

A general approach to conceptual design of hybrid-electric aircraft

Niccolò Rossi, Carlo E. D. Riboldi, Alberto Rolando, Francesco Salucci, Lorenzo Trainelli

Toulouse 24th October 2018

1) Introduction

- Hybrid architectures
- Future trends
- 2) Sizing Approach
 - Preliminary aircraft sizing
 - Working assumptions
 - Motors and Battery sizing

3) Numerical Implementation

- *Hyperion* program procedure
- Simulation strategies
- Program validation
- 4) Results
 - General aviation case study

Association Aéronautique

- Micro feeder case study
- 5) Conclusions

Introduction: hybrid architectures

Available architectures

- All Electric
- Series Hybrid
- Parallel Hybrid
- Series/parallel Hybrid

Source: *Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions, National Academies Press.*

Introduction: future trends

Source: Long-term Hybrid-Electric propulsion architecture options for transport aircraft, A.T. Isikveren, Y. Fefermann, C. Maury , 2016.

Trend of applications

- Non propulsive energy
- Electrically assisted gas turbines
- Parallel hybrid propulsion
- Series hybrid or Turboelectric
- Full-Electric

1) Introduction

- Hybrid architectures
- Future trends
- 2) Sizing Approach
 - Preliminary aircraft sizing
 - Working assumptions
 - Motors and Battery sizing

3) Numerical Implementation

- *Hyperion* program procedure
- Simulation strategies
- Program validation
- 4) Results
 - General aviation case study
 - Micro feeder case study
- 5) Conclusions

AEGATS '18 23-25th OCTOBER 2018 - TOULOUSE

Sizing Approach: aircraft preliminary sizing

Airplane conceptual design

- Computation of aircraft takeoff, empty and payload mass
- Estimation of aircraft aerodynamic characteristics and performance
- Determination of required power and mission energy
- Computation of motor and generator power and fuel and battery mass

AEGATS '18 23-25th OCTOBER 2018 - TOULOUSE 3AF Association Association Association Association Association autique de France

Sizing Approach: working assumptions

Power-train

- Use of propellers driven by electric motors
- Power provided by batteries
- Motor power not depending on altitude
- Windmilling allowed in descent phase
- Generator: turboshaft or reciprocating engine with alternator

Source: *hypstair.eu*

Generator model

- Simulation of the thermodynamic cycle at every altitude with estimation of real efficiency through experimental parameters
- Fuel flow rate obtained from needed power from flight mechanics
- Selection of a transition altitude for generator operation

Sizing Approach: motors and battery sizing

- Aircraft empty mass and aerodynamic characteristics from statistical regression
- Analysis of needed power, estimated duration and overall energy for each phase
- Motor and Generator sizing based on maximum and cruise power respectively
- Battery and fuel mass from required energy and power needs

1) Introduction

- Hybrid architectures ٠
- Future trends ٠
- Sizing Approach 2)
 - Preliminary aircraft sizing •
 - Working assumptions .
 - Motors and Battery sizing •

3) Numerical Implementation

- *Hyperion* program procedure •
- Simulation strategies
- Program validation ۲
- Results 4)
 - General aviation case study
 - Micro feeder case study ٠
- Conclusions 5)

AEGATS '18 23-25th OCTOBER 2018 - TOULOUSE

Numerical Implementation: Hyperion program

Hyperion: HYbrid PERformance simulatION

- Program initialization through input file
- Simulation settings selected by user
- Preliminary aircraft sizing
- Step-by-step simulation of each flight phase
- Check on final fuel and SoC levels
- Battery/Fuel mass correction and reiteration until convergence
- Visual postprocess and file writing

Numerical Implementation: simulation strategies

Battery charging Strategy

- Based on battery state of charge, returns generator throttle for subsequent time step
- Evolution through PID controller: more realistic throttle characteristics
- Generator turned off during takeoff and first climb segment
- Divided in steady charging and cyclic charging strategies

AEGATS 18 23-25th OCTOBER 2018 - TOULOUSE 34

Numerical Implementation: program validation

- Validation on general aviation, micro feeder, commuter and regional aircraft classes
- Validation based on aircraft weight breakdown and installed power
- Conventional airplanes simulated as turboelectric
- Validation on Panthera Hybrid (internal ring)

AEGATS 18 23-25th OCTOBER 2018 - TOULOUSE 3

Numerical Implementation: program validation

Aircraft		M _{to} [kg]	M _e [kg]	M _F [kg]	S _W [m²]	P _M [kW]
Micro feeder Tecnam P2012	Real	3600	2250	275	25.4	560
	Simulated	3327	1927	304	24.0	443
Commuter Beechcraft Beech-1900D	Real	7764	4732	894	28.8	1910
	Simulated	7659	4707	814	28.2	1860
Large regional ATR 72-600	Real	23000	13500	2000	61.0	3650
	Simulated	22990	13450	1920	61.8	3930

AEGATS '18 23-25th OCTOBER 2018 - TOULOUSE 3AF Association Aéronautique de France

1) Introduction

- Hybrid architectures
- Future trends
- 2) Sizing Approach
 - Preliminary aircraft sizing
 - Working assumptions
 - Motors and Battery sizing

3) Numerical Implementation

- *Hyperion* program procedure
- Simulation strategies
- Program validation
- 4) Results
 - General aviation case study

Association Aéronautique

- Micro feeder case study
- 5) Conclusions

Results: general aviation case study

- Study on a single-engine, 4-seater general aviation aircraft with range of 300 km
- Comparison of an All-Electric (internal ring) and Hybrid-Electric (external ring)
- Battery with 1000 W kg⁻¹ and 500 Wh kg⁻¹ of specific power and energy
- Final state of charge (SoC) of 25% and 10% fuel reserve

Results: micro feeder case study

- Study on a twin-engine, 8-seater micro feeder aircraft with range of 250 km All-Electric and 600 km Hybrid-Electric
- Comparison of an All-Electric (internal ring) and Hybrid-Electric (external ring)
- Battery with 1000 W kg⁻¹ and 500 Wh kg⁻¹ of specific power and energy
- Final state of charge (SoC) of 25% and 10% fuel reserve

Aircraft Results

AEGATS 18 23-25th OCTOBER 2018 - TOULOUSE 3 A F Association Aformatic

1) Introduction

- Hybrid architectures
- Future trends
- 2) Sizing Approach
 - Preliminary aircraft sizing
 - Working assumptions
 - Motors and Battery sizing

3) Numerical Implementation

- *Hyperion* program procedure
- Simulation strategies
- Program validation
- 4) Results
 - General aviation case study

Association Aéronautique

- Micro feeder case study
- 5) Conclusions

Conclusion

- Developed a general procedure for All-Electric and serial Hybrid-Electric aircraft conceptual design using turboshaft or reciprocating generator
- Conducted validation on available hybrid aircraft and simulated conventional limit case
- Conceptual design of All-Electric and Hybrid-Electric 4-seater general aviation aircraft and 8-seater micro feeder aircraft

Acknowledgements

23-25th OCTOBER 2018 - TOULOUSE

- Research partially funded by the EU's Horizon
 2020 research and innovation programme under
 Grant Agreement N. 723368
- Develop hybrid electric serial powertrains to enable cleaner, **quieter** and **more efficient** aircraft propulsion
- Deliver optimized propulsion components with increased reliability suitable for commercial deployment to small aircraft

Thank you for your attention!

