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Abstract 

Multi-stage production systems offer a huge potential for defect compensation and defect propagation avoidance on system level, in contrast to 
current single-stage solutions, in order to reduce scrap and to minimize time-consuming and cost-intensive quality control. Integration of 
additional sensor systems and sophisticated analysis of the acquired signals enable strategies in the field of downstream compensation, inline 
rework and enhanced process control without including additional process and inspection stages. The presented strategies are validated in three 
emerging European industrial sectors (aerospace, railway and medical) yielding a universal solution for zero defect manufacturing in multi-
stage production systems. 
© 2017 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “11th CIRP ICME Conference". 
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1. Introduction 

Increasing volatility in the global and local economies, 
shortening product life cycles and increasing degree of 
product customization call for production systems that comply 
with these changing demands in all their basic functions, 
including quality and production control. Current Zero Defect 
Manufacturing (ZDM) approaches are local solutions focused 
on single production stages. They are also static and 
sequential, in the sense that when a problem is analyzed and 
solved at a specific stage, the company considers the process 
as ‘frozen’ and moves the attention to a new critical stage. 
This sequential strategy prevents the company from quickly 
adapting its production operations to changing production 
targets, thus undermining its competitiveness on the global 
market. In order to achieve this, the goal is to develop ZDM 

strategies that reduce the generation of scrap parts and prevent 
defect propagation in multi-stage production systems. 

End-of-line quality testing is usually applied to assess the 
product functionality at the end of the process chain [1]. 
However, this approach does not support the in-line 
prevention and correction of defects. Emerging Key Enabling 
Technologies (KETs), such as in-line data gathering solutions, 
data storage and communication standards, data analytics 
tools and digital manufacturing technologies offer new 
opportunities for ZDM. These technologies are increasingly 
becoming integral part of modern production systems [2]. If 
these technologies are properly integrated with a cross-KETs 
approach, new cyber-physical systems (CPSs) can be 
designed and implemented at shop floor level, to support 
systemic ZDM solutions [2,3]. CPSs are usually defined as 
systems integrating computation and physical actuation 
capabilities [4]. In CPSs, embedded computers and networks 
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monitor and control physical processes, usually with feedback 
loops, where physical processes affect computations and vice 
versa. The economic and social potential of CPSs is vastly 
greater than what has been realized yet, and major 
investments are being made worldwide to develop these 
solutions in response to emerging industrial problems 
(Industry 4.0) [5]. This potential in connectivity and 
computational power in manufacturing can be exploited to 
support the implementation of efficient in-line quality-
oriented production solutions. 

Successful projects in the 4ZDM cluster supported by the 
European Union such as MUPROD, IFACOM [6], MEGAFIT 
and MIDEMMA demonstrate how to achieve near zero defect 
level in different manufacturing systems. The focus was to 
reduce the number of defects in manufacturing of complex 
high-precision and high value parts by in-line measurement, 
process control, or enhanced quality control. In MUPROD, an 
innovative quality control system was developed on lab scale 
for in-process multi-stage defect reduction [7–9]. MEGAFIT 
and MIDEMMA were focused on micro-manufacturing 
processes, including multi-stage micro forming [10–12]. 

The new research project ForZDM within the 4ZDM 
cluster aims at developing and demonstrating a next 
generation ZDM strategy capable of dynamically achieving 
the production and quality targets grounding on an integrated 
quality and production control solution for multi-stage 
systems. In both large volume and small batch production 
contexts, this solution will allow companies to rapidly deploy 
a cost-effective line monitoring and control system that will 
reduce expensive off-line measure-rework-assess loops and 
avoid the delivery of defective items at the end of the line. 
The ultimate goal is to reduce the system operational costs 
and materials wasted in scraps, thus increasing the 
competitiveness and sustainability of European companies in 
the global market. 

This paper is structured as follows. Section 2 introduces 
the overall ZDM solution concept and the reference 
architecture. Section 3 outlines the different data gathering 
systems while section 4 investigates online defect prevention 
and defect propagation mitigation solutions. The focus in 
section 5 lies on system-level ZDM solutions followed by 
section 6, which highlights the integration in production and 
equipment control systems. In section 7, the validation in 
industrial production systems is presented. Finally, a 
conclusion and outlook is given in section 8. 

2. Zero defect manufacturing solution for high value 
adding multi-stage manufacturing systems 

The multi-stage ZDM solution proposed is developed on 
three different production lines, namely, for jet engine shafts, 
medical microcatheters and railway axles. These lines provide 
a basis to deploy the specific contents of the solution and 
serve as pilot cases to demonstrate the applicability of the 
solution to very different multi-stage lines. 

Fig. 1. Reference architecture of the ForZDM solution. 

2.1. Zero defect manufacturing system architecture  

The reference architecture for multi-stage systems on which 
the solution proposed by ForZDM is based is represented in 
Figure 1. The proposed architecture grounds on five major 
pillars, which are described in the following. The first pillar 
consists in a comprehensive Data Acquisition System, able to 
collect and synchronize data gathered from different, 
heterogeneous, multi-resolution and multi-scale data sources 
distributed in the production line. These data include (i) 
workpiece quality data, gathered by inspection technologies, 
(ii) process data, gathered from in-process sensors, (iii) 
machine state data, gathered by the production monitoring 
system, (iv) product flow related data, gathered by tracking 
solutions, and (v) codified feedback, gathered by production 
line operators. This new integrated data-acquisition system 
will feed a Data Management Platform that will store and 
update the acquired data in a structured and formalized way. 
This platform will be enriched with data management, 
extraction and aggregation features in order to support the 
knowledge-based analysis of the relevant inter-stage 
correlations. Overall, this solution will make it possible to 
achieve observability of the product, process and resource 
states, throughout the system stages. Connected to the 
aforementioned data management platform, a suite of Data 
Correlation, Error Budgeting and Root Cause Analysis tools, 
based on advanced data analytics and artificial intelligence 
techniques, is included to characterize the significant defect 
correlations among product, process and resource data, at 
different stages. This tool will be supported by an HMI to 
allow the user to model existing correlations via “knowledge-
based” and “learning-based” methods. 

At zero defect generation level, Cyber Physical Systems 
(CPS) make it possible to proactively adjust the process 
parameters, the fixture, and the reference locators before each 
critical process stage. The information about the incoming 
part history in the previous stages is used to issue alarms on 
the specific variation mode of the part, before the process. 
With these inputs, a model-based approach is used to adjust 
the controllable variables at the next correlated stage to avoid 
the generation of defects while processing the part under the 
identified variation mode. To reduce complexity, a pre-
defined discrete set of alternative process parameter sets will 
be designed and validated for each part variation mode 
combination. After the processing, if one or more product key 
quality characteristics is outside the specification limits 
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imposed by design, defect propagation avoidance policies will 
be triggered. They mainly consist in CPSs for correcting the 
defect before it reaches the final manufacturing stage in the 
process-chain. Solutions include (i) workpiece in-line rework, 
(ii) or workpiece in-line repair through feed-forward 
adjustments and selective assembly at correlated downstream 
stages. The selection of the most suitable selective 
inspections, part flow control, and defect correction policies is 
based on the analysis of the impact of the action on the overall 
economic, production logistics and quality performance of the 
entire process-chain, thus properly managing the trade-off 
between quality and productivity, at system level. This 
comprehensive system modeling layer will be continuously 
fed with shop-floor data, in order to provide a high-fidelity 
virtual representation of the production flow. Both long-term 
performance such as the effective throughput, and short-term 
performance, such as the lot completion time and the service 
level, will be calculated. This model will be integrated with a 
suitable search algorithm to optimize the local policies in 
order to achieve a globally optimum system behavior. A 
simplified HMI supports production managers to quickly 
adapt production targets and line management strategies to the 
specific changing demand levels and features. Moreover, at 
shop floor level, a distributed monitoring, alarm triggering, 
and CPS-based control system is included, based on the 
IEC61499 standard, enabling to implement the quality and 
logistics strategies optimized at system level. All in all, this 
systematic and systemic quality and logistics control strategy 
will represent a breakthrough solution for implementing the 
ZDM paradigm in complex multi-stage manufacturing 
systems, grounding on multi-scale modeling, CPSs, big data 
and data analytics as key enabling technologies. The key 
components of the proposed architecture are discussed in the 
following together with the main features of the ForZDM 
industrial demonstrators. 

3. Online data gathering systems 

The complexity of multi-stage production scenarios and 
the adaptive behavior of the proposed ZDM strategies make it 
necessary to implement advanced features at data gathering 
layer: automatic device discovering, configuration of sensors, 
data fusion, filtering strategies and management of 
operator’sinputs. 

3.1. Sensor integration and analysis 

To overcome the configuration and discovering challenges, 
we propose an Internet of Things (IoT) based automatic 
sensor discovering and configuration mechanism [13] for 
quick sensor network deployment and reconfiguration. This 
IoT standard based approach is flexible enough to handle 
production plant reconfigurations or new sensor placement 
and enhance the monitoring and defect characterization of the 
production process. The gathered information is composed of 
sensor information and operator feedback in different stages 
of the process. Sensor vastness, heterogeneity and huge data 
streams make the information access, gathering and 
processing an active research field [14–16]. User feedback 

handling and knowledge extraction is critical for defect 
characterization and correlation: many processes are semi-
automatic with a decisive intervention of the operator. Those 
fundamental challenges of the data gathering collection and 
processing will be addressed in three fields: 

1) Heterogeneous data collection mechanisms: ZDM does 
not only include sensor data, but also data from production 
planning systems (ERP), relational databases or defect 
management systems. The data gathering layer receives and 
retrieves data from multiple sources, and sends it in a unified 
format to the data integration and management platform [14]. 

2) Sensor data fusion: A multi-sensor data fusion model is 
proposed to provide more robust and uncertain information 
from the sensors placed in the production. The inherent 
imperfection of the data and the limitations of the different 
types or sensors are tackled using KF/EKF techniques [17] to 
obtain processed sensor data combining different sources. 

3) Human feedback processing: The feedback information 
can be divided in two main categories: structured data 
(categorized and contextualized information) and unstructured 
data (free text or comments). Data extraction mechanisms 
[18] are applied in data gathering layer to properly extract the 
underlying knowledge. 

3.2. Data integration and management platform 

Within ForZDM, the software solution OneBase is used as 
starting point for a data integration and management platform. 
In the context of the ANSI ISA 95 layer model [19], the 
OneBase framework offers communication between 
components of the different layers. This includes devices 
typically found in manufacturing environments such as PLCs, 
machines, tools, and various measuring, sensing, inspection 
and laboratory equipment, manufacturing execution systems 
(MES) and ERP. The framework is based on a modular and 
distributed architecture and focuses on fast communication. 
Its data model is based on data objects called tags, which can 
be simple (integer, float, string) or complex data types of 
nested structures. Shop floor objects such as machines or 
other plant devices are mapped to tags and linked to each 
other logically. Tag communication relies on a 
publish/subscribe mechanism, clients can subscribe tags. If a 
client publishes a change to a tag, all other subscribers will 
receive a push notification. APIs in object oriented 
programming languages are available to provide access to 
tags, so complex logics for shop floor control can be created. 

4. Online defect prevention and defect propagation 
mitigation solutions 

Data gathered through the multi-sensor network and data 
platform represent a new and relevant source of knowledge on 
causes behind the defects generation and their propagation 
mechanisms along the production lines. This knowledge has 
to be extracted and structured in order to take advantage of it 
for all the upcoming developments. 
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4.1. Data correlation and root cause analysis 

Based on the acquired data, conventional quality control 
and root cause analysis tools can help to confirm original 
assumptions or point out line variables not considered up to 
date and requiring attention. Further information can also be 
extracted through statistical analysis techniques. But the most 
useful contribution of the heterogeneous and synchronized 
collection of line data acquired is the opportunity to identify 
correlations between defects and variables from different 
stages, as demonstrated by the MUPROD project and other 
previous works [20,21]. This provides a basis to model the 
defects propagation patterns through statistical and machine 
learning clustering [21,22,22,23]. 

It is intended that the outcomes from the data analysis are 
materialized by: (i) eliminating redundant data for agile 
management and flow of the line information and lean 
implementation of the data-driven models (ex. defect 
propagation, CPS), (ii) extending the analysis capabilities to 
future scenarios by means of GUIs which provide in-plant 
analysis capabilities to operators and production managers. 

4.2. Process control 

Control strategies are to be applied on the lines critical 
processes to avoid the generation or propagation of defects. 
At the setup phase numerical process models will simulate the 
process in order to adjust the operation conditions which 
maintain the process controlled (e.g. cutting forces, generated 
chip, process temperature) and therefore away from defects. 
In this sense, the challenges to face rely on implementing and 
adjusting process models which currently are either inexistent 
(e.g. the interaction of the cutting tool with coolant and chip 
in shafts bottle boring) or subjected to much improvement 
(e.g. microtubes extrusion). Concerning the production phase, 
critical processes still require control in order to ensure 
performance within the established conditions and alert on 
deviations from them which make a defect likely to appear. 
This control capability is going to be provided by means of 
monitoring systems. The selection of commercial catalogue 
systems will ensure the use of mature sensing technologies 
(e.g. force, vibration, acoustic emission) and robust and 
reliable electronics for signal processing and analysis and 
machine interfacing. Nevertheless, sensor signals still need to 
be analyzed to extract meaningful information and automatic 
decision making algorithms based on the signals information 
must be implemented. A specific solution must be developed 
for each single critical process considered. This is expected to 
be achieved through multiple signal analysis and machine 
learning techniques proposed for the purpose [24–26]. 

4.3. Quality oriented assembly 

Quality oriented assembly focuses on a subset of defect 
compensation strategies that involve selective and adaptive 
assembly strategies relying on product variation propagation 
models. This approach integrates analytical and artificial 
intelligence-based algorithms for compensating part defects 
by optimizing the assembly strategies.  

Increase of defects, accumulated tolerances 
imbalance of the part 

Solution:
Balancing Process

Process 1 Pr. n+1Pr. 2 Pr. 3 Pr. n

PP P P P

BP

P P

60 – 90 working hours per part 15 working hours
 

Fig. 2. Simplified multi stage production system for rotating parts with 
subsequent balancing process. 

It must be implemented in a dedicated operational module 
that is integrated as a decision support kernel, interacting with 
the physical system by modifying the specific assembly 
strategy based on the incoming part measurement. 

In previous work of the authors, selective assembly 
strategies were developed for the multi-stage production 
system of electric motors in the automotive industry [9,27]. A 
specific artificial neuronal network, namely self-organizing 
maps, is used for unsupervised defect classification in the 
production line. Then, a fuzzy inference system selects the 
optimal combination of conforming parts from the classified 
sub-sets. This selective assembly approach decreases the 
amount of scrap parts in early process stages and reduces the 
scrap rate at the end-of-line quality control to zero. At the 
same time, the uniformity of the magnetic field of the rotor 
increases. However, this approach is adapted to one specific 
use case. In ForZDM, a generic control strategy is developed, 
that is able to adapt to a priori unknown set-ups of the multi-
stage production systems. 

4.4. Inline product repair and downstream compensation 

Inline rework focuses on a set of technically feasible defect 
compensation policies, which can be applied after the 
occurrence of defects within the same process [8]. In contrast 
to offline repair, no additional operator or working station is 
needed. Instead, the workpiece remains clamped and is 
reworked in the same station. The final selection among 
available technically feasible rework strategies has to be done 
by verifying quality and logistics performance at system level. 

Methods for downstream compensation have already been 
applied successfully in MUPROD. The goal was to 
compensate deviations in the magnetic field of single rotor 
stacks by adaptation of the downstream assembly parameters 
[27,28]. This approach will be transferred to ForZDM to 
avoid imbalance propagation in multi stage production 
systems for high-performance rotating parts (Fig. 2).  

The state of the art in this manufacturing sector is to 
balance the part as quality control in a separate stage after the 
actual manufacturing process. Each process step can cause 
small imbalance of the work piece - the result is an 
accumulation of imbalance. 

In this case, downstream compensation, will be applied as 
feed forward control (Fig. 3). This means: if a defect occurs at 
an early process stage, the defect can be repaired in a 
following (downstream) process step. So there is no defect 
accumulation due to early defect detection while using 
existing and additional measurement systems this can be e.g. 
evaluation of motor signals to identify imbalances. 
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Fig. 3. Production line behaviour under feedforward control. 

5. System-level zero defect manufacturing solution 

Quality and production control are fundamental functions of 
modern manufacturing systems that have been traditionally 
treated by scientists and industrialists almost in isolation. 
However, recent research and advanced industrial practices 
showed that quality control strategies have an impact on the 
system production logistics performance as well as the 
adopted production control policy has an impact on the 
critical quality characteristics of parts. A recent CIRP keynote 
paper [29] well characterized these cause-effect relations, also 
considering machine degradation and maintenance practices 
in the overall picture. It also highlighted the need for an 
integrated approach to jointly optimize, at system level, 
maintenance, quality and production control strategies, in 
order to avoid local improvements that can bring minor, or 
even detrimental, effects at system level. In line with this 
strategy, the goal of the ForZDM system engineering and 
control platform is to optimize the joint quality and 
production logistics control policies to be implemented at 
shop floor level by integrating quality, production efficiency 
and economical aspects into a unique framework. This high-
level controller analyzes the global coherence and economical 
feasibility of the decisions taken at local level, and can be 
used as an effective tool for strategic decision making and 
“what if?” analysis. This platform will make it possible to 
optimize the (i) defect propagation mitigation policies, (ii) the 
part inspection policy and (iii) the part flow and inventory 
control policies at system level, before the implementation in 
the real system at shop floor level. In this way, local 
optimizations that are detrimental at system level will be 
avoided. The platform will be based on a process-chain 
modeling and analysis tool [30] that jointly considers the 
dynamics of the material flow in the system as well as the 
product variation propagation throughout the process stages, 
also integrating the relevant correlations between process 
variables, machine states and product quality characteristics 
identified with the support of the Data Correlation and Root 
Cause Analysis tool. Based on the data gathered from the 
shop floor and available in the Data Management Platform, 
this tool enables to adapt selective inspection, defect 
management and part flow control strategies to the specific lot 
under production, thus optimizing and controlling system 
operating conditions in order to achieve the desired service 
level of good quality products also in small batch production 
contexts. 

6. Integration in production and equipment control system 

The control system must be distributed, multi-level and 
allow human-in-the-loop integration, in order to realize the 
defect avoidance and propagation mitigation logic described 

in section 4 and 5. The multi-level architecture is divided into 
three hierarchical tiers: low-level, medium-level and high-
level control. Low-level short-term control system utilizes the 
newly available sensor data gathered from the integrated 
processing monitoring system (section 3), to control in real-
time, a single machine or process. The closed loop controllers 
obtain their set-points and commands from the medium-level 
control system or the dedicated HMI for machine operator 
input. The system is also responsible to transfer relevant 
information such as machine/workpiece status, alerts and user 
feedback to higher level controls enabling decision making. 

Medium-level medium-term control system is responsible 
to implement the system-level strategies (section 4) to prevent 
the generation and propagation of defects. The system 
includes the distributed control of multiple machines and 
processes, and autonomous decision making to generate in 
real-time the set-points and commands for low-level control 
of a single machine and a comprehensive HMI for the process 
engineers to visualize execution of control actions (SCADA). 
It also has an offline component that provides simulation 
capability, allowing the engineers to confirm in advance the 
effect of a defect mitigation strategy. 

High-level long-term control system performs offline to 
generate long-term control policies that maximize the 
production output with minimum defect. It utilizes the system 
analytics and simulation output (section 5) as well as machine 
learning to provide the production manager a set of quantified 
suggestions for process improvement. Decision made at this 
level is then translated into set-points and commands and sent 
to medium and low level control systems. Real-time 
capability is not needed, but may be performed when an order 
is received from the production MES/ERP system, or via a 
HMI/SCADA interface accessed by the production manager. 

Within the distributed multi-level control system, failures 
may arise from several components of different 
manufacturers. In order to cope with this challenge, a detailed 
failure mode analysis has to be carried out, isolating 
criticalities and defining an appropriate mitigation strategy. 
This includes applying safety features like self-testing, 
monitoring and hardware-based redundancy. 

7. Validation in industrial production systems 

The ForZDM solution will be customized for and 
implemented in three different production scenarios; this will 
make it possible to demonstrate the feasibility of the 
approaches, methodologies, and technologies developed in the 
project, and to assess their applicability in a real industrial 
environment. 
Each of the selected end user cases has own specific 
challenges. For example, in the production of railway axles, 
the upstream forging process variability has an impact on the 
downstream machining processes, leading to tool breakages 
and defective parts. In the production of micro-catheters the 
variability in the upstream granule material preparation 
processes (drying, compounding) affects the downstream 
micro-extrusion process, resulting in geometrical errors. In the 
production of large jet engine shafts, beside the complexity of 
machining internal features, the runout compensation 
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strategies implemented in the initial stages have a strong 
impact on all downstream stages. The ForZDM solution will 
be progressively deployed in the project’s end user cases, in 
order to validate each module before testing the whole 
architecture. This approach will allow also to monitor a high 
number of parameters since the initial phase of the project; in 
this way, it will be possible to assess the real impact of each 
implemented policy on the selected production KPIs and to 
provide quantitative measures of the project impact. 

8. Conclusion and prospects 

This paper provides a general overview on the ForZDM 
project approach, with insights on the architecture of the 
proposed system and the innovative approach proposed for 
smoothing defects in modern manufacturing industries. By 
relying on suitable industry 4.0 technologies, the project will 
demonstrate in different industrial scenarios a novel solution 
that expands current single process boundaries towards a 
production line perspective, enabling systemic defect 
avoidance strategies, tailored on multistage production lines.  
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