical bounds may be due to numerical reasons. The

refinement of the mesh or the effect of the intermediate

densities arising at the interface can lead to a less accu-

rate evaluation of the bulk modulus. A finer mesh and

a projection filter could be used to improve the results.

Unfortunately, this would have a strong impact on the

computational cost of the simulations.

For the reference mesh with 4096 elements, the num-

ber of selected stress constraints at the end of the op-

timization process Nend
s is given in Table 1. As can be

seen, the number of constraints handled by the opti-

mizer may become non negligible and clearly calls for

a compromise between accuracy and efficiency.

Maximum

volume
V ? [m3]

KHS
u [N/m2]

theoretical
upper

bound

KH [N/m2]

no stress
constraints

KH [N/m2]

with stress
constraints

Nend
s

0.2 0.0574 0.0425 0.0425 97

0.4 0.1351 0.1249 0.1208 449

0.6 0.2459 0.2339 0.2337 593

0.8 0.4167 0.4136 0.4092 309

Table 1 Maximization of the bulk modulus under hydrostatic
loading: equivalent bulk modulus for the optimized layouts ob-

tained for different volume fractions V ? and corresponding theo-

retical Hashin–Shtrikman upper bounds
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5.2 Synthesis of a negative Poisson’s ratio

metamaterial

The second example deals with the synthesis of auxetic

materials, commonly known as negative Poisson’s ratio

materials, as discussed in Evans et al (1991). As dis-

cussed e.g. by Sigmund (1994); Andreassen et al (2015);

Xia and Breitkopf (2015), the synthesis of material char-

acterized by a negative Poisson’s ratio using topology

optimization is a challenging task.

Since early developments on material design, such

kind of problems have received a lot of attention both

from the theoretical and the practical point of view.

Auxetic materials are extremely useful and their partic-

ular behavior can be exploited in various applications.

Among practical interests, they can be used to design

hydrophones as they exhibit a high sensitivity to hy-

drostatic pressure, as described in Avellaneda et Swart

(1998), or to design crashworthiness devices for auto-

motive or aerospace engineering, as explained in Liu

(2006).

In this work, we investigate the synthesis of negative

Poisson’s ratio materials while controlling the stress

regime. According to Xia and Breitkopf (2015), the fol-

lowing objective function can be considered:

f(HH
ij ) = EH12 − f(β)(EH11 + EH22), (27)

where f(β) is a scalar function of the parameter β con-

trolling the stiffness of the structure along the principal

directions of the plane, being β < 1.

The objective function in (27) is derived as follows.

The homogenized Poisson’s ratio can be expressed in

term of the homogenized equivalent properties HH
ij as:

νH12 =
EH12
EH11

, or νH21 =
EH21
EH22

. (28)

Therefore, the objective function to achieve a pre-

scribed Poisson’s ratio value ν? < 0 can be defined as:

f1(HH
ij ) =

EH12
EH11
−|ν?|, or f2(HH

ij ) =
EH21
EH22
−|ν?|. (29)

If we consider EH11, E
H
22 > 0, minimizing (29) is

equivalent to minimizing:

f1(HH
ij ) = EH12−|ν?|EH11, or f2(HH

ij ) = EH21−|ν?|EH22.
(30)

Summing both equations in (30), i.e. f = f1 + f2,

and thus accounting for stiffness requirements in both

directions of the plane, yields:

f(HH
ij ) = (EH12 + EH21)− |ν∗|(EH11 + EH22). (31)

Enforcing EH12 = EH21, an expression similar to (27)

is recovered:

f(HH
ij ) = EH12 −

|ν∗|
2

(EH11 + EH22). (32)

The objective function in (32) allows providing stiff-

ness along both principal directions of the plane, thus

avoiding the collapse of the microstructure, when syn-

thesizing auxetic materials requiring a negative value

of EH12.

The difference between (27) and (32) lies in the

introduction of the scalar function f(β). During the

optimization process, this function f(β) can be held

constant or can be updated. To keep a constant value,

f(β) = β, with β < 1. Xia and Breitkopf (2015) pro-

posed to use an evolving factor and imposed f(β) =

βiter, being again β < 1 whereas the exponent (.)iter is

the current iteration number. The function f(β) = βiter

tends to zero as the iteration number iter increases dur-

ing the optimization process. This makes the second

term in (27) negligible with respect to EH12.

The request for stiffness in both principal directions

avoids the arising of undesired compliant microstruc-

tures but might prevent to achieve a negative Poisson’s

ratio. Therefore, the second term in (27) is either set

to zero progressively, or kept very small throughout the

optimization. Numerical experiments show that using

an evolving parameter improves the convergence of the

optimization.

The starting point, the mesh and boundary con-

ditions of the optimization problem are presented in

Fig. 5. A volume constraint is enforced to achieve V ? =

0.5. A uniform strain field ε1 is applied along the x
axis, acting as a single load case for the enforcement of

strength requirements. Three different sets of parame-

ters are considered as summarized in Table 2.

ε1 = [−εx, 0, 0]
T

Solid

Void

Fig. 5 Synthesis of material with negative Poisson’s ratio: initial

guess, mesh and boundary conditions.
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Case f(β) β εx

1 f(β) = βiter β = 0.8 5

2 f(β) = β β = 0.02 4.54

3 f(β) = β β = 0.1 5

Table 2 Synthesis of material with negative Poisson’s ratio: nu-
merical parameters β and εx.

The optimized layouts obtained considering the ob-

jective function in (27) for Case 1, without and with

stress constraints enforced in the optimization process,

are shown in Fig. 6(a) and 6(b), respectively. The corre-

sponding normalized stress maps are given in Fig. 6(c)

and 6(d).

The optimized layout in Fig. 6(a) matches the ex-

pected auxetic behavior resorting to thin members con-

nected through compliant hinges. These features are

weak from a structural point of view due to the aris-

ing of stress concentration, see Fig. 6(c). The adop-

tion of the proposed stress–constrained formulation sig-

nificantly modifies the optimized layout, as shown in

Fig. 6(b). Thin members and weak connections disap-

pear to fulfill the strength requirements. A similar effect

could be alternatively achieved by the introduction of

a length–scale control, see e.g. Guest (2009) or Lazarov

et al (2016). However, the enforcement of a minimum

length–scale does not account for the stress regime act-

ing in the structure, meaning that it could be ineffective

in enforcing prescribed strength requirements all over

the domain.

The Poisson’s ratios obtained by the optimized lay-

outs are summarized in Table 3. Surprisingly, the stress–

constrained optimization leads to an enhanced auxetic

behavior with respect to the unconstrained one. As

emphasized in Sigmund (1994, 1995); Grabovsky and

Kohn (1995), material design for auxetic behavior is

well–known to be a challenging optimization problem.

Due to its high non–convexity, gradient–based algo-

rithms are likely to prematurely stop in undesired local

optima. In this particular case, the enforcement of stress

constraints steers the minimizing sequence towards a

region of the design space where a better optimum ex-

ists and a layout, significantly different from the uncon-

strained one, arises. Thus, one gets a layout free from

stress concentration and that exhibits an improved aux-

etic behavior.

So far Case 1 was considered, i.e. the framework

proposed by Xia and Breitkopf (2015) where f(β) =

βiter and the second term of (27) eventually disappears

as the number of iterations increases. In the following

simulations design problems for which f(β) = β are

addressed, that are β = 0.02 (Case 2) and β = 0.1

(Case 3).

(a) (b)

(c) (d)

1.2 1 0.8 0.6 0.4 0.2 0

σVM/σ0
y

Fig. 6 Synthesis of material with negative Poisson’s ratio: a)

optimized layout without stress constraints; b) optimized layout
with stress constraints; c) scaled Von Mises stress map for the

optimized layout without stress constraints; d) scaled Von Mises
stress map for the optimized layout with stress constraints.

Fig. 7(a) and 7(b) show the optimized layouts ob-

tained considering a constant function f(β) = β =

0.02, without or with stress constraints, respectively.

The corresponding scaled stress maps are presented in

Fig. 7(c) and 7(d). The optimal design without stress

constraints is different from the solution of Fig. 6(a).

Conversely, the stress–constrained formulation achieves

a similar topology with respect to the one achieved for

Case 1. The four–arm star of Fig. 7(b) is not far from

that seen in Fig. 6(b). The relevant Poisson’s ratios are

summarized in Table 3. As for the reference design, the

enforcement of strength requirements leads to an en-

hanced auxetic behavior, although this is not generally

the case when imposing stress constraints.

Initializing the stress–based optimization with the

density distribution obtained in Fig. 7(a), the optimized

design shown in Fig. 8(a) is found. A slight increase in

the members thickness allows fulfilling the strength re-

quirements, but yields a drastic reduction in terms of

performance, i.e. νH = −0.5515. From a mathemat-

ical point of view, this design is sub–optimal with re-

spect to the one previously found using the same stress-

constrained formulation. This simple example illustrate
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that the problem is very sensitive to local optima and

that the choice of the initial design has a large influence

on the achieved results.

(a) (b)

(c) (d)

1.2 1 0.8 0.6 0.4 0.2 0

σVM/σ0
y

Fig. 7 Synthesis of material with negative Poisson’s ratio (β =

0.02): a) optimized layout without stress constraints; b) opti-
mized layout with stress constraints; c) scaled Von Mises stress

map for the optimized layout without stress constraints; d) scaled
Von Mises stress map for the optimized layout with stress con-

straints.

Fig. 9(a) and 9(b) show the obtained layouts and

their corresponding scaled stress maps when f(β) =

β = 0.1. In this case, the designs achieved neglecting

or considering stress constraints exhibit similar topolo-

gies. For both problems, a four–arm shape is found, as

already seen in Fig. 6(b) and 7(b). Stress requirements

induce a modification of the inner hole that is respon-

sible, as expected, for a less enhanced auxetic behavior

with respect to the unconstrained optimization, see Ta-

ble 3.

As a conclusion, starting the optimization from var-

ious initial guesses, different solutions are likely to arise

when synthetizing auxetic microstructures, see in par-

ticular the comprehensive numerical campaign in Xia

and Breitkopf (2015). The same conclusion is drawn

here for stress–constrained optimization, as illustrated

by the stress–based layouts in Fig. 7(b) and 8(a). When

the constrained and unconstrained layouts only present

(a) (b)

1.2 1 0.8 0.6 0.4 0.2 0

σVM/σ0
y

Fig. 8 Synthesis of material with negative Poisson’s ratio:

stress–based problem using the density distribution of Fig. 7 as
starting point: (a) optimized layout; (b) scaled Von Mises stress

map for the optimized layout

νH [−] no stress

constraints

with stress

constraints

Nend
s

1. f(β) = βiter β = 0.1 -0.4479 -0.6616 377

2. f(β) = β = 0.02 -0.6043 -0.6821 33

3. f(β) = β = 0.1 -0.5932 -0.5926 381

Table 3 Synthesis of material with negative Poisson’s ratio:

Poisson’s ratio achieved by the optimized layouts in Fig. 6, 7

and 9.

slight differences, an expected weakening of the aux-

etic behavior is observed for the stress–based design,

see e.g. Case 3. However, stress constraints can steer

the optimizer towards design regions so far unexplored

when considering an unconstrained formulation. Due to

the high non–convexity of the problem, optimized so-

lutions with improved properties may be achieved, see

e.g. Case 1.

5.3 Metamaterial for seismic insulation device

The third example deals with the synthesis of a meta-

material to build a seismic insulation device. A high

bulk modulus is required to sustain the weight of an

overlaying structure, whereas a low shear modulus al-

lows cutting the horizontal forces in case of an earth-

quake.

A topology optimization problem can be straightfor-

wardly derived from these requirements. The homog-

enized bulk modulus of the microstructure should be

maximized while an upper bound should be enforced to

the homogenized shear modulus, e.g. G? = 0.0013N/m2.
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(a) (b)

(c) (d)

1.2 1 0.8 0.6 0.4 0.2 0

σVM/σ0
y

Fig. 9 Synthesis of material with negative Poisson’s ratio

(f(β) = β = 0.1): a) optimized layout without stress constraints;
b) optimized layout with stress constraints; c) scaled Von Mises

stress map for the optimized layout without stress constraints; d)
scaled Von Mises stress map for the optimized layout with stress

constraints.

The design problem reads:

max
x

K(x) (33a)

s.t. G(x) ≤ G∗, (33b)

K(x) ui = f0i (x), i = 1, 2, 3 (33c)

K(x) χs = fs(x), s = 1, . . . , ns (33d)

xp−qe σVM

e,s ≤ σ0
y, e = 1, . . . , ne (33e)

s = 1, . . . , ns (33f)

0 ≤ xmin ≤ xe ≤ 1, e = 1, . . . , ne (33g)

Two load cases are considered for the enforcement

of strength requirements. Most of its life, the insula-

tor sustains only the weight of the carried structure.

In the event of an earthquake, the insulator supports

an additional shear loading. The influence of strength

requirements on the optimized layouts is assessed inves-

tigating the optimization problem with or without the

constraints of Eqn. (33e). In this particular problem,

the volume is no longer a design requirement.

The starting point, the mesh and boundary condi-

tions are illustrated in Fig. 11, along with the strain

fields related to load case 1 (LC1 - black) and load case

2 (LC2 - red).

The resulting topologies of the microstructural base

cell are rather different when accounting for or neglect-

ing stress constraints, see Fig. 12. If no stress constraint

is imposed, thin hinges appear at the corners of the

star–shaped hole in the design. When stress constraints

are enforced, the star-like hole is preserved, but the

members of the layouts are connected by thicker mem-

bers with a new shape. Table 4 gives the bulk mod-

ulus achieved by each one of the tailored microstruc-

tures and shows that the stress–based design performs

slightly better than the unconstrained one.

The corresponding non–dimensional stress maps are

shown in Fig. 12 for load case LC1 and load case LC2.

The thin hinges that allow for the requested shear com-

pliance in the unconstrained design induce stress peaks

for LC1 that are not admissible with respect to strength

requirements. The introduction of stress constraints in

the optimization problem results in a noticeable reduc-

tion of the stress concentration for LC1, as illustrated

in Fig. 12(d).

Focusing on LC2, both Fig. 12(e) and 12(f) show

that the shear load case does not affect the optimization

process. In fact, stress constraints are not active for

this load case, see also Fig. 14 reporting the number

of active constraints for each load case throughout the

optimization process.

Case KH [N/m2]
no stress

constraints

KH [N/m2]
with stress

constraints

Nend
s

1. Fig 12 0.1089 0.1104 18

2. Fig 13 0.1089 0.1097 978

Table 4 Microstructural design for seismic insulation: bulk mod-

uli achieved by the optimized layouts under load cases LC1 and

LC2.

To further investigate the effect of the shear load

case, a stress–constrained optimization with the applied

external strain field ε2 = [0, 0, 7.5] is considered. The

optimized topology, shown in Fig. 13(b), remains al-

most unchanged with respect to the previous one. Mi-

nor adaptations are sufficient to handle the increase in

the magnitude of LC2, see e.g. the slightly different de-

sign in the vicinity of the four corners of the design

domain. As expected, the number of active constraints

is larger than for the previous optimization case, see

Fig. 14.

The bulk moduli found at the end of the optimiza-

tion are almost the same for both layouts, see Table 4.

It must be noticed that the bulk modulus for the op-

timized solution in Fig. 13 is slightly smaller than for



15

0 50 100 150 200 250-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Iterations

P
oi
ss
on
’s
ra
ti
o
ν
[−

]
n
o
st
re
ss

co
n
st
ra
in
ts

βiter update
β = 0.1
β = 0.02

(a)

0 50 100 150 200 250-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Iterations

P
oi
ss
on
’s
ra
ti
o
ν
[−

]
w
it
h
st
re
ss

co
n
st
ra
in
ts

βiter update
β = 0.1
β = 0.02

(b)

Fig. 10 Synthesis of material with negative Poisson’s ratio: influence of the selection of βiter on the convergence of the objective

function (a) without stress constraint; (b) with stress constraint.

ε1 = [−2.5, −2.5, 2.0]T

ε2 = [−2.0, −2.0, 2.5]T

Solid

Void

Fig. 11 Microstructural design for seismic insulation: initial
guess, mesh and boundary conditions.

Fig. 12(b). This was expected considering that the shear

load case has a major importance in this simulation.

However, both designs exhibit an increased bulk mod-

ulus value with respect to the unconstrained solution.

An additional stress–constrained optimization is per-

formed using the solution in Fig. 12(a) as starting point.

In this case, the achieved topology remains quasi un-

changed and slight adaptations are sufficient to reduce

the stress peaks, see Fig. 15(b). The optimized bulk

modulus is equal toKH = 0.1021N/m2, which is smaller

than for the unconstrained problem.

The seismic synthesis problem is arduous as a max-

imum bulk modulus is sought, while restraining the

shear modulus value. It is thus extremely sensitive to

local minima, see Section 5.2. Starting from distinct

initial guesses, different solutions are likely to arise,

see in particular the stress–based layouts in Fig. 13(b)

and 15(b). As previously emphasized, stress–constrained

layouts are associated with reduced target performance,

when they slightly differ from the unconstrained ones.

However, stress constraints can steer the optimizer to-

wards design regions unexplored when exploiting the

unconstrained formulation. In this particular case, al-

ternative solutions with improved performance are achieved.

6 Conclusion

Enhanced material performance can be achieved by op-

timizing the material distribution at the microscale. In

this work, inverse homogenization problems are solved

to tailor porous single–phase microstructures with pre-

scribed elastic properties. Classical density–based opti-

mization is used and, in particular, the SIMP model is

adopted to interpolate material properties.

Macroscopic loads applied to the microstructures

may induce undesired stress concentrations at the mi-

croscale. Stress responses are usually not accounted for

in conventional microstructural design approaches. To

address this problem, this paper proposes an energy–

based stress–constrained optimization formulation to

simultaneously maximize target material properties and

reduce the stress concentrations at the microstructural

level.

Within this work, the macrostructure is not consid-

ered and the actual applied macrostructural loads are

unknown. Arbitrary test strain fields, representative of

the service loads, are thus applied to the microstruc-

ture. Therefore, the prescribed stress limits are arbi-

trary. The resulting approach is thus able to reduce high

stress concentrations, but does not fully control the mi-

crostress values, which depend on the actual structural

strain fields.
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Fig. 12 Microstructural design for seismic insulation under the

strain fields ε1 = [2.5, 2.5, 0] and ε2 = [0, 0, 2.5]: a) optimized

layout without stress constraints; b) optimized layout with stress
constraints; c) scaled Von Mises stress map for the optimized lay-

out without stress constraints (LC1); d) scaled Von Mises stress

map for the optimized layout with stress constraints (LC1); e)
scaled Von Mises stress map for the optimized layout without

stress constraints (LC2); f) scaled Von Mises stress map for the

optimized layout with stress constraints (LC2).

Working with periodic microstructures, the homog-

enization theory is exploited to evaluate the material

equivalent properties. Optimization problems are solved

resorting to mathematical programming schemes and a

sensitivity analysis is carried out considering the adjoint

approach. Material tailoring problems are generally as-

sociated with design–dependent loads, that induce an

additional term in the sensitivity of the equivalent Von

Mises stress.

(a) (b)

(c) (d)

(e) (f)

1.2 1 0.8 0.6 0.4 0.2 0

σVM/σ0
y

Fig. 13 Microstructural design for seismic insulation under the

strain fields ε1 = [2.5, 2.5, 0] and ε2 = [0, 0, 7.5]: a) optimized

layout without stress constraints; b) optimized layout with stress
constraints; c) scaled Von Mises stress map for the optimized lay-

out without stress constraints (LC1); d) scaled Von Mises stress

map for the optimized layout with stress constraints (LC1); e)
scaled Von Mises stress map for the optimized layout without

stress constraints (LC2); f) scaled Von Mises stress map for the

optimized layout with stress constraints (LC2).

Finally, the proposed approach is validated on clas-

sical benchmarks, i.e. the maximization of the mate-

rial bulk modulus and the design of auxetic microstruc-

tures. Then, an original application, including multiple

load cases, investigates the design of seismic insulating

devices. Although one could expect that accounting for

stress restrictions would simply results in a thickening

of thin features and weak members at the cost of a

volume increase and/or a stiffness performance drop,

numerical applications clearly show that the high non–
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Fig. 14 Microstructural design for seismic insulation: number of
active stress constraints related to both load cases LC1 and LC2

in the course of the optimization process.

(a) (b)

Fig. 15 Microstructural design for seismic insulation under the

strain fields ε1 = [2.5, 2.5, 0] and ε2 = [0, 0, 2.5] with stress con-
straints and using the density distribution in Fig. 12(a) as starting

point: (a) starting point, (b) achieved optimal design.

convexity of the problems promotes the convergence to-

wards different local minima, characterized by a small

stiffness performance loss, but also by strongly reduced
stress concentrations.

Ongoing work aims at introducing stress constraints

through a multi–scale approach to enforce strength re-

quirements both at the micro- and at the macroscale.

Proceeding this way, it would be possible to simultane-

ously optimize the material distribution at both scales

and to consider the actual strain fields evaluated from

the service structural loads. Such an approach would

certainly result in a better use of the material. The

extension of the proposed approach to account for mul-

tiple phases in two–dimensional or three–dimensional

design domains is straightforward. Furthermore, non–

linear material properties could be considered to syn-

thesize components exhibiting peculiar properties, such

as shock absorption.
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Appendix A

To validate the choice of the reference mesh (64 × 64

elements) used in this contribution, an additional sim-

ulation with a finer mesh (128 × 128 elements) is per-

formed. The finer mesh is used to solve the bulk mod-

ulus maximization problem described in Eq. (15) with

the objective function given in Eq. (24). The resulting

designs along with their scaled stress maps for both the

unconstrained and the stress constrained problems are

provided in Fig. 16.

The cavity layouts as well as the corresponding stress

maps in Fig. 16 are in good agreement with the results

obtained with the reference mesh, see Fig. 4. As ob-

served previously, the stress–constrained design leads

to a decrease in the bulk modulus values with respect

to the unconstrained design, i.e. KH = 0.2400 N/m2

and KH = 0.2438 N/m2 respectively. One should also

notice that using a finer mesh yields bulk modulus val-

ues closer to the Hashin–Shtrikman theoretical bounds

detailed in Table 1.

However, although the quality of the structural re-

sponses evaluated is improved, the CPU time drasti-

cally increases when using such a fine mesh. Moreover,

the number of selected constraints handled by the opti-

mizer at the end of the optimization process is also sig-

nificantly increased, Nend
s = 2649 over 16384 potential

elements. Therefore, the gain in accuracy is obtained at

the price of an important loss of efficiency.

For these reasons, the reference mesh is used in this

paper as it constitutes a good balance between accu-

racy, i.e. the stress fields are correctly captured, and

CPU time. Finally, one should note that the adopted

mesh size is similar to the one used in multiple works

addressing stress–based optimization, see e.g. Bruggi

and Duysinx (2012); Collet et al (2017); Oest and Lund

(2017); Zhang et al (2017).

Appendix B

For illustration purposes, let us consider two problems:

a simple problem (P1), where we minimize the vol-

ume subject to stress constraints, and a second problem

(P2), where we minimize the maximum local stress sub-

ject to a volume constraint. The maximum local stress

can be approximated by replacing the max function

by a smooth continuous function, see e.g. Chen (1985).
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Fig. 16 Maximization of the bulk modulus under hydrostatic
loading for a fine mesh , i.e. 128 × 128 elements: a) optimized

layout without stress constraints; b) optimized layout with stress

constraints; c) scaled Von Mises stress map for the optimized
layout without stress constraints; d) scaled Von Mises stress map

for the optimized layout with stress constraints.

By writing down the stationary conditions on the La-

grangians for both problems (Eq. (34) and (35)), one

can see that problems (P1) and (P2) are equivalent, pro-

vided that there exists a specific relation between the

Lagrange multipliers λ1 and λ2. In fact, (P1) and (P2)

are equivalent if: λ1 = 1
λ2

, i.e. if the Lagrange multi-

pliers are the inverse from one another. Swapping the

objective and the constraint is therefore consistent with

respect to the mathematical programming approaches,

as considered in our paper.

(P1)


min
x
V

s.t. σmax ≤ σ,
(P2)


min
x

σmax

s.t. V ≤ V ,

L1(x, λ1) = V + λ1(σmax − σ)
∂L1

∂x = ∂V
∂x + λ1

∂σmax

∂x = 0
∂L1

∂λ1
= σmax − σ = 0

(34)

L2(x, λ2) = σmax + λ2(V − V)
∂L2

∂x = ∂σmax

∂x + λ2
∂V
∂x = 0

∂L2

∂λ2
= V − V = 0

(35)

(P1) and (P2) are are equivalent if one takes : λ1 =
1
λ2

. Said otherwise, the two optimization problems are

equivalent if the Lagrange multipliers are the inverse

from one another which make sense since one has swapped

the constraint and the objective from one problem to

the other.
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