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Abstract— Human Robot Interaction has become a key point
in the development of new robotic interfaces and controllers.
In traditional control schemes for teleoperation, master devices
are unaware of the user’s arm dynamic characteristics, as
well as of the complex motor control strategies adopted to
perform the task. In this work, we propose a novel impedance
controller to regulate the master device’s dynamic properties
based on the estimation of user’s arm stiffness, with the
aim of improving shared task performance. We developed a
virtual planar reaching task, and we evaluated arm end-point
stiffness’s main axis changes in magnitude and direction using
a non disruptive offline musculoskeletal model-based algorithm.
Based on the stiffness modulation, the biomimetic variable
impedance controller to adapt the master device’s damping
matrix. The direction of maximal damping was aligned with
the estimated direction of maximal stiffness (Enhancing field),
or to the perpendicular to the stiffness main axis (Isotropic
field). The task performances under the biomimetic impedance
controllers were tested and compared with the null damping
condition. The results showed an increase in task perfor-
mance, in terms of positional error and overshoots, with both
biomimetic controllers. The analysis proved the potentiality of
the biomimetic impedance modulation controller in terms of
execution accuracy.

I. INTRODUCTION

In the last years, a growing number of applications have
showcased the great potentiality of introducing robotic as-
sistances, from manufacturing to automotive, entertainment
and health-care. Depending on the application, users and
robots interact, sharing mutual information about intentions
and internal states. This information can be conveyed through
different means of communication, comprising, among the
others, visual and audio clues, gestures [1], [2], forces and
torques [3]–[5].

When humans and robots physically interact (Physical
Human-Robot Interaction or pHRI), two dynamically and
kinematically different entities are coupled, creating a com-
plex system. The effect of the interaction forces on the
coupled system’s state depend on the relation between the
human’s dynamic characteristics and the robot’s mechanical
properties. While the first are controlled by the Central
Nervous System (CNS) and change with respect to muscular
co-contraction and joint configuration [6], based on specific
motor control strategies, robot’s dynamic behavior is defined
by its design and by the type of control adopted. Therefore,
when analyzing a pHRI system, along with a complete
control over the robot dynamics, a deep understanding of
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the users motor strategies adopted during the execution of
the task is of paramount importance.

Based on the nature of the physical interaction with the
robot, different types of pHRI can be identified: firstly, users
and robots can interact while performing a shared task. In
this case, users don’t hold the robot directly, but forces are
exchanged while working on the same shared task i.e. during
lifting and handling of heavy objects [7] or when cooperating
to assemble parts within an industrial process [8].

Moreover, a rigid connection can be established between
human’s limbs and robots: this is the case of rehabilitative
robotics, where robots are used to help neurological patients
in regaining motor capabilities [9], [10].

Users can also interact with robots’ end-effectors using
handles or directly moving the robots’ links, as in teleoper-
ation or shared control. Among the others, in teleoperation,
users interact with robots specifically designed to follow and
acquire hand movements, functioning as masters to control
remotely placed slaves arms [11]. In order to preserve the
user’s free-hand manipulative skills, master robots shouldn’t,
first of all, limit the natural dexterity of the arm and should
allow for the most intuitive kinematic and dynamic coupling.
Many studies focused on the design of master devices to
improve user-master robot interaction with the final aim of
achieving higher level of dexterity, larger workspaces and
higher position/orientation accuracy [12]–[14]. Some authors
have given emphasis to the ergonomic aspects and user’s
posture while teleoperating [15], [16], while others have
paid attention to the master device handle design [17]. More
recently, the effects on the arm kinematics and dynamics
induced by different master devices architectures have been
studied in order to define which are the characteristics that
might effect human motor control strategies [18], [19].

Traditionally, robots are controlled using two main
paradigms: position and impedance control, reflecting the
control over position or interaction dynamics [20]. While
in the first case the robot reaches a desired position and
orientation regardless of the forces generated, in impedance
control the robot-environment’s force exchange is monitored
and can be used to modify robots’ dynamic properties, such
as its compliance or damping. In order to assure teleoperation
stability while implementing force reflection, high damping
coefficients are usually applied to the master device, im-
pairing the possibility of conveying small interaction forces
to the user arm [21]. To overcome this limitation, adaptive
impedance control was introduced [22], [23]: a time-varying
position-dependent dynamic model of the environment is ob-
tained and used to adapt the master robot impedance. When



facing with compliant environments, which are less prone to
generate high interaction forces and cause system instability,
the master device’s damping coefficient is reduced.

While these solutions allowed adaptations to different
environments, master devices are, still, completely unaware
of the continuous dynamic and kinematic changes that users
undergo while performing the task. As a promising step
toward the possibility of including models of the arm dy-
namic changes within robot control, biomimetic impedance
regulation has been recently proposed [24]–[26]. In this
control paradigm, dynamic characteristics of the human arm
(i.e. arm stiffness) are estimated through the acquisition
of bio-signals (such as muscular activations with surface
electromyography signals) and are used to modify the slave
robot parameters.

In other studies [27], [28], the estimated model of the
arm impedance, was used to modify the robot’s damping
coefficient in cooperative pHRI. In these works, humans
interacted with a robotic handle’s whose damping coefficient
was modulated to match the users arm’s stiffness, evaluated
using the derivative of the force exchanged by the user and
the handle. These works, as well as other similar studies [29],
[30], proved the potentiality of creating dynamic models of
the human arm to implement controllers that improve task
performance in terms of targeting accuracy and reduction of
overshoots.

We present the development of a model-based stiffness-
mimicking adaptive impedance controller for adjusting the
dynamic properties of a master device to increase accuracy
in a virtual targeting task. Using an off-line musculoskeletal
model algorithm based on kinematic and dynamic data, the
cartesian hand stiffness modulation was evaluated [31]. The
proposed biomimetic controller accounts for the changes in
the arm stiffness while performing the task, adapting the
master device’s damping coefficient in order to reflect the
natural, anisotropic, stiffness characteristics. Through exper-
imental acquisitions, we test our main hypothesis that the
introduction of the impedance controller will increase users’
performance in terms of positional error and overshoots from
the targets.

II. MATERIALS AND METHODS

In the first experiment, 7 users performed a virtual teleop-
eration targeting task manipulating a 7DoFs master device.
Joint angles and surface EMG signals were used to obtain
an offline computation of human stiffness. The estimated
values of the average arm stiffness were used to define the
damping coefficients adopted in the master robot variable
impedance controller. In a second experiment, 12 users
tested the performance of the variable impedance controller
performing the same bi-dimensional targeting task.

A. Task design

In the targeting task each user interacted with the master
device to move a virtual stylus shaped end effector tool on
eight target points (T1, Ti, ..., TT with T = 8, see Fig. 1).
These targets lie on a plane and they are distributed to form

Fig. 1. Starting from the central Home, the user has to reach every single
target point Ti (arranged along the sides of a square), positioning the end
effector point (PV E )as precisely as possible in the center of the target for
1s and come back to the Home. Circular targets with a radius r = 50mm
are are distributed on a square with semi-side LT = 300mm. The virtual
reference frame (x-y) is centered on the Home position.

a square whose semi-side length LT is 300mm . Starting
from the center of the square, every user was asked to reach
each target point (reaching phase) and, after having kept the
position for 1s (targeting phase), to come back to the central
”Home” position (see Fig. 1). During the task execution, one
circle at a time changed color from red to green, guiding the
user towards the correct target. Once the target’s outer circle
(r = 50mm) was crossed, users had to place the tool’s end
effector in the inner circle (white dots in Fig. 1) as precisely
as possible, while a counter measured 1s before indicating
users to go back to the home position and moving to the next
target. The targeting phase was arbitrarily limited to a time
frame of one second to create a fast paced task while still
challenging users in trying to minimize the targeting error
after the ballistic reaching phase.

The virtual task was developed using V–Rep (Coppelia
Robotics GmbH, Zurich, Switzerland), a robot simulation
program that can be interfaced through the Robotic Operating
System (ROS) [32] network with the master device and with
the data acquisition framework.

B. Master Device

Users performed the targeting task using the Sigma7
interface (Force Dimension, Nyon, Switzerland), a hybrid
parallel/serial link master device, gravity compensated and
characterized by 6 DoFs plus 1 grip control, with a resolution
of 0.0015mm and 0.013deg and an elliptical dome workspace
with radiuses of approximately 190x130mm. The task was
designed to fit within the master device workspace in such
a way as not to use the device clutching option which
decouples the virtual tool position from the master device
end effector position.

C. Stiffness Estimation

The offline stiffness estimation algorithm follows the steps
presented in [31]. The users’ arm and thorax kinematics are
measured using optoelectronic cameras (Vicra – Northern



Digital, Ontario, Canada, 20 Hz sampling rate) and electro-
magnetic sensors (Aurora – Northern Digital, Ontario, 30
Hz sampling rate) and 10 surface EMG signals are acquired
using a multichannel ADC (TMSi Porti - Twente Medical
Systems International, Oldenzaal, Nederland, 2048Hz sam-
pling rate).

Exploiting an already validated musculoskeletal model
[33] developed in OpenSim (see Fig. 2), the arm joint angles
variations ϑ are computed from the marker movements
through inverse kinematics. Using an EMG informed inverse
dynamic toolbox [34] the muscle stiffness can be estimated
and projected in the joint space using the muscle Jacobian.
From the joint stiffness matrix, using the geometric Jacobian,
the Cartesian stiffness at the hand has been obtained. To
geometrically represent the Cartesian stiffness, using the Sin-
gular Value Decomposition (SVD), the left singular vectors
and values are extracted. The first singular vector represents
the direction and magnitude of the stiffness main axis.

The modulation in the stiffness main axis dimension
(Kmax,i(d)) with respect to the x-y distance (d =√

(Px,V E − Tx,i)2 + (Py,V E − Ty,i)2) between the target
position (Ti) and the tool end-effector position (PV E) during
task execution are evaluated for each ith target. In the same
way, the angle between the main stiffness axis and the x
axis from the task reference frame (θ̂i) for the ith target
is projected on the x-y plane and used as indication of the
stiffness ellipse’s direction.

D. Biomimetic adaptive impedance controller

The estimated changes in the arm stiffness acquired in
the initial experimental phase are used to tune the master
device’s damping matrix (see Fig. 2. From the initial experi-
ment, a single average profile or arm stiffness modulation is
extracted along with the 8 main axis directions corresponding
to the different task targets. The stiffness changes and its
directions are then used to define the variations in the master
device dynamic proprieties that are tested in the second
experiment.

Humans increase arm stiffness in order to achieve high
precision during the execution of targeting tasks, increasing
stability against internal and external noise. Following an
already validated approach [28], the proposed biomimetic
impedance controller increases the master device’s damping
coefficients to match the increase in arm stiffness.

The force generated by the master device (F(t)) at the tth

time frame can be expressed as sum of elastic, damping and
inertial components:

F(t) = K · PMD(t) + D · ṖMD(t) + I · P̈MD(t) (1)

Where K is the elastic coefficient matrix, D is the robot’s
damping matrix, I is the robot’s matrix of inertia (see Fig.
2), PMD(t) and P̈MD(t) are the Master Device (MD) end-
effector position and acceleration in the MD reference frame.

The damping component of the forces generated by the
adaptive impedance controller (FC(d, t) = D · ṖMD(t)) as
a function of the distance from the target d and the t time

Fig. 2. Schematic of the biomimetic adaptive impedance controller: using
joint angles (ϑ) and EMG signals combined with an EMG informed inverse
dynamic algorithm, users’ stiffness is estimated. Mean stiffness modulation
(K̄max) and orientation (θ̂, with respect to the virtual plane x axis) are
used to generate the adaptive damping modulation (cx, cy). The master
device’s speeds on the x-y plane (Ṗx,MD ,Ṗy,MD) are used to compute
the corresponding damping forces (Fx,C ,Fy,C ). Similarly, a viscoelastic
virtual plane produces forces along the Z axis (Fz,MD) obtained from the
sum of the elastic (kz) and damping (cz components)

frame can be obtained as follows:

FC(d, t) = C(d) · Rz(ψi) · ṖMD(t) (2)

where C(d) is the damping coefficients matrix, ṖMD(t) is
the MD end-effector speed and Rz(ψi) is the 3x3 rotation
matrix around the z-axis that is used to rotate the damping
coefficients direction on the x-y plane (see Fig. 3B).

The same equation can be also expressed as:Fx,C(d, t)
Fy,C(d, t)
Fz,C(d, t)

 =

cmin(d) 0 0
0 cmax(d) 0
0 0 cz

 ·

cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

 ·

Ṗx,MD(t)

Ṗy,MD(t)

Ṗz,MD(t)

 (3)

where cmin(d) and cmax(d) represent the adaptation of
the module of the two axes of damping (along x and y)
with respect to changes in the target-tool distance d. In
order to reflect arm stiffness’ anisotropy, we generated a
non-isotropic elliptical damping field, whose axis dimensions
(cmin and cmax) are tuned to match the changes in the mean
arm stiffness module K̄max when approaching targets. The
linear increase in the mean arm stiffness module K̄max is
matched with a linear increase in the bi-dimensional task
space virtual viscosity. On the other hand, cz represents a
constant damping coefficient that we used to avoid possible
instability caused by the elastic virtual plane (see II-E).

At dth distance from the target, cmin and cmax are defined
as follows:

cmin(d) =

{
cmin,1 d ≥ LT /2

cmin,0 − (cmin,0−cmin,1)·d(t)
LT /2 d < LT /2

(4)



Fig. 3. A. cmax and cmin as function of d. B. Subject posture
during task execution. The main axis of the stiffness ellipse (red dash-dot
line), corresponds to the shoulder-hand direction. In green: the Enhancing
damping coefficient field, in blue, the Isotropic one.

cmax(d) =

{
cmax,1 d ≥ LT /2

cmax,0 − (cmax,0−cmax,1)·d(t)
LT /2 d < LT /2

(5)
Where cmin,0 and cmax,0 are respectively the maximal and
minimal values of c (when d = 0) and cmin,1 and cmax,1

are the minimal and maximal values of c (when d = LT ).
The maximal damping variation (∆cmax = cmax,0 −

cmax,1) was obtained from the estimated variation of maxi-
mal stiffness ∆Kmax = Kmax,0 −Kmax,1 as follows:

∆cmax = ∆Kmax · smax (6)

Where smax = 3
2

s
m2 is the scaling coefficient that converts

the arm stiffness modulation into the master device’s damp-
ing modulation. In the same way, for ∆cmin, a scaling factor
smin = 3

4
s

m2 was used. The scaling factors (smax and smin)
were experimentally defined to occupy the maximal range
of forces that the master device was capable of generating
while maintaining a reliable force feedback within the task’s
workspace. In order to test different conditions, expert and
naive users were asked to repeatedly perform the targeting
task at different speed and with different scaling factors.

The resulting variation of maximum and minimum compo-
nents of the damping coefficient as a function of d is shown
in Fig. 3.A.

Two different damping fields were generated:
1) Enhancing damping field: In the first case, the maximal

damping coefficient is directed along the axis of maximal
stiffness. This can be achieved imposing ψ = θ̄i in Eq. 3 ,
therefore applying rotations around the z axis equal to the
displacement between the main axis of stiffness and the x
axis (θ̄i) for each of the eight targets (see Fig. 3.B, green
ellipse) . The effects of this damping field enhance the natural
stiffness directionality, increasing the effect of the stiffness
ellipse anisotropy.

2) Isotropic damping field: In the second case, the maxi-
mal damping coefficient is directed along the perpendicular
to the stiffness main axis, imposing ψ = θ̄i + π/2 (see
Fig. 3.B, blue ellipse). In this case, we aim at obtaining a

more isotropic workspace for the user hand by summing the
effects of the natural impedance control with the controller
generated damping forces.

E. Visco-elastic Plane

Perpendicularly to the virtual plane of the task (x-y), a
viscoelastic force is applied in order to help the user to
steady the tool-tip Pz,MD on the z dimension. This solution
was introduced to compensate for the lack of 3D perception
that users suffered while performing the tasks on a flat bi-
dimensional screen.

F. Experimental protocol

Since an off-line method for the estimation of the arm
end-point stiffness was adopted, the biomimetic adaptive
impedance controller’s effects were evaluated on a successive
experimental session.

1) Arm stiffness estimation: For the stiffness character-
ization, we recruited 7 healthy subjects (4 female and 3
male, mean age 23 ± 1.5y.o) Each user was seated in a
comfortable chair in front of a monitor and, after having
been instructed about the task he/she was going to perform,
he/her was asked to execute 10 trials while trying to maintain
the hand movement on a constant plane. The monitor was
put as flat as possible to make it parallel to the pane in which
the task was performed.

2) Variable impedance controller: For testing the perfor-
mance of the stiffness-based variable impedance controller,
we recruited 12 right-handed subjects (4 females and 8
males, mean age 24 ± 2.8y.o.) who had no experience
with the master controller. Each subject performed 10 trials
of the same virtual task under 3 different force conditions
(30 overall repetitions): no impedance regulation (Null),
Enhancing damping field and Isotropic damping field. The
execution order was randomized, assuring to have the three
different conditions tested an equal overall number of times.

All the involved subjects provided informed written con-
sent, in accordance with the recommendations of Politecnico
di Milano Ethical committee Board. All subjects gave written
informed consent in accordance with the Declaration of
Helsinki.

G. Performance Indexes

To assess each subject’s performance during task execu-
tion, the following indexes were evaluated for each damping
field condition:

• Maximal Error (Emax,i): Maximal distance from the ith

target during the targeting phase.

Emax,i = max
[tc:toff ]

d(t) (7)

Where tc and toff are, respectively, the time frames when
the targeting phase starts and ends.

• Integral Error (Eint,i): Error computed as integral of the
distance from the ith target normalized by the duration
of the resting phase.

Eint,i =

∫ toff

tc
d(t)dt

toff − tc
(8)



• Unacceptable Error (Eu,i): Error computed as for Eint,i,
but considering only the distances from the ith target
higher than the radius of the target r.

Eu,i =

∫ toff

tc
d(t)dt

toff − tc
d(t) > r (9)

• Overshoots (O): Number of times that the subjects went
out from the ith target during the resting phase.

• Normalized Traveled Length (NTL): Normalized length
of the path traveled by the subjects during each reaching
phase; it is expressed as:

NTLi = 1 −

∑N
k=1

√
∆P 2

x,V E,i + ∆P 2
y,V E,i

LT
(10)

Where N is the number of sampled positions of the
virtual tool tip during the reaching phase, ∆Px,V E,i

and ∆Py,V E,i represent the variation in the x and y
components of the tool’s end-effector position in the
virtual environment reference frame (VE) with respect
to the previous (k − 1)th sample.

• Reaching Time (tR,i): Time needed to reach the ith

target from the center position.

tR,i = tc − ton (11)

Where ton and tc are, respectively, the time frames
when the reaching phase and the targeting phase starts.

H. Results analysis

1) Stiffness Estimation: The reaching and targeting
phases of the task were extracted for each subject, repetition
and ith target. The stiffness ellipsoid’s main axis dimension
Kmax(d) and direction θ̂(d) were extracted and, for each
subject, their distribution normality between different repe-
titions was evaluated (Lilliefors test, α = 0.05). Since the
data, for all the subjects, was normally distributed, the mean
stiffness main axis dimension for each target throughout the
normalized time was obtained K̄max,i(d) as well as the mean
direction of stiffness for each target θ̄i(d).

Since the same stiffness modulation was observed for
all the targets, a single modulation K̄max(d) was obtained
from the mean through the eight targets directions. Linear
regression was used to describe the K̄max(d) modulation. No
significant changes in the θ̄i(d) were seen throughout the task
progression, with the data appearing normally distributed
(Lilliefors test, α = 0.05), therefore, a single mean value
of θ̄i was extracted for each target.

2) Variable impedance control performances: The first
experimental session, for each subject, regardless of the force
condition (Null, Enhancing or Isotropic) was considered as
a training phase during which users had time to familiarize
with the master device and with the task. For this reason, the
first experimental session was excluded from the analysis.

For each index, within the same subject and force con-
dition, the data distribution through the 10 repetitions was
evaluated (one-way ANOVA, α = 0.05). Since in some cases

the first repetition of each force condition was found to be
significantly different from the others (Tukey’s range test
α = 0.05) nine task repetitions (2:10) were considered for
the analysis.

For each user and each of the eight targets, the statis-
tical distribution for the nine considered repetitions of the
aforementioned indexes was evaluated using a normality test
(Lilliefors α = 0.05). Since the data distribution was normal,
and no significant differences were found between different
targets, the mean value for each subject and force was
extracted. The differences between the three force conditions
for each index were evaluated using a one-way ANOVA test
(α = 0.05), followed by post-hoc analysis (Tukey’s honestly
significant difference procedure α = 0.05 ).

All the inferential statistic analysis were conducted with
the Statistics and Machine Learning Toolbox for Matlab
2017b (Mathworks, Natick, Massachusetts, US)

III. RESULTS

A. Stiffness Estimation

The mean stiffness modulation profile K̄max(d) with
respect to d, as well as the first and third quartiles, are shown
in Fig 4. While in the first part of the movement, (from 0 to
1
2LT ) K̄max is constant in both mean and interquartile range,
an ascending trend can be observed in the second half of the
movement and a linear regression approximates this part of
task (ρ = 0.887, p = 0.0003 see red line in Fig. 4).

The stiffness ellipse orientations were found to be nor-
mally distributed (Lilliefors test, α = 0.05), therefore, the
mean orientation was extracted for each target. θ̄i (angle
between the stiffness main axis and the x axis in the task’s
reference frame) ranges between 50 and 60 deg (see Fig.
4.B), grossly overlapping with the shoulder-hand direction.

B. Variable impedance control performances

Figure 5 shows the inter subjects variability for each
index’s mean value. The Null damping condition shows worst
results in terms of Maximal Error (Emax) with respect to
the Enhancing (p = 0.006) and the Isotropic (p = 0.026)
damping fields. Under the Null damping condition users
showed a median Emax of 2.78mm while targeting the center
of the 30mm circular target. While performing the task with
the biomimetic variable impedance controllers, this error was
reduced to less than 2.35mm (corresponding to a 15.5%
increase in targeting accuracy).

Similar results can be seen in the Integral Error (Eint)
(p = 0.022 with respect to Enhancing and p = 0.045 with
respect to Isotropic damping field) and in the Unacceptable
Error (Eu) (p = 0.004 with respect to Enhancing and p =
0.024 with respect to Isotropic damping field). For the Eu,
the Null condition is characterized by a larger interquartile
distance. A very similar trend is seen in the Overshoots index
(O), where the Null damping condition shows significant
worse performance with respect to the Enhancing (p = 0.013)
and Isotropic (p = 0.043) conditions and larger interquartile
distance. While users overshot targets around one time under
the effects of the biomimetic variable damping controllers,



Fig. 4. Mean stiffness modulation profile and stiffness ellipse orientation.
A. the solid black line represents the mean stiffness K̄max(d) over the
different targets, while the dashed black lines represent the first and third
quantiles. The solid red line shows the linear regression, whose significance
(p) and ρ values are also reported. B. The main axis of the mean stiffness
ellipse is represented with a dashed line along the shoulder-hand direction. θ̄
is the angle between the task’s x-axis and the direction of maximal stiffness.
The shaded area represents θ̄ variability around the mean

when no damping was applied users surpassed the target
around six times during task repetitions.

On the other hand, no differences were found in terms of
Normalized Tool movement Length (NTL) and target reach-
ing time (tR) although, for the Isotropic damping condition,
the NTL interquartile range is significantly smaller.

No significant differences between the Enhancing and
Isometric damping fields were found. A very small, non
significant trend can be seen in Emax, Eu and for the
Overshoots, where the median and mean index values for the
Isotropic damping field are slightly higher with respect to the
Enhancing condition. On the contrary, for the reaching time
tr, the minimal mean value was achieved under the Isotropic
force condition.

IV. DISCUSSION

The arm stiffness modulation was evaluated in terms of
maximal value and main axis direction during the execution
of a teleoperated targeting tasks. The results showed an
increase in the arm stiffness when approaching the targets,
while a rather constant main axis direction was maintained
through the different targets. From the results it can be
inferred that in the first part of the reaching task the maximal

stiffness exerted by the users is almost constant: users are
still relatively far from the target, producing a fast movement
rather than a precise one. While approaching the target, max-
imal stiffness increases, reflecting, as expected, the necessity
of increasing the hand stability against internal and external
noise, to achieve greater precision.

Regarding the stiffness main axis direction, the results
showed no significant differences in the ellipses mean ori-
entation among different targets because of the very slight
changes in the joint configuration of the arm required by
the task in reaching the different target points. The direction
along which subjects exerted the maximal stiffness modula-
tion was the shoulder-hand one in accordance with previous
studies [35]–[38].

From this modulation, a biomimetic variable impedance
controller for the master device was developed and tested.
We chose to modulate the master robot’s damping, rather
than its stiffness, to maintain a seamless and safe human-
robot interaction between users and the master device. In
fact, while changes in the robot’s stiffness have been used
to simulate different types of constraints and feedbacks [39],
these controllers have to observe strict rules in order to assure
system’s stability. Changes in the robot’s damping, instead,
are less disruptive of the users hand dynamics therefore
allowing for improved transparency [28]. The results showed
that the biomimetic impedance modulation increased users
targeting performances. The damping positively influenced
users performance, both in terms of maximal displacement
from the task goal, as well as in their capability of finely
finding the center of the targets’ circle during the given time.

The mean number of overshoots per experiment shows that
the variable impedance control allows users to perform sig-
nificantly better while introducing no significant differences
in terms of end effector’s traveled length nor reaching time:
users were therefore facilitated in finding an advantageous
kinematic and dynamic matching with the master device.

The results obtained are in accordance with previous
experiments: in [30], Beretta et al., showed that the intro-
duction of a variable impedance controller increased expert
and naive users performance during a human-robot coop-
erative point targeting task. In the aforementioned analysis,
a robotic arm damping matrix was modulated isotropically
based on an a priori knowledge of the task performed,
which requested an increased precision in its final line-
following part. Coherently, a similar study from Duchaine
and Gosselin showed how the introduction of an arm stiffness
based adaptation of a robotic handle damping factor led to
significant improvements in terms of overshoots reduction in
a cooperative drawing task [28].

No significant differences between the Enhancing and
Isotropic force conditions was found: users behaved similarly
when facing an augmentation of the natural arm stiffness
(achieved when the maximal damping was aligned with the
direction of maximal stiffness) and when the same damping
was directed along the perpendicular to the stiffness main
axis. This results may be interpreted in different ways: first
of all it is possible that the difference between the damping



Fig. 5. Statistical distributions for the three force conditions throughout the six indexes analyzed. Statistical significance (evaluated with one way-ANOVAs
and post-hoc tests) is indicated with lines and stars (* for p < 0.05, ** for p < 0.01)

coefficient’s magnitude in the two directions is too small to
introduce significant effects in the arm and hand dynamics.
It is, therefore, possible that higher damping coefficients
would lead to different results. Another possible reason may
be found in the capability of the human arm to cope with
different robot’s dynamics while achieving similar results:
with both force fields, users seemed to benefit from the
overall increase in damping regardless of its anisotropy and
orientation.

A limitation of the present work can be found in the
absence of a real-time estimation of the arm stiffness during
the execution of the task. In fact, due to the offline nature of
the arm’s stiffness estimation adopted, two separated subse-
quent experiments had to be conducted, involving different
subjects. This solution implies the necessity of approximat-
ing the diverse dynamic modulations that different users
might exhibit to a common trend, which defines the changes
in the damping coefficients presented. The adoption of an
online stiffness estimation method (as in [40]), could, in-
stead, preserve and take into consideration subjects’ dynamic
variability, possibly magnifying the effects of the biomimetic
impedance controllers.

Another limitation can be found in the nature of the
targeting task tested. In fact, while stiffness control plays
an important role in the regulation of task accuracy, it is
also fundamental during dynamic interactions with unstable
or noisy environments. In order to fully understand the
capabilities of the biomimetic impedance controller pro-
posed, it would, therefore, be useful to test its performance
under adverse conditions, for example, applying random

disturbances to the users hands.

V. CONCLUSIONS

In the present work we developed and tested two im-
plementations of an adaptive impedance controller in HRI
during the execution of a virtual planar targeting task. The
arm stiffness modulation main axis dimension and direction
were evaluated through a musculoskeletal model approach
based on acquired kinematic and dynamic data. In a follow-
up experiment, the stiffness modulation was matched with
corresponding changes in the master device’s impedance
parameters, creating two damping fields: one directed along
the estimated stiffness main axis, the other perpendicular to
it. In accordance with previous literature, the results showed
that users benefited from the variable impedance controller
in terms of positional error and overshoots but no significant
difference was found between its two implementations.

Regarding the possibility of finding differences between
the two biomimetic impedance regulation strategies pre-
sented, the results suggest that further analysis should be
conducted, involving higher values of damping coefficients,
increasing the damping fields eccentricity or studying more
complex tasks.
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