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Abstract  15 

More than half a billion people are expected to still lack reliable and affordable electric energy in 2040 16 

and around 1.8 billion may remain reliant on traditional solid biomass for cooking. Long-term energy 17 

planning could help to achieve the energy access targets in developing countries, especially in remote 18 

rural areas. 19 

Different studies exist on long-term rural energy planning, but the different foci, terminology and 20 

methodologies make it difficult to track their similarities, weaknesses and strengths. With this work, we 21 

aim at providing a critical analysis of peer-reviewed studies on long-term rural energy planning, to help 22 

researchers in the field move across the diverse know-how developed in the last decades.  23 

The work resulted in the analysis of 126 studies and categorisation of 84 of them, under a number of 24 

rules clearly defined in the first part of the paper. The studies are then classified in two consecutive 25 

steps, first according to their type and afterwards according to the methodology they employ to 26 

forecast the energy demand, which is one the most critical aspects when dealing with long-term rural 27 

energy planning. 28 

The work also provides specific insights, useful to researchers interested in rural modelling. Few 29 

studies assume a dynamic demand over the years and most of them do not consider any evolution of 30 

the future energy load, or forecast its growth through arbitrary trends and scenarios. This however 31 

undermines the relevance of the results for the purpose of long-term planning and highlights the 32 

necessity of further developing the forecasting methodologies. We conclude that bottom-up 33 

approaches and system-dynamics seem appropriate approaches to forecast the evolution of the 34 

demand for energy in the long-term; we analyse their potential capability to tackle the context-specific 35 

complexities of rural areas and the nexus causalities among energy and socio-economic dynamics. 36 
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Highlights:  41 

− We collect case studies of rural energy planning in developing countries 42 

− We classify rural energy planning studies according to five categories 43 
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− We focus on approaches adopted for modelling long-term energy demand 44 

− We discuss the need to further the research on energy demand modelling for rural contexts  45 

1. Introduction 46 

Energy use and consumption are forecast to grow fast in developing contexts. Based on its New 47 

Policies Scenario [1], the International Energy Agency (IEA) estimated a rapid growth of the energy 48 

demand in sub-Saharan Africa and in rural and urban India in the next 25 years [2]. In the non-OECD 49 

regions, the total energy demand is expected to exceed the OECD regions’ one by 89% in 2040 [3], 50 

especially in Southeast Asia, China and India. In developing countries (DCs), energy access-oriented 51 

policies and actions may contribute to the growth of the global energy demand. The World Bank 52 

estimates that 2.6 billion people should be electrified, and 4.4 billion should be served with modern 53 

cooking services by 2030 in DCs [4]. Nevertheless, more than half a billion people, increasingly 54 

concentrated in rural areas of sub-Saharan Africa, are expected to still lack of reliable and affordable 55 

electric energy in 2040 and around 1.8 billion may remain reliant on traditional solid biomass for 56 

cooking [5]. Rural energisation is therefore expected to largely contribute to the achievement of energy 57 

access goals, since people still living without electricity and modern energy fuels will live 58 

predominantly in rural areas [6][7]. In this context, the need to develop sustainable and appropriate 59 

approaches to energy planning clearly emerges. 60 

As always in energy planning, also when dealing with rural energisation plans, a sustainable and 61 

reliable approach is advised. The latter may influence the architecture and the sizing of the 62 

implemented solutions, particularly where economic resources are scarce, as Kusakana discusses [8]. 63 

Much of the planning relies on good estimates of the energy demand and its evolution with time. 64 

Wrong predictions could negatively impact the local socio-economic development and cause an 65 

inappropriate sizing of local energy solutions, leading to supply shortages or cost recovery failure [9]. 66 

Cabral et al. [10,11] and Kivaisi  [12] stressed the need to pay attention to the evolution of the 67 

electricity load when planning electrification programmes, since the marginal costs of energy services 68 

vary among supply alternatives (i.e. small photovoltaic (PV) systems when the load is low, grid-69 

extension when it is high). Fuso Nerini [13] demonstrated how the cost of the energy system for 70 

reaching different tiers of electricity access (i.e. different levels of energy demand to satisfy) in the 71 

village of Suro Craic in the years 2010-2030 may vary from few hundreds to 8000 2010US$. Brivio et 72 

al. [14] demonstrate that in Photovoltaic-batteries based off-grid systems, the optimal size of the 73 

components are sensitive to the load evolution pattern, especially the capacity of the battery energy 74 

storage system. Hartvigsson [9] developed a system dynamics model to show how the power supply 75 

capacity should be accurately considered based on the forecasts of electricity demand: a demand 76 

larger than the capacity installed generates lack of power availability that may affect the willingness of 77 

people to stay connected and the utility revenues. Van Ruijven at al. [15] developed a bottom-up 78 

model to assess trends in electrification over the next decades in DCs, and they demonstrated how 79 

the potential of mini-grid technologies is highly dependent on the demand level. 80 

Due to highly uncertain dynamics, strong non-linear phenomena, complex diffusion mechanisms, time-81 

adjustments of technology perceptions, and low quality and availability of data affecting such remote 82 

contexts, the long-term forecasting of energy demand in rural areas is a complex issue. This is the 83 

reason why studies on local energy planning usually tackle demand forecasts by relying on multiple 84 

scenarios that follow regional policies or international guidelines (e.g. the OECD Environmental 85 

Outlook as in [15] or multi-tier categorisation proposed by the World Bank as in [13]).  86 

This work reviews long-term rural energy planning studies on the basis of the application and the 87 

insights they provide, rather than their structural characteristics. The aim is to provide a synthesis of 88 

strengths and weaknesses, fields of applicability and insights which do not depend on the views of the 89 

authors or the specific terminology employed. Moreover, as a novelty, we try to combine the analysis 90 

of both the “demand” and the “supply” aspects of the rural energy planning studies, stressing the need 91 

to consider the two parts of the planning as linked and interdependent. Indeed, the aspect of long-term 92 

energy demand analysis and modelling within long-term rural energy planning is a poorly discussed 93 



and addressed topic in the reference literature, and we aim at opening a discussion about its 94 

importance in the field: we first introduce the approaches currently adopted to forecast long-term 95 

energy demand within the rural energy planning-based literature, and then we try to derive some 96 

useful insights and guidelines for tackling the issue in remote contexts.  97 

The work intends to inform diverse groups of audiences, from researchers to energy planners, with 98 

different sets of information, levels of technical knowledge and involvement in the implementation 99 

aspects.  100 

Section 2.1 reports the rationale and methodology we employed to carry out the review. Section 2.2 101 

proposes a multi-criteria classification for the energy planning case studies and a description of the 102 

papers reviewed, while Section 3 analyses the methodologies to forecast the evolution of the energy 103 

demand employed in local energy planning case studies and it proposes guidelines for developing 104 

appropriate approaches to model rural energy demand. 105 

2. Analysis of the long-term rural energy planning literature 106 

2.1. Rationale and methodology 107 

Different Authors have defined energy planning in several ways, emphasizing multiple important 108 

aspects. In general, the literature refers to energy planning as the process aimed at developing long-109 

term policies for supporting the development, implementation and management of local, national, 110 

regional or even global energy systems. Prasad et al. [16] quote some authors underling that any 111 

energy planning needs to foster sustainable development. They consider energy planning “as a 112 

roadmap for meeting the energy needs of a nation [which] is accomplished by considering multiple 113 

factors such as technology, economy, environment, and the society that impact the national energy 114 

issues” ([16] p. 686). Hiremath et al. [17] write that the “energy planning endeavour involves finding a 115 

set of sources and technologies in order to meet the energy demand in an optimal manner” (p. 729). 116 

Deshmukh [18] suggests that energy planning aims above all at developing an optimal plan for the 117 

allocation of energy resources, by considering future energy requirements according to several 118 

technical, economic, social and environmental criteria. Yusta and Rojas-Zarpa [19] state that “energy 119 

planning implies finding a set of sources and conversion equipment that optimally satisfy the energy 120 

demand of all activities” (p. 67). In view of the above discussion and being aware of both the policy- 121 

and design-oriented concept of energy planning, in this study we refer to energy planning as that 122 

process aimed at (i) selecting (viz. identifying, sizing and designing) conversion technologies (ii) by 123 

performing an optimisation based on appropriate criteria (viz. either strictly mathematical programming 124 

or multi-criterial analyses if dealing with less quantitative objectives) (iii) for matching a certain demand 125 

with the available energy resources. Coming from an engineering and modelling background, we 126 

decided to emphasize the importance of objective criteria in order to confer a more scientific meaning 127 

and nature to the concepts of “optimal plan /optimally” that emerged from the literature. This definition 128 

is in line with the final aim of our research, which mainly focuses on the development of appropriate 129 

models for supporting the design phase of rural off-grid energy systems. 130 

We discarded from our classification all the case studies which do not comply with the above definition 131 

of energy planning. For example, Díaz et al. [20] develop a comparative analysis between three off-132 

grid technologies for the rural electrification of a group of families in Argentina, without introducing any 133 

optimisation criterion to select the most appropriate energy conversion system. Again, Johnson et al. 134 

[21] analyse the energy supply and use in a rural village in Mali and the dynamics of seasonal 135 

variation in the energy demand for one year, without employing any mathematical model to optimise 136 

the matching between supply and demand. Such case studies are not within the scope of the survey. 137 

In order to comprehensively investigate energy planning methods and applications (i.e. including input 138 

data processing, such as the load profile, and the final results), in our survey we analyse only real-life 139 

case studies or potential applications for real contexts, excluding papers that present only the 140 

theoretical methodologies. This adds value to the existing reviews and it is meant to address the 141 

research of a suitable and appropriate modelling framework for projecting the energy demand in real 142 

rural energy planning case studies. For example, Bernal-Agustin et al. [22] propose a multi-objective 143 



evolutionary algorithm and a genetic algorithm to find the most appropriate hybrid energy system to 144 

minimise the costs and the unmet demand. The rely on a reference daily load profile for implementing 145 

the optimisation. However, they do not provide any details about the daily demand or potential 146 

applications, therefore their study is not classified. Gupta et al. [23–25] analyse a hybrid energy 147 

system in order to determine its cost optimal operation. In the first [23] and second part [24] of the 148 

work they develop the mathematical model for the optimisation and the necessary algorithm to control 149 

the dispatch of battery storage systems. Only the third part [25] is here classified because it describes 150 

the application and simulation of the energy system for a real case study. 151 

At a spatial level, only local rural energy planning for DCs (and BRICS) is here considered, whereby 152 

works referring to other contexts or to global and national scales are not included in the review. For 153 

example, Clark et al. [26] and Wies et al. [27] focus on a remote power system for a village in Alaska, 154 

so their studies have not been included. The same applies for Bala [28], who proposes a bottom-up 155 

approach to minimise CO2 emissions for Bangladesh, but at national level. Edmonds et al. [29] 156 

develop a long-term energy-economy model for assessing alternative energy evolutions over periods 157 

of up to 100 years at a global level, accounting for CO2 emissions. Parshall et al. [30] develop a 158 

national electricity planning model to guide grid expansion in countries with low pre-existing electricity 159 

coverage in Kenya. Alfaro and Miller investigate potential appropriate decentralised renewable energy 160 

schemes for Liberia at national level [31]. 161 

On the contrary, we do not put any restriction on the type of off-main grid system that the case studies 162 

propose: standalone systems, microgrids and distributed hybrid microgrids are considered, according 163 

to the classification given by Mandelli et al. [32]. Grid-based power is usually the least-cost option for 164 

large concentrations of household or industrial loads: it offers economies of scale, due to large fixed-165 

cost investment in distribution lines and generation facilities. However, it is often the least attractive 166 

option at regional and village-size level [15], due to a number of economic, environmental, political, 167 

technical and social factors [32]. The selection of off-main grid case studies was not a prerogative 168 

stated at the beginning, but an outcome of the research, since they focus on rural areas where the 169 

population is highly dispersed and lives far from urban centres. For example, Zeyringer et al. [33] 170 

present an example of grid extension electrification in Kenya, comparing it with stand-alone PV 171 

systems. They find that, under current circumstances, the implementation of stand-alone PV systems 172 

is the most appropriate cost-effective solution in areas with low population density. As a matter of fact, 173 

because of high transmission and distribution costs, WEO-2013 [34] quotes that in the Universal 174 

Access scenario grid extension will be able to provide access only to 30% of rural areas. The 175 

remaining areas would rely either on mini-grids or small, stand-alone off-grid solutions. 176 

The papers were selected starting from a web research on Science Direct editorial platform and 177 

Scopus database, and from references mainly taken from [19,32,35]. At the end, 126 papers have 178 

been studied and 84 have been selected for the analysis and classification. 179 

Even if no range of publication date was fixed, Figure 1 shows how, among the papers selected in this 180 

study, the greatest number of publications is concentrated between 2004 and 2015. 181 

 182 



 183 
Figure 1. Publication on local energy planning over the years. 184 

2.2. Classification and analysis of long-term energy planning case-studies 185 

Within the energy planning literature, Prasad et al. [16] present the risks, uncertainties and errors 186 

involved in energy planning, as well as a review of models for energy planning (econometric models, 187 

optimisation models, simulation models and the related computer-assisted tools). In the context of 188 

rural electrification, Mandelli et al. [32] propose the most recent review of the scientific literature 189 

focused on off-grid systems according to five main research areas including models and methods for 190 

simulation and sizing. Hiremath et al. [17] present a classification of energy models for decentralised 191 

energy planning: optimisation models, decentralised energy models, energy supply/demand driven 192 

models, energy and environmental planning models, resource energy planning models and models 193 

based on neural networks. The same Authors [36] published more recently a review of possible 194 

decentralised renewable energy options for the Indian context. The review includes case studies of 195 

successful deployment of such options and opportunities (e.g. job creation) arising from the 196 

decentralisation of electricity generation. Nicole van Beeck [37] presents a decision support method 197 

for selecting appropriate energy systems for regions experiencing rapid growth, such as villages in 198 

developing countries. The Author proposes nine criteria to classify energy models: purposes of energy 199 

models, model structure, analytical approach (bottom-up vs. top-down), underling methodology, 200 

mathematical approach, geographical coverage, sectoral coverage, time horizon, data requirements. 201 

Yusta et al. [38] investigate the most utilised multi-criteria decision methods for electrification planning 202 

in rural areas and they review approximately 120 publications related to energy planning [19], focusing 203 

mainly on 50 cases studies of decentralised power supply plans. They classify them according to 204 

referring country, mathematical model, methodology application, adopted criteria, implemented 205 

technologies, and target population. Deshmuk [18] discusses how to develop an Integrated 206 

Renewable Energy System (IRES) to find the optimal energy resource allocation in energy planning 207 

processes, and suggests a classification of energy planning models based on methodology adopted 208 

(bottom-up vs. top-down), spatial coverage, sectoral coverage and temporal coverage. Trotter et al. 209 

[39] present a well-written comprehensive and systematic review of electricity planning in sub-Saharan 210 

Africa. They consider a broad definition of planning – i.e. “an integrated approach of analysing an 211 

economically, technologically, environmentally, socially and/or politically suitable equilibrium between 212 

electricity demand of a given unit of analysis and different available supply options across at least one 213 

element of the electrification value chain” ([39] p. 1189). They review the literature according to three 214 

categories: value chain depth, decision criteria used and number of different decision alternatives. 215 

Based on Deshmuk [18], Yusta et al. [19] and Nicole van Beeck [37], we introduce an extended and 216 

more comprehensive classification of more than 80 energy planning case studies in six categories: (i) 217 

spatial coverage, (ii) planning horizon, (iii) energy vector, (iv) energy uses and (v) decision criteria 218 

mathematical models. Categories (i), (ii) and (iv) are selected from Deshmuk [18] and Nicole van 219 



Beeck [37]. Category (v) is based on Yusta et al. [19]. Appendix A reports a complete overview of the 220 

classification adopted for the collected case studies. In the following paragraph, we give an insight for 221 

each of the six categories. For each one we report some examples of case studies and the related 222 

models. 223 

With this categorisation, we aim at proposing a framework containing all the most relevant aspects 224 

and information that rural energy planning studies should consider, state, and discuss. We also look at 225 

the topics that would need more investigation and might open new research opportunities, especially 226 

from an energy modelling perspective.  227 

2.2.1. Spatial coverage: local and regional coverage 228 

Within this category, studies are classified based on the extension of the geographical domain they 229 

consider: local coverage considers a village, a community, and a group of small villages [40–42] or set 230 

of houses [25,43] located in the same region of the same nation; regional coverage includes islands, 231 

big cities or institutional divisions according to linguistic boundaries or morphological constraints. As 232 

already stated, national and global case studies are not covered in our analysis. 233 

Authors identify and specify the spatial coverage of their work in different ways. Himri et al. [44] 234 

present a study for a remote village in Algeria, specifying the number of consumers living in the area. 235 

Musgrove [45] develops a dynamic programming model to find the optimal operating strategy for 236 

satisfying an electrical load of 1 kW, without specifying the number or type of user(s). Salehin et al. 237 

[46] combines a HOMER-based techno-economic optimisation with a RETScreen-based energy 238 

scenario analysis for assessing a PV-Diesel and a Wind-Diesel power system in a small locality of 239 

1000 people in Kutubdia Island, Bangladesh. Gupta et al. [47] study a hybrid energy system for the 240 

Juanpur block in India, specifying the extension of the location and the number of households. Silva et 241 

al. [48] focus on the applicability of multi-objective methods to assess the introduction of renewable 242 

technologies for general “Non-interconnected Zones” in Colombia. Nakata and Kanagawa [49] apply 243 

the META-Net economic modelling tool to analyse the future energy supply options and end-use 244 

devices for the rural areas of Assam region, India. Zeyringer et al. [33] analyse the options of grid 245 

extension and stand-alone photovoltaic systems for the electrification of Kenya, dividing the entire 246 

national area in cells that vary in coverage, from local to regional. 247 

From this first categorisation, it emerges that about 78% of the cases analysed are local energy 248 

planning, suggesting a lack of regional studies. Moreover, in some cases the spatial coverage of the 249 

study is vaguely defined. This might prevent the extension of the approach and the findings to other 250 

similar cases of energy planning in analogous contexts. From the analysis of the spatial coverage of 251 

all the case studies, it emerges that modelling frameworks for local planning (e.g. HOMER ®) allow 252 

detailed technical aspects of the planned energy systems to be analysed and taken into account; on 253 

the other hand, regional planning mainly concerns the selection of the optimal energy supply strategy, 254 

such as the identification of the energy mix and the solution of the off- / on-grid dilemma.  255 

2.2.2. Planning horizon: short, medium and long term 256 

The second category refers to the time scale considered for implementing the energy planning. Four 257 

subcategories are identified: short-term (from one month to one year), medium-term (from one to ten 258 

years), long-term (beyond fifteen years) and not-specified term. The distribution of the works between 259 

these subcategories is reported in Figure 2. 260 

 261 



 262 
Figure 2. Classification of case studies: Planning Horizon. 263 

Authors usually introduce the planning horizon in two different ways: some specify explicitly the 264 

lifespan of the project or lifetime of the energy system; others do not point out the planning period but 265 

report the lifetime of the components such as PV, diesel gen-set or wind turbine used to calculate the 266 

net present value or the discounted costs of the system. For example, Haddadi et al. [50] specify three 267 

different lifetimes for the systems implemented, equal to 10, 15 and 20 years. Similarly, Sen et al. [51] 268 

indicate a project’s lifetime of 25 years. On the contrary, Silva et al. [48] do not point out the lifetime of 269 

the entire project but make the lifetime of the technologies explicit, in order to calculate the net present 270 

cost of the renewable energy system. Daud et al. [52] state clearly that the life cycle period of the 271 

system is assumed to be the maximum lifetime of the main components of the system. In cases where 272 

the project lifetime is not indicated, the maximum lifetime between all the system components defines 273 

the planning horizon of the study. This assumption is especially adopted to describe case studies 274 

where technical data of system components are listed, as Arun et al. do in [53]. 275 

Papers that do not specify any information for deriving the planning horizon are accounted for in the 276 

not-specified category. For example, Kanase-Patil et al. [54] apply the Integrated Renewable Energy 277 

Optimization Model (IREOM) for the electrification of dense forest areas in India in order to minimise 278 

the cost of energy generation over an amortisation period of n years. Again, Gupta et al. [47] generally 279 

note that the unit costs are calculated on the basis of the lifetime of the plants, without indicating a 280 

precise value. 281 

This analysis highlights that about 67% of the studies refer to long-term energy planning, while almost 282 

one-quarter does not specify enough information to derive the planning horizon. This lack of 283 

information about the time horizon undermines the robustness of the planning results, since it prevents 284 

their replicability, as well as any uncertainty analysis on the evolution of the techno-economic 285 

parameters (e.g. energy demand, costs, efficiency). The classification of the case studies based on 286 

their planning horizon provides also useful insights about the details achievable by each energy 287 

model: short-term energy models allow the analyst to consider more precisely short time steps 288 

(seconds or minutes), specific operation constraints of the analysed energy systems and their 289 

response in case of unexpected conditions and phenomena (e.g. fluctuations, changes in weather 290 

conditions, variabilities of renewable resources). Long-term models usually rely on longer time 291 

resolutions (hours, days, weeks). This could prevent the analysis of short-term dynamics but allows 292 



the introduction of long-term variables (e.g. energy demands, useful life-time of the technologies, 293 

discount rates) that are pivotal to more complete economic analyses and sizing procedures.  294 

2.2.3. Energy vector: electricity, thermal energy and oil products 295 

The “energy vector” category classifies the case studies based on the energy output of the power 296 

systems subject to the planning. Three types of energy vector have been defined: electricity, thermal 297 

energy and oil products.  298 

Electricity results as the most considered energy vector in the case studies (Figure 3), especially 299 

within those focusing on rural electricity planning and employing HOMER ® software for the optimal 300 

sizing of the off-grid system [40,44,46,55–72]. 301 

The thermal energy vector is the second most considered in the case studies, especially for the 302 

residential sector. This sub-category includes both thermal energy for space heating and cooking, 303 

often produced by systems fuelled by non-commercial energy (e.g. biomass and agricultural residues 304 

for cooking). For example, Malik and Satsangi [73] apply mixed integer/linear programming for 305 

optimizing the supply of energy for cooking in the rural areas in Wardha District, India. Joshi et al. [41] 306 

investigate the most appropriate fuels for cooking and for space heating in three villages of different 307 

zones of rural Nepal, among fuel wood, agriculture residues and animal dung. 308 

Many case studies implement energy planning by considering more than one energy vector. Devadas 309 

[74] presents a linear programming-based model to optimally allocate energy resources to different 310 

end-uses such as household consumption, agriculture and transport, considering electricity for 311 

irrigation and lighting, liquefied petroleum gas for cooking, kerosene for the lamps of lower income 312 

consumers and organic and inorganic fertilizers for farming activities. Srinivasan and Balachandra [75] 313 

identify the most appropriate energy conversion technologies and non-commercial fuels for producing 314 

electricity for lighting and energy for cooking and thermal purposes. Hiremath et al. [76] optimise a 315 

decentralised bioenergy system to produce biogas for cooking and biomass for power generation. 316 

Fuso Nerini et al. [13] study the cost optimal energy supply options for different scenarios of energy 317 

demand in the village of Suro Craic, Timor Leste. Howells et al. [77] employ a MARKAL-TIMES model 318 

to plan household energy services in an African village considering both electricity and thermal energy 319 

for cooking. 320 

In accordance with Pachauri et al. [78], this review indicates that rural energy planning studies mainly 321 

concern electricity planning, revealing that little quantitative analysis focuses on the other energy 322 

vectors. More comprehensive approaches would be needed to tackle all the challenges concerning 323 

sustainable rural energy planning, including the study of options to supply energy for cooking. This 324 

vector is highly prioritised in the Sustainable Energy for All (SE4All) global Agenda [79], as one of the 325 

pillars for achieving the SDG7 [80]. 326 



 327 
Figure 3. Classification of case studies: Energy Vector. 328 

2.2.4. Decision criteria mathematical models: Linear Programming (LP), Multi-Criteria 329 

Decision Making (MCDM), Multi-Objective Programming (MOP), Non- Linear 330 

Programming (NLP), Dynamic Programming (DP), Enumerative Optimisation (EO) 331 

In this sub-section, we examine the optimisation methodology lying behind the planning procedure. In 332 

accordance with Yusta and Rojas-Zerpa  [19], decision criteria analysis has been classified into seven 333 

sub-categories (classes of models): Linear Programming (LP), Multi-Criteria Decision Making 334 

(MCDM), Multi-Objective Programming (MOP), Non- Linear Programming (NLP), Dynamic 335 

Programming (DP), Enumerative Optimisation (EO) and other. 336 

LP is used to optimise a linear objective function subject to a set of linear constraints. In the analysed 337 

case studies, it is especially employed to minimise the cost of matching supply and demand 338 

[58,81,82]. The category includes also models using Mixed Integer Linear Programming (MILP). There 339 

are several modelling languages: LINGO is a modelling software developed by Lindo Systems Inc. 340 

and it is used by Kanase-Patil et al. [40] to calculate the cost of energy for an off- grid system in India. 341 

Fuso Nerini et al. [13] used OSeMOSYS [83], a linear model generator written in GNU MathProg 342 

language – a subset of the AMPL (A Mathematical Programming Language) –, to carry out the energy 343 

planning of Suro Craic village in Timor Leste. 344 

MCDM solves problems involving more than one criterion of evaluation such as cost or price, 345 

efficiency and emissions. Analytic Hierarchic Process (AHP), Compromise Programming (CP), Goal 346 

Programming (GP), and Elimination and Choice Expressing Reality (ELECTRE) are MCDM-based 347 

techniques. Semaoui et al. [43] developed a Simulink-based model for the optimal sizing of a stand-348 

alone photovoltaic system in Algeria, relying on a (i) reliability and (ii) economic criterion for the 349 

optimisation. Cherni et al. [84] implemented their multi-criteria decision-support system SURE to 350 

calculate the most appropriate set of energy alternatives for supplying power to a rural Colombian 351 

community, considering physical, human, social, natural and financial assets.  352 

MOP is a method for solving optimisation problems with more than one objective function. For 353 

example, Hiremath et al. [76] set seven objective functions in their optimisation problem: minimisation 354 

of cost, maximisation of system efficiency, minimisation of use of petroleum products, maximisation of 355 

use of locally available resources, maximisation of job creation, minimisation of COx, NOx, and SOx 356 

emissions and maximisation of reliability. 357 



NLP includes optimisation problems whose variables and constraints are linked by non-linear 358 

relations. Ashok [85] uses a Quasi-Newton algorithm to determine the optimal number of renewable 359 

energy units for a typical rural community in India. The META-Net economic modelling tool adopted by 360 

Nakata and Kanagawa [49] to analyse energy options in rural India is based on a NLP and partial 361 

equilibrium tool. Segurado et al. [86] relied on H2RES software to plan the future power generation for 362 

S. Vincent Island in Cape Verde; the model is based on a single-objective optimisation, i.e. the 363 

minimisation of the Levelised Cost of Energy (LCOE), subject to nonlinear relations and constraints.  364 

DP is a technique for solving complex problems by splitting them into a sequence of smaller sub-365 

problems, resolving and storing them in a data structure. Thus, DP does not identify a single 366 

optimisation algorithm: a variety of optimisation techniques can be employed to solve particular 367 

aspects of the main problem. It is applicable to problems that require a sequence of interrelated 368 

decisions to be made. Nahman and Spirić [87] determine the optimal long-term planning of various 369 

characteristic types of rural networks using a constrained DP technique. Bowe and Dapkus [88] 370 

formulate the problem of power systems expansion planning of a small utility in Midwest as a Markov 371 

decision process, and they use stochastic DP to solve the model. Das et al. [89] use DP to define the 372 

optimal investment plan for renewable energy technologies in Gajalia village, South-West Bengal. 373 

More recently, EO stands out as a methodology of practical interest and straightforward application. 374 

Combinatorial optimisation models are also included in this category. This approach calculates 375 

numerically the optimal solutions based on one or more objectives. Usually, the objective is to 376 

minimise the cost of energy supply, by modifying the size of the supply technologies under a number 377 

of constraints (e.g. the availability of renewable resources). HOMER ® falls within this category: given 378 

the user-specified constraints and lower and upper limits on the size of the system the tool simulates 379 

every possible system configuration within the search space. The HOMER Pro’s Optimizer ™ 380 

facilitates this operation, selecting the solution that satisfies the lowest total net present cost [90]. 381 

Türkay et al. [55] apply HOMER ® to find the lowest net present value for a stand-alone system 382 

composed of solar photovoltaic, wind turbines and fuel cells to supply electricity for a university in 383 

Turkey. Kolhe et al. [57] apply the same tool for optimally sizing an off-grid hybrid renewable energy 384 

system for electrifying a rural community in Sri Lanka. Akella et al. [58] compared LINDO ® and 385 

HOMER ® – respectively based on LP/NLP and EO optimisation methods – to define the optimal 386 

IRES for the Jaunpur block of Uttaranchal state of India. Mandelli et al. [91] develop a novel EO-based 387 

methodology for sizing PV-batteries power systems, which embraces uncertainty on load profiles. 388 

They apply it to electricity planning in a peri-urban area of Uganda.  389 

Case studies that do not fit anyone of the classes or do not provide enough information are identified 390 

as “Others”. For example, Phrakonkham et al. [92] minimises the annualised cost of energy for a 391 

remote village in Northern Laos with a genetic algorithm implemented in Matlab ®. Rana et al. [93] use 392 

an intuitive sizing method. They calculate and identify the system with the lowest total life cycle cost of 393 

six combinations of three possible technology alternatives (i.e. standalone PV, biogas system, gasifier 394 

system) to optimally match the energy supply and demand. Segurado et al. [86] rely on H2RES 395 

software to maximise the penetration of renewable energy sources in the electricity system of S. 396 

Vicente Island in Cape Verde and they describe it simply as a “simulation tool”. 397 

Figure 4 illustrates the distribution of the reviewed works across the described decision criteria 398 

methods. 399 

 400 



 401 
Figure 4. Classification of case studies: Decision criteria mathematical models. 402 

EO results to be the most used mathematical method. It is adopted in 33.7% of the case studies, 403 

especially those that rely on HOMER ®. LP follows, used in 27.9% of the case studies. LP is based on 404 

analytical optimisation, requiring less computational time and effort than EO methods. On the other 405 

hand, EO is not constrained by the need to set only linear equations, sometime overly simplistic [94]; 406 

they therefore result in a better representation of the actual dynamics and phenomena that 407 

characterise the operation of energy systems (e.g. the charge-discharge dynamics inside the 408 

batteries).  409 

This part of the review results suggests that the literature has been mainly limited to mono-objective 410 

optimisation models so far. Considering the multifaceted issue of sustainable rural energy planning 411 

[39] – which includes important socio-economic and environmental aspects, such as technology 412 

appropriateness, indoor air pollution, local know-how and capabilities –, MCDM and MOP models may 413 

provide more comprehensive frameworks for rural energy planning. Interesting options can consider 414 

the soft-linking with behavioural approaches, in order to take into account complex social aspects. As 415 

a pioneer example in this field, Moresino et al. [95] couple OSeMOSYS with a share of choice in order 416 

to take into account the consumers’ real behaviour. In their case study, they focus on the consumer’s 417 

preferences regarding the purchase and use of electric bulbs. 418 

2.2.5. Energy uses: residential, communitarian, agricultural, industrial, commercial and not-419 

specified  420 

We classify the case studies based on both the type of energy users and the end-use of energy: 421 

residential, communitarian, agricultural, industrial and commercial and not-specified. In accordance 422 

with IEA’s definition [96], such categories are the most comprehensive ones of all energy uses. The 423 

energy consumption for the residential sector includes demand for lighting, cooking and powering 424 

domestic appliances such as radios, televisions, fans, etc. The communitarian use of energy refers to 425 

schools, medical centres, radio stations, small shops, churches, and restaurants. Ferrer-Martì et al. 426 

[97] design an electrification plan for a community in Peru, considering households and five institutions 427 

as direct beneficiaries, namely the church, the school, the health-centre, restaurants and shops. The 428 

agricultural sector includes energy for farming activities: pumping water, ploughing, supplying tractors 429 

and other agricultural uses. The industrial sector considers rural industries and income generating 430 

activities, such as grain mills, coal kilns, small vans for products transportations, etc. The energy 431 



demand for the commercial sector refers to energy used for all the activities that need roads, 432 

telecommunication infrastructure, water and irrigation networks, bank and credits facilities; 433 

transportation (unless otherwise specified) is included as well, with the hypothesis that few people use 434 

cars or mini-vans as private use in rural contexts. 435 

Very few case studies specify the sector covered by the planning [58,71,91], but they provide a the 436 

description of the type of technology and appliance to supply [13,88] or the end-uses of energy [77,98] 437 

– such as lighting, cooking, pumping, heating, cooling and transportation –, whence the demand 438 

sector is derived. Mandelli et al. [91,99] simulated the planning of a PV-based power system for a rural 439 

village in Uganda, investigating the effect of the uncertainty of the load profile on the optimum sizing; 440 

they employed a novel stochastic tool called “LoadProGen” to derive the load curves, which requires 441 

the definition of all the classes of users as input and consequently their end-use load profile. Amutha 442 

[71] explicitly estimates the electricity uses for the households, the industries, the agricultural activities, 443 

and the local Base Transceiver Station (BTS) (viz. a device that facilitates wireless communication) for 444 

the electricity planning of a remote Indian village. 445 

Figure 5 illustrates how case studies are distributed among the five demand sectors.  446 

 447 

 448 
Figure 5. Classification of case studies into the five Demand Sectors. 449 

It emerges that energy planning deals more with residential demand, in accordance with 450 

Bhattacharyya [35], who stated that “the demand in rural areas arises mainly from the use of domestic 451 

appliances” (p. 678). However, the literature concerning the nexus between energy and local 452 

development shows the need to increase the focus on the industrial use of energy, elsewhere called 453 

productive use of energy. Specifically, it indicates that access to energy, when it is supported by 454 

complementary activities – e.g. educational activities, capacity building and awareness campaigns –, 455 

can be a pivotal driver in developing new business [100–107], with a consequent increase in the 456 

industrial energy demand. In line with this finding, Homer Pro ® has a new interesting feature, which 457 

allows the user to select default “Commercial” and “Industrial” types of load in the simulation. 458 

3. Approaches to forecast the long-term evolution of the energy demand 459 

This section focuses on methods and approaches for the long-term forecasting of energy demand, 460 

which is a pivotal aspect for implementing a reliable and appropriate planning of the energy supply 461 

options, as discussed in the Introduction [9–14]. 462 



3.1. Overview of energy demand models for rural energy planning 463 

The scientific literature has addressed the classification of models to forecast the energy demand. 464 

Bhattacharyya and Timilsina [108,109] propose a literature review of existing energy demand 465 

forecasting methods and highlight the methodological diversities among them. Their purpose is to 466 

investigate whether the existing energy demand models are appropriate for capturing the specific 467 

features of developing countries. They find that mainly two approaches are used: econometric (or top-468 

down) and end-use (bottom-up) accounting; the latter is able to produce more realistic projections as 469 

compared to the former; on the other hand, it suffers from data deficiencies ([109] p. 1979), while 470 

econometric accounting does not. Suganthi et al. [110] present a comprehensive review of the various 471 

energy demand models, as well as applications for both developing and developed countries. Swan et 472 

al. [111] focus on the residential sector to present a review of existing approaches to model energy 473 

household consumption, classifying them into top-down and bottom-up approaches.  474 

Among the existing reviews, very few applications of energy models for forecasting energy demand 475 

refer to rural contexts: Hartvigsson [112] developed an end-use system dynamics model to project the 476 

electricity demand of a rural community of Tanzania by accounting for the nexus between income, 477 

economic growth and electricity needs. S. Mustonen [113] built an end-use LEAP (Long-range Energy 478 

Alternative Planning System)-based model to generate long-term scenarios of energy demand 479 

evolution for a rural village in Lao People’s Democratic Republic, for a time domain from 2006 to 2030. 480 

Van Ruijven et al. [114] developed a bottom-up simulation model for investigating the growth of 481 

household energy demand in India and Daioglou et al. [115] extended it to other emerging regions: 482 

China, South East Asia, South Africa and Brazil. They named it global residential energy model 483 

(REMG) and applied it for both rural and urban areas. Fuso Nerini et al. [13] modelled 4 scenarios of 484 

energy demand growth in the rural village of Suro Craic in Timor Leste, based on the ESMAP/World 485 

Bank multi-Tier framework for measuring energy access and the long-term objectives set by the 486 

Timorese government. 487 

In this section, we assess how the existing approaches for long-term forecasting of the energy 488 

demand are employed in the previously reviewed case studies, in the attempt to derive insights and 489 

guidelines for supporting future rural energy planning studies in DCs. 490 

3.2. Energy demand forecasting approaches: categorisation and adoption 491 

Few case studies explicitly state the model adopted to predict the energy demand, like for instance 492 

Malik et al. [42,73]. We classified the others based on the mathematical forecasting approach 493 

adopted; we identified eight categories of long-term energy demand forecasting approaches: fixed 494 

load, arbitrary trend, scenarios, regression, time-series, extrapolation, system dynamics and 495 

input/output (I/O). Regression, time-series and I/O approaches refer to the classification proposed by 496 

Suganthi et al. [110]; the others have been proposed by the authors and refer to the specific function 497 

or mathematical technique adopted. 498 

Appendix B reports a complete overview of the categorisation adopted for the collected case studies. 499 

The fixed load category is introduced for those energy planning case studies that consider a fixed 500 

value of energy load – i.e. no evolution of energy consumption – along all the planning horizon. For 501 

example, Zhang et al. [82] consider a constant electricity demand throughout the whole lifetime of the 502 

system (15 years) and they generate random weekly load profiles based on typical values of load for 503 

rural villages of Southeast Asia. Borhanazad [116] develop a MOP-based planning of three micro-504 

grids in rural Iran. Here, they consider a constant hourly load profile for a typical rural area ([116] p. 505 

300), derived by local assessments, without considering any evolution along the planning period. 506 

Cherni et al. [84] propose a model to supply sustainable energy for a community in Colombia. They do 507 

not introduce any demand forecasting model but they state that the energy system is designed to 508 

support a potential growth of the community and its electric consumption. Almost all the case studies 509 

that employ HOMER ® software to design electricity microgrids belong to this category [40,44,46,55–510 

72], since the software considers a fixed load curve along the planning horizon, and the only variability 511 



lies at a daily and seasonal level. Also case studies that do not specify how they project the demand 512 

along the planning horizon are considered within the ‘fixed load’ category. For instance, Tegani et al. 513 

[117] apply a genetic algorithm to size a hybrid wind/PV/diesel power system for a small isolated area 514 

of few houses in Algeria without reporting any information about the evolution of the load along the 515 

lifetime of the system. 516 

The arbitrary trend method is characterised by the assumption that the energy demand would evolve 517 

with at a constant pace during each year of the planning; the trend is often estimated from historical 518 

data series, as in [13,118–120], derived from local data, national plans and “goals” of energy access. 519 

Such arbitrary trends are frequently combined with multiple scenarios of energy demand. Fuso Nerini 520 

et al. [13] set arbitrary trends of energy demand growth in the rural village of Suro Craic depending on 521 

the different Tiers of electricity access defined by the World Bank [121]. Domenech et al. [97] 522 

investigated the current energy demand of a community of Alto Peru with local surveys. They derived 523 

arbitrary trends of growth from considerations on the “development of small productive activities 524 

and/or enjoyment of some domestic comforts” ([97] p. 280). For a case study focusing on India, 525 

Nakata and Kanagawa [49] assume that the total energy demand increases linearly during the 526 

planning horizon according to the expected annual growth of population in the country: 1.4% from CIA 527 

data in 2015. 528 

The scenario-based approach refers to a set of descriptive pathways that indicate how future events 529 

may occur. It is a particularly suitable method in contexts characterised by high uncertainty. A number 530 

of case studies adopted this approach to develop possible long-term pathways of energy demand 531 

evolution: Ferrer-Martì et al. [122] couple a “low-demand” scenario characterised by constant demand 532 

for energy for households, the school and a health centre, and a “high-demand” scenario to consider a 533 

wider fulfilment of the basic needs and possible production uses. Nayar et al. [70] use HOMER ® to 534 

design an innovative wind/PV/diesel hybrid system for three remote islands in the Republic of 535 

Maldives. They gather data from monthly records and by evaluating the load profile for a period of one 536 

day, and they state that “several scenarios of […] load growth were examined” (p. 1079).  537 

The regression models perform the forecast through a regression function where a dependent variable 538 

is obtained by a combination of some parameters or coefficients and independent variables. The 539 

regression function is usually linear and the parameters are usually estimated from data with the least-540 

squares technique. Zeyringer et al. [33] implement a regression and Tobit model for evaluating the 541 

monthly electricity demand per household as a function of a number of independent variables. These 542 

are non-food expenditures per household per month, the number of servants employed in the 543 

household, the flush toilet as main toilet facility, the age of the household head, the formal education 544 

of the household head and the number of people living in the household. For the regression, they use 545 

data from a 2005/2006 survey, and they project the demand to 2020 by employing forecasts of future 546 

GDP (rural, urban), population (rural, urban), and share of educated population (over 15 years of age).  547 

Time-series models use historical panel data for extrapolating the future energy requirement. This 548 

marks a difference with the regression analysis, which investigates how the current values of one or 549 

more independent variables can affect another current or future dependent parameter. Different 550 

techniques are used in time-series models to predict the electricity demand: simple first-order 551 

autoregressive time-series models, logistic curves, Markov models and other models for technology 552 

diffusion, like Gompertz. The results of these sophisticated methods seem to depend on the structure 553 

of the model itself and the strategies employed for data analysis. Bowe and Dapkus [88] developed a 554 

Markov model for solving the problem of power systems expansion planning, simulating a case study 555 

of a small utility in Midwest in the '90s., In this case, the complexity, uncertainty and dynamics of the 556 

problem affect also the future demand levels.  557 

System dynamics (SD) models are used to capture the nonlinear behaviour of complex systems over 558 

time, by relying on the use of causal and feedback relationships. SD models are characterised by 559 

stocks, which are the state variables of the dynamical system, and their inflows and outflows (rates), 560 

which increase or decrease the value in the stock. In the field of rural electrification, Steel [123] 561 

developed a SD model to simulate the decision-making process of electricity consumers in rural 562 

Kenya, while choosing between grid and off-grid power options. Jordan [124] uses SD to compute 563 

endogenously the electricity demand in a long-term power capacity expansion model for Tanzania. 564 



Hartvigsson et al. [9] attempt to study how the initial planning of capacity generation affects cost-565 

recovery, electricity usage and user diffusion in rural areas. Zhang and Cao [125] simulate the nexus 566 

between rural economic development, social development (viz. growth in population) and energy 567 

consumption to analyse the future energy supply mix for a rural Chinese region. Among the analysed 568 

case studies of rural energy planning, only Zhen [126] applied a SD approach to model energy 569 

demand: he developed a model to predict the developmental changes of the energy supply and 570 

demand for a rural village in the North China.  571 

The Extrapolation technique corresponds to the method used by Malik et al. [42,73], which 572 

approximates data of future energy consumption by a probability distribution function starting from 573 

historical surveys. We did not find any other use of this technique in other cases studies, probably due 574 

to the problem of data scarcity, which prevents the use of this method in studies of rural energy 575 

planning. 576 

Input-output models (I/O) have long been used for macro-economic and top-down analysis, with 577 

scarce application to local energy planning. They are usually not employed for modelling informal 578 

activities and non-monetary transactions, due to the lack of reliable data. Subhash et al. [127] carry 579 

out an energy planning for an Indian village cluster by developing an I/O model, which adopts inter-580 

sectorial relations for projecting sector scenarios of the economy in the long-term. 581 

3.3. Observations from literature and guidelines to forecast rural energy demand 582 

Figure 6 summarises the distribution of the reviewed studies across the different demand forecasting 583 

approaches. It clearly emerges that two thirds of the case studies do not consider the variation of 584 

demand over the planning horizon, weakening the reliability and robustness of the design phase of the 585 

planning, especially for long-term approaches. One-third of the reviewed case studies employ HOMER 586 

® software or its improvements to carry out the electricity planning; here, the electricity demand is fed 587 

as a daily average load profile, with the possibility to introduce a daily and monthly variability; 588 

however, no variability over the years can be introduced. Only Prasad and Natarajan [128] justify this 589 

modelling choice due to the fact that the surveyed variation of the distributions of the load resulted 590 

insignificant between the period 2000 and 2004 for the site Pompuhar, in India. Among the case 591 

studies with a long-term planning horizon, our study reveals that only 23% of them apply at least one 592 

of the remaining forecast techniques for projecting energy demand. Among these, the most used 593 

approach assumes a fixed growth every year (arbitrary trend) justified by previous studies, historical 594 

trends or specific assumptions, that may fail in capturing the complexities behind the evolution of 595 

energy demand in rural contexts. Therefore, they are often combined with a scenario-based approach, 596 

which is very useful to deal with uncertainties in the demand; nevertheless, the use of the scenario-597 

based approach must be compatible – at reasonable computational effort and time – with the decision 598 

criteria mathematical models employed for the energy planning.  599 

 600 



 601 

Figure 6. Percentage of energy demand forecasting approaches adopted in the case studies. 602 

These results highlight that the use of appropriate and reliable models for long-term energy demand 603 

forecast in rural energy planning studies is quite limited. Based on the literature, we try to propose 604 

some guidelines that aim at enhancing the future research on this topic. When modelling energy 605 

demand in DCs, Urban et al. [129] list the main characteristics of the energy system of developing 606 

countries that should be captured by energy models: the supply shortages, the transition from 607 

traditional to commercial fuels, the role of income distribution, the urban/rural split, the 608 

underdeveloped markets and informal activities, structural changes in the economy and subsidies. 609 

Bhattacharyya and Timilsina [109] criticise most global energy models that forecast future residential 610 

energy demand based on relatively simple relationships between energy consumption and income or 611 

GDP per capita, since they neglect such specific dynamics of developing countries and use aggregate 612 

macro-data. Table 1 presents an abstract of the main features, strengths and weaknesses of the two 613 

most diffuse approaches discussed by Bhattacharyya and Timilsina: top-down or econometric and 614 

bottom-up or end-use approach. 615 

Table 1. Characteristics of bottom-up and top-down models. 616 

 Bottom-up Top-down 

Strength - detailed sectorial representation of 
energy demand 

- realistic projections 
- local demand representation 

- identification of the relationship between 
economic variable and aggregate demand 

- reliance on aggregate data easy to obtain 
- reliability on historical trends able to drive the 

model 
 

Weakness - huge data deficiency especially for 
DCs 

- not able to capture price-based 
policy and price signals 

- inability to capture technological diversity and 
technical progress 

 617 

Especially in rural areas, energy access planning should firstly consider the structural change in the 618 

socio-economic dynamics caused by the introduction of new energy technologies, such as the 619 

leapfrogging of economies (e.g. new income generating activities and opportunities) [108,109]. 620 

Secondly, an appropriate model for demand forecasting in rural areas must account for the demand 621 

for end-use appliances [115]. This in turn depends on acceptability, deeply-rooted consumer 622 

behaviours, social networks-based diffusion mechanisms, affordability, elasticity of the demand and 623 

the inertia of the stock of available appliances. This is why Swan at al. [111] state that bottom-up end-624 

use approaches are more suitable for contexts where there is a rapid technological development as in 625 

DCs. Ruijven et al. [114] and Daioglou et al. [115] integrated some of the typical features of energy 626 

systems in DCs mentioned by Urban et al. [129] in their Residential Energy Global Model (REGM). 627 

The model is able to capture many of the specific dynamics of DCs (viz. underdeveloped markets and 628 

informal activities, the transition from traditional to commercial fuels, the role of income distribution and 629 

the urban/rural difference). It also adopts deterministic correlations derived from econometric studies 630 



and regression analysis on national data to project the energy use of households: this results a 631 

function of exogenous factors and drivers such as population, household size, household expenditures 632 

and temperature [130,131]. The use of such approaches for local applications might be prevented by 633 

the lack of local long-term data, as frequently happens in rural areas. In this context, the need to move 634 

towards mathematical approaches and instruments able to capture both the technical and the socio-635 

economic-related dimensions of energy demand evolution emerges, as we summarise and propose in 636 

Table 2.As Khandker et al. [132] state, “the dynamics of growth and electrification are complex, 637 

involving many underlying forces” (p. 666) and feedback mechanisms: rural electrification is expected 638 

to positively impact new economic and educational opportunities, which in turn might make electricity 639 

and appliances more affordable, increasing the local electricity demand.  640 

Table 2. Socio-economic- and energy-related dimensions of energy demand evolution in rural contexts 641 

Economic dimension 

- Considering the informal activities/economies that may bias available aggregate data on income [129] 

- Considering income distribution and inequity among users, who may behave differently among 

different socio-economic classes [129] 

- Modelling the new income generating activities and possibilities driven by more reliable access to 

energy [108,109] 

Social dimension 

- Modelling the urban and rural demand separately, since people have different needs and constraints 

[129][114] 

- Considering also non-monetary factors that may influence the users, such as past experience, social 

norms, and trust-based information and perceptions of quality, satisfaction and social network 

[133][134][135][9] 

Energy dimension 

- Modelling the demand for end-use appliances following a bottom-up approach [115]. 

- Considering the “user choice” of fuels and transition from traditional to modern energies, and vice-

versa [129], especially for energy for cooking [136] 

 642 

To this end, SD seems an appropriate candidate tool, given its ability to represent complex socio-643 

economic, techno-economic and socio-technical nexus causalities. Hartvigsson [9,112] highlights how 644 

SD can be a valuable methodological approach to capture the dynamics behind the evolution of 645 

energy demand in developing contexts, since the latter are affected by high uncertainty, strong non-646 

linear phenomena, complex diffusion mechanisms, time-adjustments of technology perceptions [137]. 647 

SD models have some limitations in modelling the social interactions that ensue within social networks 648 

and impact on consumers’ energy behaviours, since individuals are assumed to be always well-mixed 649 

and in many cases the interactions between compartments are assumed to occur at random [138]. Rai 650 

and Henry [134] indicate therefore that “agent-based modelling (ABM) is a powerful tool for 651 

representing the complexities of energy demand, such as social interactions and spatial constraints” 652 

(p. 1). As already stated by other studies in different research fields [139–142], we therefore conclude 653 

that coupling ABM and SD may be useful also to investigate in a comprehensive way the multi-faceted 654 

complexities behind energy choices and uses in rural areas. 655 

Conclusions 656 

In developing contexts, the number of people affected by lack of reliable and affordable energy 657 

sources may be only slightly reduced in the incoming decades in spite of the many efforts and 658 

investments in the sector [5]. A number of studies was carried out on long-term rural energy planning 659 

since around the ‘80s, but the different foci, terminology and methodologies make it difficult to track 660 

the similarities, weaknesses and strengths of these works. Moreover, the aspect of energy demand is 661 



far from being carefully addressed and analysed in rural energy plans. This in turn can constitute a 662 

barrier for researchers to build on the whole experience and findings of the authors. Indeed, most of 663 

the studies and the reviews focus only on the “supply” aspect of the rural energy planning. 664 

Coming from a modelling background and being interested in the prompt applicability of the existing 665 

know-how on long-term rural energy planning, we aimed at providing a critical analysis of the literature 666 

on the topic. The specific objective of the review is to provide a synthesis of strengths and 667 

weaknesses and fields of applicability of the approaches used so far, as well as the main modelling 668 

insights that can be derived from their applications.  669 

The work resulted in the analysis of 126 studies and categorisation of 84 of them, under a number of 670 

rules clearly defined in the first part of the paper: (i) the implemented energy planning must be aimed 671 

at selecting energy conversion technologies able to match a certain demand with certain energy 672 

resources in an optimal manner; (ii) studies refer to real-life cases or potential applications for real 673 

contexts; (iii) only local rural energy planning for DCs (and BRICS) is considered, excluding works 674 

referring to other contexts or to global and national scales; (iv) in case of electricity planning, all the 675 

on- and off-main grid electrification options (standalone systems, microgrids and distributed hybrid 676 

microgrids) presented by the case studies are considered; (v) the papers must come from the 677 

scientific peer-reviewed literature, without any constraint on the publication period. These rules are 678 

meant to indicate the scientific ground of the analysis and to provide a benchmark to replicate and 679 

extend it.  680 

As a novelty, we combined the analysis of both the “demand” and the “supply” aspects of the rural 681 

energy planning studies, stressing the need to consider and model these two parts of the planning as 682 

linked and interdependent. For this purpose, the studies have been classified in two ways: 683 

i. Firstly, in accordance with their type: subcategories of spatial coverage, planning horizon, 684 

energy vector, decision criteria mathematical models and energy uses were identified and the 685 

studies classified under each of them; 686 

ii. Secondly, in accordance with the methodology they employ to forecast the evolution of the 687 

energy demand, if any. 688 

We came to the conclusion of performing such multi-layer categorisation based on the observation 689 

that the diversity of the studies spans over multiple dimensions and that selecting only few categories 690 

would have been simplistic and inconclusive. 691 

From our classification, it emerges that about three quarters of the cases analysed refer to local rural 692 

planning (i.e. a village, a community, a group of small villages or a set of houses located in the same 693 

region of the same nation) and about two thirds carry out a long-term energy panning analysis (i.e. 694 

beyond fifteen years). Nevertheless, we found several case studies that did not report enough 695 

information for assessing the spatial coverage and planning horizon, preventing the findings to be 696 

extended to other similar cases of energy planning in analogous contexts. Electricity is found to be the 697 

most considered energy vector (79.0 % of the studies), followed by thermal energy (17.2%) and oil 698 

products (3.8%). The results reveal the need to increase the energy planning-based research on the 699 

other energy vectors, especially regarding thermal energy for cooking, given its priority in the 700 

Sustainable Energy for All (SE4All) global Agenda. Household end-use of energy is considered by 701 

most of the case studies, followed by communitarian, agricultural and industrial uses. Regarding the 702 

modelling approaches adopted to develop the planning, LP and EO result to be the most used, 703 

respectively by 27.9% and 33.7% of the reviewed studies. However, considering the multifaceted 704 

issue of sustainable rural energy planning – which includes important socio-economic and 705 

environmental aspects such as acceptability, technology appropriateness, indoor air pollution, local 706 

know-how and capabilities –, we suggest to enhance the research on MCDM and MOP models for 707 

more comprehensive energy planning studies.  708 

Interesting conclusions emerge particularly from the analysis of the methodologies to forecast the 709 

energy demand. Few studies assume a dynamic demand over the years and most of them forecast its 710 

evolution through arbitrary trends and scenarios. This, however, undermines the relevance of the 711 

results for the purpose of long-term planning, as also remarked by [109]. We therefore encourage 712 



future researches to pay more attention to this topic and consider carefully the importance of energy 713 

demand evolutions within rural energy planning studies, as inferred from [10–12]. We finally highlight 714 

the necessity of further developing the forecasting methodologies. To this end, we attempt to highlight 715 

the main socio-economic aspects that should be considered when modelling the evolution of rural 716 

energy demand: informal activities/economies, income distribution and inequity among users, new 717 

income generating activities and possibilities, difference between urban and rural demand, non-718 

monetary factors such as past experience, perceptions of quality, satisfaction and social network, end-719 

use energy consumption of appliances, user’s choice of fuels and transition from traditional to modern 720 

energies. In this context, bottom-up approaches and system-dynamics seem potential appropriate 721 

approaches to tackle the context-specific complexities of rural areas, the nexus causalities among 722 

energy and socio-economic aspects, as well as the possibility to deal with high uncertainties and data 723 

scarcity. Such conclusion sets a starting point for our modelling work on enhanced demand 724 

forecasting methodologies and it is meant to contribute to the same effort of other researchers. 725 

Acronyms – Subscripts 726 

AHP  Analytic Hierarchic Process 727 

AMPL  A Mathematical Programming Language 728 

BRICS  Brazil, Russia, India, China and South Africa 729 

CIA  Central Intelligence Agency 730 

CP  Compromise Programming 731 

DC  Developing Country 732 

DP  Dynamic Programming 733 

ELECTRE Elimination and Choice Expressing Reality 734 

EO  Enumerative Optimisation 735 

ESMAP  Energy Sector Management Assistance Program 736 

GP  Goal Programming 737 

IEA  International Energy Agency 738 

IREOM  Integrated Renewable Energy Optimization Model 739 

IRES  Integrated Renewable Energy System 740 

LCOE  Levelized Cost of Energy 741 

LP  Linear Programming 742 

MCDM  Multi-Criteria Decision Making 743 

MOP  Multi-Objective Programming 744 

NLP  Non- Linear Programming 745 

OECD  Organisation for Economic Co-operation and Development 746 

PV  Photovoltaic 747 

REMG  Residential Energy Model Global 748 

RET  Renewable Energy Technology 749 

SD  System Dynamics 750 

 751 
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Table 3. Systematic classification of long-term energy planning case-studies. 753 
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Table 4. Long-term energy demand forecasting approaches adopted within case studies. 755 

 
LONG-TERM DEMAND FORECAST 

Reference Fixed load Arbitrary trend Extrapolation System Dynamics Time-series Regression Scenarios I/O 

[143] x 
       

[87] 
 

x 
      

[144] 
  

x 
     

[126] 
   

x 
  

x 
 

[76] 
 

x 
    

x 
 

[145] 
 

x 
      

[81] 
 

x 
    

x 
 

[77] 
 

x 
    

x 
 

[146] x 
       

[55] x 
       

[13] 
 

x 
    

x 
 



[74] x 
       

[40] x 
       

[147] 
 

x 
      

[89] x 
       

[33] 
     

x 
  

[56] x 
       

[127] 
 

x 
    

x x 

[148] 
  

x 
     

[57] x 
       

[97] 
 

x 
    

x 
 

[12] x 
       

[149] x 
       

[150] 
    

x 
   

[53] x 
    

   

[117] x 
    

   

[50] x 
       

[151] x 
       

[152] x 
       

[82] x 
       

[25] x 
       

[43] x 
       

[153] x 
       

[116] x 
       

[85] 
 

x 
      

[128] x 
    

   

[47] x 
       

[84] 
 

x 
      

[48] x 
       

[154] x 
       

[155] x 
       

[156] x 
       

[157] x 
       

[158] x 
       

[75] 
 

x 
      

[122] x 
     

x 
 

[44] x 
       

[58] x 
       

[93] x 
       

[159] x 
       



[160] x 
       

[161] x 
       

[59] x 
       

[60] x 
       

[61] x 
       

[62] x 
       

[63] x 
       

[64] x 
       

[65] x 
       

[66] x 
       

[67] x 
       

[68] x 
       

[54] x 
       

[69] x 
       

[162] x 
       

[70] 
      

x 
 

[163] x 
       

[120] x 
       

[52] x 
       

[164] x 
       

[118] x 
       

[41] x 
       

[49] 
 

x 
      

[57] x 
       

[91] x 
       

[71] x 
       

[117] x 
       

[46] 
        

[72] x 
       

[86] 
 

x 
      

[99] x        

[165] x        

[166] x        

[14]       x  

 756 

 757 



References  758 

 759 

[1] IEA, Africa Energy Outlook. A focus on the energy prospects in sub-Saharan Africa, Paris, 760 
2014. doi:https://www.iea.org/publications/freepublications/publication/africa-energy-761 
outlook.html. 762 

[2] IEA, India Energy Outlook, Paris, 2015. 763 
doi:https://www.iea.org/publications/freepublications/publication/africa-energy-outlook.html. 764 

[3] U.S. Energy Information Administration, International Energy Outlook 2016, 2016. 765 
doi:www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf. 766 

[4] IEA, World Bank, Sustainable Energy for All 2015 - Progress Toward Sustainable Energy, 767 
World Bank, Washington, DC, 2015. doi:10.1596/978-1-4648-0690-2. 768 

[5] IEA, World Energy Outlook 2016, Paris, 2016. http://www.iea.org/bookshop/720-769 
World_Energy_Outlook_2016. 770 

[6] IEA, Energy for All: Financing access for the poor, World Energy Outlook 2011. (2011) 52. 771 
http://www.iea.org/media/weowebsite/energydevelopment/weo2011_energy_for_all-1.pdf. 772 

[7] International Energy Agency, World Energy Outlook 2016, Paris, 2016. 773 
http://www.worldenergyoutlook.org/publications/weo-2016/. 774 

[8] K. Kusakana, Optimal sizing of a hybrid renewable energy plant using linear programming, in: 775 
Power Eng. Soc. Conf. Expo. Africa (PowerAfrica), IEEE 2012, Johannesburg, 2012. 776 

[9] E. Hartvigsson, E. Ahlgren, J. Ehnberg, S. Molander, Rural Electrification Through Minigrids in 777 
Developing Countries: Initial Generation Capacity Effect on Cost-Recovery, in: 33rd Int. Conf. 778 
Syst. Dyn. Soc., Cambridge, USA, 2015: pp. 1–12. 779 
http://www.systemdynamics.org/conferences/2015/papers/P1306.pdf. 780 

[10] A. Cabraal, M. Cosgrove-Davies, L. Schaeffer, Best practices for photovoltaic household 781 
electrification programs, Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. 1996. (1996) 782 
1357–1362. doi:10.1109/PVSC.1996.564385. 783 

[11] A. Cabraal, M. Cosgrove-Davies, L. Schaeffer, Best Practices for Photovoltaic Household 784 
Electrification Programs - Lessons from Experiences in Selected Countries, Washington, DC, 785 
1996. 786 

[12] R.T. Kivaisi, Installation and use of a 3 kWp PV plant at Umbuji village in Zanzibar, Renew. 787 
Energy. 19 (2000) 457–472. doi:http://dx.doi.org/10.1016/S0960-1481(99)00053-1. 788 

[13] F. Fuso Nerini, R. Dargaville, M. Howells, M. Bazilian, Estimating the cost of energy access: 789 
The case of the village of Suro Craic in Timor Leste, Energy. 79 (2015) 385–397. 790 
doi:10.1016/j.energy.2014.11.025. 791 

[14] C. Brivio, M. Moncecchi, S. Mandelli, M. Merlo, A novel software package for the robust design 792 
of off-grid power systems, J. Clean. Prod. In press (2017). doi:10.1016/j.jclepro.2017.08.069. 793 

[15] B.J. van Ruijven, J. Schers, D.P. van Vuuren, Model-based scenarios for rural electrification in 794 
developing countries, Energy. 38 (2012) 386–397. doi:10.1016/j.energy.2011.11.037. 795 

[16] R.D. Prasad, R.C. Bansal, A. Raturi, Multi-faceted energy planning: A review, Renew. Sustain. 796 
Energy Rev. 38 (2014) 686–699. doi:10.1016/j.rser.2014.07.021. 797 

[17] R.B. Hiremath, S. Shikha, N.H. Ravindranath, Decentralized energy planning; modeling and 798 
application-a review, Renew. Sustain. Energy Rev. 11 (2007) 729–752. 799 
doi:10.1016/j.rser.2005.07.005. 800 

[18] S. Deshmukh, Energy Resource Allocation in Energy Planning, in: A.F. Zobaa, R.C. Bansal 801 
(Eds.), Handb. Renew. Energy Technol., World Scientific Publishing Co. Pte. Ltd., Singapore, 802 
2011: pp. 801–846. 803 

[19] J.C. Rojas-Zerpa, J.M. Yusta, Methodologies, technologies and applications for electric supply 804 
planning in rural remote areas, Energy Sustain. Dev. 20 (2014) 66–76. 805 
doi:10.1016/j.esd.2014.03.003. 806 

[20] P. Díaz, C.A. Arias, R. Peña, D. Sandoval, FAR from the grid: A rural electrification field study, 807 
Renew. Energy. 35 (2010) 2829–2834. doi:10.1016/j.renene.2010.05.005. 808 

[21] N.G. Johnson, K.M. Bryden, Energy supply and use in a rural West African village, Energy. 43 809 
(2012) 283–292. doi:10.1016/j.energy.2012.04.028. 810 

[22] J.L. Bernal-Agustín, R. Dufo-López, Multi-objective design and control of hybrid systems 811 
minimizing costs and unmet load, Electr. Power Syst. Res. 79 (2009) 170–180. 812 
doi:10.1016/j.epsr.2008.05.011. 813 

[23] A. Gupta, R.P. Saini, M.P. Sharma, Modelling of hybrid energy system-Part I: Problem 814 
formulation and model development, Renew. Energy. 36 (2011) 459–465. 815 
doi:10.1016/j.renene.2010.06.035. 816 



[24] A. Gupta, R.P. Saini, M.P. Sharma, Modelling of hybrid energy system-Part II: Combined 817 
dispatch strategies and solution algorithm, Renew. Energy. 36 (2011) 466–473. 818 
doi:10.1016/j.renene.2009.04.035. 819 

[25] A. Gupta, R.P. Saini, M.P. Sharma, Modelling of hybrid energy system-Part III: Case study with 820 
simulation results, Renew. Energy. 36 (2011) 474–481. doi:10.1016/j.renene.2009.04.036. 821 

[26] W. Clark, W. Isherwood, Distributed generation: Remote power systems with advanced storage 822 
technologies, Energy Policy. 32 (2004) 1573–1589. doi:10.1016/S0301-4215(03)00017-X. 823 

[27] R.W. Wies, R.A. Johnson, A.N. Agrawal, T.J. Chubb, Simulink model for economic analysis 824 
and environmental impacts of a PV with diesel-battery system for remote villages, IEEE Trans. 825 
Power Syst. 20 (2005) 692–700. doi:10.1109/TPWRS.2005.846084. 826 

[28] B.K. Bala, Computer modelling of the rural energy system and of CO2 emissions for 827 
Bangladesh, Energy. 22 (1997) 999–1003. doi:10.1016/S0360-5442(97)00025-X. 828 

[29] J. Edmonds, J. Reilly, A long-term global energy- economic model of carbon dioxide release 829 
from fossil fuel use, Energy Econ. 5 (1983) 74–88. doi:10.1016/0140-9883(83)90014-2. 830 

[30] L. Parshall, D. Pillai, S. Mohan, A. Sanoh, V. Modi, National electricity planning in settings with 831 
low pre-existing grid coverage: Development of a spatial model and case study of Kenya, 832 
Energy Policy. 37 (2009) 2395–2410. doi:10.1016/j.enpol.2009.01.021. 833 

[31] J. Alfaro, S. Miller, Satisfying the rural residential demand in Liberia with decentralized 834 
renewable energy schemes, Renew. Sustain. Energy Rev. 30 (2014) 903–911. 835 
doi:10.1016/j.rser.2013.11.017. 836 

[32] S. Mandelli, J. Barbieri, R. Mereu, E. Colombo, Off-grid systems for rural electrification in 837 
developing countries: Definitions, classification and a comprehensive literature review, Renew. 838 
Sustain. Energy Rev. 58 (2016) 1621–1646. doi:10.1016/j.rser.2015.12.338. 839 

[33] M. Zeyringer, S. Pachauri, E. Schmid, J. Schmidt, E. Worrell, U.B. Morawetz, Analyzing grid 840 
extension and stand-alone photovoltaic systems for the cost-effective electrification of Kenya, 841 
Energy Sustain. Dev. 25 (2015) 75–86. doi:10.1016/j.esd.2015.01.003. 842 

[34] IEA, World Energy Outlook 2013, Paris, 2013. http://www.worldenergyoutlook.org/weo2013/. 843 
[35] S.C. Bhattacharyya, Review of alternative methodologies for analysing off-grid electricity 844 

supply, Renew. Sustain. Energy Rev. 16 (2012) 677–694. doi:10.1016/j.rser.2011.08.033. 845 
[36] B. Kumar, R.B. Hiremath, P. Balachandra, N.H. Ravindranath, B.N. Raghunandan, 846 

Decentralised renewable energy: Scope, relevance and applications in the Indian context, 847 
Energy Sustain. Dev. 13 (2009) 4–10. doi:10.1016/j.esd.2008.12.001. 848 

[37] N. Van Beeck, N. van van Beeck, Classification of Energy Models, Tilburg University, Faculty 849 
of Economics and Business Administration, 1999. 850 
https://books.google.it/books?id=B9yXPgAACAAJ. 851 

[38] J.C. Rojas-Zerpa, J.M. Yusta, Application of multicriteria decision methods for electric supply 852 
planning in rural and remote areas, Renew. Sustain. Energy Rev. 52 (2015) 557–571. 853 
doi:10.1016/j.rser.2015.07.139. 854 

[39] P.A. Trotter, M.C. McManus, R. Maconachie, Electricity planning and implementation in sub-855 
Saharan Africa: A systematic review, Renew. Sustain. Energy Rev. 74 (2017) 1189–1209. 856 
doi:10.1016/j.rser.2017.03.001. 857 

[40] A.B. Kanase-Patil, R.P. Saini, M.P. Sharma, Integrated renewable energy systems for off grid 858 
rural electrification of remote area, Renew. Energy. 35 (2010) 1342–1349. 859 
doi:10.1016/j.renene.2009.10.005. 860 

[41] B. Joshi, T.S. Bhatti, N.K. Bansal, K. Rijal, P.D. Grover, Decentralized energy planning model 861 
for optimum resource allocation with a case study of the domestic sector of rurals in Nepal, Int. 862 
J. Energy Res. 15 (1991) 71–78. doi:10.1002/er.4440150109. 863 

[42] S.B. Malik, P.S. Satsangi, S.C. Tripathy, R. Balasubramanian, Mathematical model for energy 864 
planning of rural India, Int. J. Energy Res. 18 (1994) 469–482. 865 

[43] S. Semaoui, A. Hadj Arab, S. Bacha, B. Azoui, Optimal sizing of a stand-alone photovoltaic 866 
system with energy management in isolated areas, Energy Procedia. 36 (2013) 358–368. 867 
doi:10.1016/j.egypro.2013.07.041. 868 

[44] Y. Himri, A. Boudghene Stambouli, B. Draoui, S. Himri, Techno-economical study of hybrid 869 
power system for a remote village in Algeria, Energy. 33 (2008) 1128–1136. 870 
doi:10.1016/j.energy.2008.01.016. 871 

[45] A. R. De L. Musgrove, The Optimization of Hybrid Energy Conversion Systems Using the 872 
Dynamic Programming Model-Rapsody, Int. J. Energy Res. 12 (1988) 447–457. 873 
doi:10.1002/er.4440120309. 874 

[46] S. Salehin, M.T. Ferdaous, R.M. Chowdhury, S.S. Shithi, M.S.R.B. Rofi, M.A. Mohammed, 875 
Assessment of renewable energy systems combining techno-economic optimization with 876 



energy scenario analysis, Energy. 112 (2016) 729–741. doi:10.1016/j.energy.2016.06.110. 877 
[47] A. Gupta, R.P. Saini, M.P. Sharma, Design of an Optimal Hybrid Energy System Model for 878 

Remote Rural Area Power Generation, 2007 Int. Conf. Electr. Eng. (2007). 879 
doi:10.1109/ICEE.2007.4287310. 880 

[48] D. Silva, T. Nakata, Multi-objective assessment of rural electrification in remote areas with 881 
poverty considerations, Energy Policy. 37 (2009) 3096–3108. doi:10.1016/j.enpol.2009.03.060. 882 

[49] M. Kanagawa, T. Nakata, Assessment of access to electricity and the socio-economic impacts 883 
in rural areas of developing countries, Energy Policy. 36 (2008) 2016–2029. 884 
doi:10.1016/j.enpol.2008.01.041. 885 

[50] D. Saheb-Koussa, M. Haddadi, M. Belhamel, Economic and technical study of a hybrid system 886 
(wind-photovoltaic-diesel) for rural electrification in Algeria, Appl. Energy. 86 (2009) 1024–887 
1030. doi:10.1016/j.apenergy.2008.10.015. 888 

[51] R. Sen, S.C. Bhattacharyya, Off-grid electricity generation with renewable energy technologies 889 
inIndia: An application of HOMER, Renew. Energy. 62 (2014) 388–398. 890 
doi:10.1016/j.renene.2013.07.028. 891 

[52] A.K. Daud, M.S. Ismail, Design of isolated hybrid systems minimizing costs and pollutant 892 
emissions, Renew. Energy. 44 (2012) 215–224. doi:10.1016/j.renene.2012.01.011. 893 

[53] P. Arun, R. Banerjee, S. Bandyopadhyay, Optimum sizing of photovoltaic battery systems 894 
incorporating uncertainty through design space approach, Sol. Energy. 83 (2009) 1013–1025. 895 
doi:10.1016/j.solener.2009.01.003. 896 

[54] A.B. Kanase-Patil, R.P. Saini, M.P. Sharma, Sizing of integrated renewable energy system 897 
based on load profiles and reliability index for the state of Uttarakhand in India, Renew. Energy. 898 
36 (2011) 2809–2821. doi:10.1016/j.renene.2011.04.022. 899 

[55] B.E. Türkay, A.Y. Telli, Economic analysis of standalone and grid connected hybrid energy 900 
systems, Renew. Energy. 36 (2011) 1931–1943. doi:10.1016/j.renene.2010.12.007. 901 

[56] R. Sen, S.C. Bhattacharyya, Off-grid electricity generation with renewable energy technologies 902 
in India: An application of HOMER, Renew. Energy. 62 (2014) 388–398. 903 
doi:10.1016/j.renene.2013.07.028. 904 

[57] M.L. Kolhe, K.M.I.U. Ranaweera, A.G.B.S. Gunawardana, Techno-economic sizing of off-grid 905 
hybrid renewable energy system for rural electrification in Sri Lanka, Sustain. Energy Technol. 906 
Assessments. 11 (2015) 53–64. doi:10.1016/j.seta.2015.03.008. 907 

[58] A.K. Akella, M.P. Sharma, R.P. Saini, Optimum utilization of renewable energy sources in a 908 
remote area, Renew. Sustain. Energy Rev. 11 (2007) 894–908. doi:10.1016/j.rser.2005.06.006. 909 

[59] A. Demiroren, U. Yilmaz, Analysis of change in electric energy cost with using renewable 910 
energy sources in Gokceada, Turkey: An island example, Renew. Sustain. Energy Rev. 14 911 
(2010) 323–333. doi:10.1016/j.rser.2009.06.030. 912 

[60] K.Y. Lau, M.F.M. Yousof, S.N.M. Arshad, M. Anwari, A.H.M. Yatim, Performance analysis of 913 
hybrid photovoltaic/diesel energy system under Malaysian conditions, Energy. 35 (2010) 3245–914 
3255. doi:10.1016/j.energy.2010.04.008. 915 

[61] A.A. Setiawan, Y. Zhao, C. V. Nayar, Design, economic analysis and environmental 916 
considerations of mini-grid hybrid power system with reverse osmosis desalination plant for 917 
remote areas, Renew. Energy. 34 (2009) 374–383. doi:10.1016/j.renene.2008.05.014. 918 

[62] S.K. Nandi, H.R. Ghosh, Prospect of wind-PV-battery hybrid power system as an alternative to 919 
grid extension in Bangladesh, Energy. 35 (2010) 3040–3047. 920 
doi:10.1016/j.energy.2010.03.044. 921 

[63] S. Kamel, C. Dahl, The economics of hybrid power systems for sustainable desert agriculture 922 
in Egypt, Energy. 30 (2005) 1271–1281. doi:10.1016/j.energy.2004.02.004. 923 

[64] E.M. Nfah, J.M. Ngundam, M. Vandenbergh, J. Schmid, Simulation of off-grid generation 924 
options for remote villages in Cameroon, Renew. Energy. 33 (2008) 1064–1072. 925 
doi:10.1016/j.renene.2007.05.045. 926 

[65] G. Bekele, B. Palm, Feasibility study for a standalone solar-wind-based hybrid energy system 927 
for application in Ethiopia, Appl. Energy. 87 (2010) 487–495. 928 
doi:10.1016/j.apenergy.2009.06.006. 929 

[66] A. Al-Karaghouli, L.L. Kazmerski, Optimization and life-cycle cost of health clinic PV system for 930 
a rural area in southern Iraq using HOMER software, Sol. Energy. 84 (2010) 710–714. 931 
doi:10.1016/j.solener.2010.01.024. 932 

[67] E.M. Nfah, J.M. Ngundam, Feasibility of pico-hydro and photovoltaic hybrid power systems for 933 
remote villages in Cameroon, Renew. Energy. 34 (2009) 1445–1450. 934 
doi:10.1016/j.renene.2008.10.019. 935 

[68] G. Bekele, G. Tadesse, Feasibility study of small Hydro/PV/Wind hybrid system for off-grid 936 



rural electrification in Ethiopia, Appl. Energy. 97 (2012) 5–15. 937 
doi:10.1016/j.apenergy.2011.11.059. 938 

[69] J.A. Alzola, I. Vechiu, H. Camblong, M. Santos, M. Sall, G. Sow, Microgrids project, Part 2: 939 
Design of an electrification kit with high content of renewable energy sources in Senegal, 940 
Renew. Energy. 34 (2009) 2151–2159. doi:10.1016/j.renene.2009.01.013. 941 

[70] C. Nayar, M. Tang, W. Suponthana, Wind/PV/diesel micro grid system implemented in remote 942 
islands in the republic of Maldives, 2008 IEEE Int. Conf. Sustain. Energy Technol. ICSET 2008. 943 
(2008) 1076–1080. doi:10.1109/ICSET.2008.4747166. 944 

[71] W.M. Amutha, V. Rajini, Cost benefit and technical analysis of rural electrification alternatives 945 
in southern India using HOMER, Renew. Sustain. Energy Rev. 62 (2016) 236–246. 946 
doi:10.1016/j.rser.2016.04.042. 947 

[72] A.P. Agalgaonkar, C. V Dobariya, M.G. Kanabar, S.A. Khaparde, S. V Kulkarni, S. Member, 948 
M.G. Kanabar, S. Member, Optimal sizing of distributed generators in MicroGrid, in: 2006 IEEE 949 
Power India Conf., IEEE, New Delhi, 2006: p. 8–pp. doi:10.1109/POWERI.2006.1632627. 950 

[73] S.B. Malik, P.S. Satsangi, Data Extrapolation Techniques Systems Planning, 38 (1997) 1459–951 
1474. 952 

[74] V. Devadas, Planning for rural energy system: Part II, Renew. Sustain. Energy Rev. 5 (2001) 953 
227–270. doi:10.1016/S1364-0321(00)00015-0. 954 

[75] R. Srinivasan, P. Balachandra, Micro-level energy planning in India - A case study of bangalore 955 
north Taluk, Int. J. Energy Res. 17 (1993) 621–632. doi:10.1002/er.4440170707. 956 

[76] R.B. Hiremath, B. Kumar, P. Balachandra, N.H. Ravindranath, Bottom-up approach for 957 
decentralised energy planning: Case study of Tumkur district in India, Energy Policy. 38 (2010) 958 
862–874. doi:10.1016/j.enpol.2009.10.037. 959 

[77] M.I. Howells, T. Alfstad, D.G. Victor, G. Goldstein, U. Remme, A model of household energy 960 
services in a low-income rural African village, Energy Policy. 33 (2005) 1833–1851. 961 
doi:10.1016/j.enpol.2004.02.019. 962 

[78] S. Pachauri, B.J. van Ruijven, Y. Nagai, K. Riahi, D.P. van Vuuren, A. Brew-Hammond, N. 963 
Nakicenovic, Pathways to achieve universal household access to modern energy by 2030, 964 
Environ. Res. Lett. 8 (2013) 8. doi:10.1088/1748-9326/8/2/024015. 965 

[79] United Nation, World Bank, Sustainable Energy for All, (2017). http://www.se4all.org/ 966 
(accessed June 1, 2017). 967 

[80] United Nations, Sustainable Development Goal 7, Sustain. Dev. Knowl. Platf. (2015). 968 
https://sustainabledevelopment.un.org/sdg7 (accessed July 1, 2017). 969 

[81] P. Balachandra, V. Chandru, Supply demand matching in resource constrained electricity 970 
systems, Energy Convers. Manag. 44 (2003) 411–437. doi:10.1016/S0196-8904(02)00058-4. 971 

[82] X. Zhang, S.-C. Tan, G. Li, J. Li, Z. Feng, Components sizing of hybrid energy systems via the 972 
optimization of power dispatch simulations, Energy. 52 (2013) 165–172. 973 
doi:10.1016/j.energy.2013.01.013. 974 

[83] M. Howells, H. Rogner, N. Strachan, C. Heaps, H. Huntington, S. Kypreos, A. Hughes, S. 975 
Silveira, J. DeCarolis, M. Bazillian, A. Roehrl, OSeMOSYS: The Open Source Energy Modeling 976 
System. An introduction to its ethos, structure and development., Energy Policy. 39 (2011) 977 
5850–5870. doi:10.1016/j.enpol.2011.06.033. 978 

[84] J.A. Cherni, I. Dyner, F. Henao, P. Jaramillo, R. Smith, R.O. Font, Energy supply for 979 
sustainable rural livelihoods. A multi-criteria decision-support system, Energy Policy. 35 (2007) 980 
1493–1504. doi:10.1016/j.enpol.2006.03.026. 981 

[85] S. Ashok, Optimised model for community-based hybrid energy system, Renew. Energy. 32 982 
(2007) 1155–1164. doi:10.1016/j.renene.2006.04.008. 983 

[86] R. Segurado, G. Krajacic, N. Duic, L. Alves, Increasing the penetration of renewable energy 984 
resources in S. Vicente, Cape Verde, Appl. Energy. 88 (2011) 466–472. 985 
doi:10.1016/j.apenergy.2010.07.005. 986 

[87] J. Nahman, J. Spirić, Optimal planning of rural medium voltage distribution networks, Int. J. 987 
Electr. Power Energy Syst. 19 (1997) 549–556. doi:10.1016/S0142-0615(97)00028-8. 988 

[88] L.M. Bujorianu, Markov Models, in: 2012: pp. 5–29. doi:10.1007/978-1-4471-2795-6_2. 989 
[89] T.K. Das, D. Chakraborty, S. Seth, Energy consumption and prospects for renewable energy 990 

technologies in an Indian village, Energy. 15 (1990) 445–449. doi:10.1016/0360-991 
5442(90)90041-Y. 992 

[90] T. Lambert, P. Gilman, P. Lilienthal, Micropower System Modeling with Homer, Integr. Altern. 993 
Sources Energy. (2006) 379–418. doi:10.1002/0471755621.ch15. 994 

[91] S. Mandelli, C. Brivio, E. Colombo, M. Merlo, Effect of load profile uncertainty on the optimum 995 
sizing of off-grid PV systems for rural electrification, Sustain. Energy Technol. Assessments. 18 996 



(2016) 34–47. doi:10.1016/j.seta.2016.09.010. 997 
[92] S. Phrakonkham, G. Remy, D. Diallo, C. Marchand, Pico vs Micro hydro based optimized 998 

sizing of a centralized AC coupled hybrid source for villages in Laos, Energy Procedia. 14 999 
(2012) 1087–1092. doi:10.1016/j.egypro.2011.12.887. 1000 

[93] S. Rana, R. Chandra, S.P. Singh, M.S. Sodha, Optimal mix of renewable energy resources to 1001 
meet the electrical energy demand in villages of Madhya Pradesh, Energy Convers. Manag. 39 1002 
(1998) 203–216. doi:http://dx.doi.org/10.1016/S0196-8904(96)00225-7. 1003 

[94] S. Sinha, S.S. Chandel, Review of recent trends in optimization techniques for solar 1004 
photovoltaic–wind based hybrid energy systems, Renew. Sustain. Energy Rev. 50 (2015) 755–1005 
769. doi:10.1016/j.rser.2015.05.040. 1006 

[95] E. Fragnière, R. Kanala, F. Moresino, A. Reveiu, I. Smeureanu, Coupling techno-economic 1007 
energy models with behavioral approaches, Oper. Res. (2016) 1–15. doi:10.1007/s12351-016-1008 
0246-9. 1009 

[96] OECD/IEA, IEA Statistics - Balance Definitions, (2017). 1010 
https://www.iea.org/statistics/resources/balancedefinitions/ (accessed February 4, 2017). 1011 

[97] B. Domenech, L. Ferrer-Martí, P. Lillo, R. Pastor, J. Chiroque, A community electrification 1012 
project: Combination of microgrids and household systems fed by wind, PV or micro-hydro 1013 
energies according to micro-scale resource evaluation and social constraints, Energy Sustain. 1014 
Dev. 23 (2014) 275–285. doi:10.1016/j.esd.2014.09.007. 1015 

[98] S. Iniyan, L. Suganthi, J. T.R., Renewable energy planning for India in 21st century, Renew. 1016 
Energy. 14 (1998) 453–457. doi:10.1016/S0960-1481(98)00103-7. 1017 

[99] S. Mandelli, C. Brivio, E. Colombo, M. Merlo, A sizing methodology based on Levelized Cost of 1018 
Supplied and Lost Energy for off-grid rural electrification systems, Renew. Energy. 89 (2016) 1019 
475–488. doi:10.1016/j.renene.2015.12.032. 1020 

[100] K. Meadows, C. Riley, G. Rao, P. Harris, Modern Energy: Impacts on micro-enterprises, 1021 
London, 2003. 1022 
https://assets.publishing.service.gov.uk/media/57a08d04ed915d3cfd001772/R8145-Litrev.pdf. 1023 

[101] N.H. Ravindranath, H.N. Chanakya, Biomass based energy system for a South Indian village, 1024 
Biomass. 9 (1986) 215–233. doi:10.1016/0144-4565(86)90091-0. 1025 

[102] R. Kumar Bose, C. Purit, V. Joshi, Energy profiles of three un-electrified villages in Eastern 1026 
Uttar Pradesh of India, Biomass and Bioenergy. 1 (1991) 99–109. doi:10.1016/0961-1027 
9534(91)90032-8. 1028 

[103] B. Bowonder, N. Prakash Rao, B. Dasgupta, S.S.R. Prasad, Energy use in eight rural 1029 
communities in India, World Dev. 13 (1985) 1263–1286. doi:10.1016/0305-750X(85)90125-1. 1030 

[104] R.A. Cabraal, D.F. Barnes, S.G. Agarwal, Productive uses of energy for rural development, 1031 
Annu. Rev. Environ. Resour. 30 (2005) 117–44. 1032 
doi:10.1146/annurev.energy.30.050504.144228. 1033 

[105] J. Gibson, S. Olivia, The effect of infrastructure access and quality on non-farm enterprises in 1034 
rural Indonesia, World Dev. 38 (2010) 717–726. doi:10.1016/j.worlddev.2009.11.010. 1035 

[106] M. Mapako, G. Prasad, Rural electrification in Zimbabwe reduces poverty by targeting income-1036 
generating activities, in: Proc. Fifteenth Conf. Domest. Use Energy, Cape Town, 2007: pp. 1–6. 1037 
doi:0958490163. 1038 

[107] B.P. Bastakoti, The electricity-livelihood nexus: some highlights from the Andhikhola 1039 
Hydroelectric and Rural Electrification Centre (AHREC), Energy Sustain. Dev. 10 (2006) 26–1040 
35. doi:10.1016/S0973-0826(08)60541-4. 1041 

[108] S.C. Bhattacharyya, G.R. Timilsina, Energy demand models for policy formulation: a 1042 
comparative study of energy demand models, 2009. 1043 
https://openknowledge.worldbank.org/bitstream/handle/10986/4061/WPS4866.pdf. 1044 

[109] S.C. Bhattacharyya, G.R. Timilsina, Modelling energy demand of developing countries: Are the 1045 
specific features adequately captured?, Energy Policy. 38 (2010) 1979–1990. 1046 
doi:10.1016/j.enpol.2009.11.079. 1047 

[110] L. Suganthi, A.A. Samuel, Energy models for demand forecasting - A review, Renew. Sustain. 1048 
Energy Rev. 16 (2012) 1223–1240. doi:10.1016/j.rser.2011.08.014. 1049 

[111] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the residential sector: A 1050 
review of modeling techniques, Renew. Sustain. Energy Rev. 13 (2009) 1819–1835. 1051 
doi:10.1016/j.rser.2008.09.033. 1052 

[112] E. Hartvigsson, Using system dynamics for long term bottom-up electric load modeling in rural 1053 
electrification, in: 34th Int. Conf. Syst. Dyn. Soc., Delft, Netherlands, 2016. 1054 
http://www.systemdynamics.org/conferences/2016/proceed/papers/P1259.pdf. 1055 

[113] S.M. Mustonen, Rural energy survey and scenario analysis of village energy consumption: A 1056 



case study in Lao People’s Democratic Republic, Energy Policy. 38 (2010) 1040–1048. 1057 
doi:10.1016/j.enpol.2009.10.056. 1058 

[114] B.J. van Ruijven, D.P. van Vuuren, B.J.M. de Vries, M. Isaac, J.P. van der Sluijs, P.L. Lucas, P. 1059 
Balachandra, Model projections for household energy use in India, Energy Policy. 39 (2011) 1060 
7747–7761. doi:10.1016/j.enpol.2011.09.021. 1061 

[115] V. Daioglou, B.J. van Ruijven, D.P. van Vuuren, Model projections for household energy use in 1062 
developing countries, Energy. 37 (2012) 601–615. doi:10.1016/j.energy.2011.10.044. 1063 

[116] H. Borhanazad, S. Mekhilef, V. Gounder Ganapathy, M. Modiri-Delshad, A. Mirtaheri, 1064 
Optimization of micro-grid system using MOPSO, Renew. Energy. 71 (2014) 295–306. 1065 
doi:10.1016/j.renene.2014.05.006. 1066 

[117] I. Tegani, A. Aboubou, M. Becherif, M.Y. Ayad, O. Kraa, M. Bahri, O. Akhrif, Optimal sizing 1067 
study of hybrid wind/PV/diesel power generation unit using genetic algorithm, 4th Int. Conf. 1068 
Power Eng. Energy Electr. Drives. 85 (2013) 134–140. doi:10.1109/PowerEng.2013.6635594. 1069 

[118] P. Paliwal, N.P. Patidar, R.K. Nema, Determination of reliability constrained optimal resource 1070 
mix for an autonomous hybrid power system using Particle Swarm Optimization, Renew. 1071 
Energy. 63 (2014) 194–204. doi:10.1016/j.renene.2013.09.003. 1072 

[119] A.T.D. Perera, R.A. Attalage, K.K.C.K. Perera, V.P.C. Dassanayake, Designing standalone 1073 
hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission, 1074 
Energy. 54 (2013) 220–230. doi:10.1016/j.energy.2013.03.028. 1075 

[120] B.O. Bilal, V. Sambou, C.M.F. Kébé, P.A. Ndiaye, M. Ndongo, Methodology to size an optimal 1076 
stand-alone PV/wind/diesel/battery system minimizing the levelized cost of energy and the 1077 
CO2 emissions, in: Energy Procedia, Elsevier BV, 2012: pp. 1636–1647. 1078 
doi:10.1016/j.egypro.2011.12.1145. 1079 

[121] S.G. Banerjee, M. Bhatia, G.E. Azuela, I.S. Jaques, P.E. Ashok, I. Bushueva, N. Angelou, J.G. 1080 
Inon, Global Tracking Framework, Washington DC, 2013. doi:10.1787/dcr-2013-20-en. 1081 

[122] L. Ferrer-Martí, R. Pastor, G.M. Capó, E. Velo, Optimizing microwind rural electrification 1082 
projects. A case study in Peru, J. Glob. Optim. 50 (2011) 127–143. doi:10.1007/s10898-011-1083 
9697-y. 1084 

[123] K.D. Steel, Energy system development in Africa: the case of grid and off-grid power in Kenya, 1085 
Massachusetts Institute of Technology, 2008. https://dspace.mit.edu/handle/1721.1/43840. 1086 

[124] R.L. Jordan, Incorporating endogenous demand dynamics into long-term capacity expansion 1087 
power system models for Developing countries, Massachusetts Institute of Technology, 2013. 1088 
http://dspace.mit.edu/handle/1721.1/79547 (accessed February 17, 2016). 1089 

[125] L. Zhang, X. Cao, A system dynamics study of the development of rural energy in Shandong 1090 
province, in: Int. Conf. Civ. Eng. Urban Plan. 2012, American Society of Civil Engineers, 1091 
Yantai, China, 2012. doi:http://dx.doi.org/10.1061/9780784412435.012#sthash.Imo776Co.dpuf. 1092 

[126] F. Zhen, A Study of Energy Supply and Demand System on Village Level, in: Proc. 1992 Int. 1093 
Syst. Dyn. Conf., Utrecht, Netherlands, 1992: pp. 857–861. 1094 

[127] C. Subhash, P.S. Satsangi, An integrated planning and implementation-strategy for rural 1095 
energy systems, Energy. 15 (1990) 913–920. doi:10.1016/0360-5442(90)90073-B. 1096 

[128] A.R. Prasad, E. Natarajan, Optimization of integrated photovoltaic-wind power generation 1097 
systems with battery storage, Energy. 31 (2006) 1607–1618. 1098 
doi:10.1016/j.energy.2005.10.032. 1099 

[129] F. Urban, R.M.J. Benders, H.C. Moll, Modelling energy systems for developing countries, 1100 
Energy Policy. 35 (2007) 3473–3482. doi:10.1016/j.enpol.2006.12.025. 1101 

[130] L. Schipper, F. Unander, S. Murtishaw, Indicators of energy use and carbon emissions: 1102 
explaining the energy economy link, Annu. Rev. (2001). 1103 
http://www.annualreviews.org/doi/abs/10.1146/annurev.energy.26.1.49 (accessed June 8, 1104 
2016). 1105 

[131] L. Schipper, S. Meyers, Energy efficiency and human activity: past trends, future prospects, 1106 
(1992). 1107 
https://books.google.it/books?hl=it&lr=&id=xqV4Gs4hKoEC&oi=fnd&pg=PR9&dq=Schipper+En1108 
ergy+Efficiency+and+Human+Activity:+Past+Trends,+Future+Prospects&ots=nPOOlebJfR&sig1109 
=sSOMX7YJDRZckvGb6TPVdxgMhjY (accessed June 8, 2016). 1110 

[132] S.R. Khandker, D.F. Barnes, H.A. Samad, Welfare Impacts of Rural Electrification: A Panel 1111 
Data Analysis from Vietnam, Econ. Dev. Cult. Change. 61 (2013) 659–692. 1112 
doi:10.1086/669262. 1113 

[133] M. Aklin, C. Cheng, J. Urpelainen, K. Ganesan, A. Jain, Factors affecting household 1114 
satisfaction with electricity supply in rural India, Nat. Energy. 1 (2016) 16170. 1115 
doi:10.1038/nenergy.2016.170. 1116 



[134] V. Rai, A.D. Henry, Agent-based modelling of consumer energy choices, Nat. Clim. Chang. 6 1117 
(2016) 556–562. doi:10.1038/nclimate2967. 1118 

[135] U. Chakravorty, M. Pelli, B. Ural Marchand, Does the quality of electricity matter? Evidence 1119 
from rural India, J. Econ. Behav. Organ. 107 (2014) 228–247. doi:10.1016/j.jebo.2014.04.011. 1120 

[136] C. Cameron, S. Pachauri, N.D. Rao, D. McCollum, J. Rogelj, K. Riahi, Policy trade-offs 1121 
between climate mitigation and clean cook-stove access in South Asia, Nat. Energy. 1 (2016) 1122 
15010. doi:10.1038/nenergy.2015.10. 1123 

[137] J.D. Sterman, Business dynamics: systems thinking and modeling for a complex world, 1124 
London, United States, 2000. http://www.sidalc.net/cgi-1125 
bin/wxis.exe/?IsisScript=BAC.xis&method=post&formato=2&cantidad=1&expresion=mfn=05701126 
31 (accessed October 22, 2015). 1127 

[138] P. Lamberson, Approximating Network Dynamics in Compartmental System Dynamics Models, 1128 
in: Proc. 35th Int. Conf. Syst. Dyn. Soc., System Dynamics Society, Cambridge, USA, 2017. 1129 

[139] H. Akkermans, Emergent supply networks: System dynamics simulation of adaptive supply 1130 
agents, in: Proc. Hawaii Int. Conf. Syst. Sci., Maui, HI, 2001: p. 63. 1131 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1132 
0034975427&partnerID=40&md5=612d60081e45165e563790129ee77cdc. 1133 

[140] N. Schieritz, Integrating System Dynamics and Agent-Based Modeling, in: 20th Int. Conf. Syst. 1134 
Dyn. Soc., Palermo, 2002: pp. 1–3. 1135 
http://www.systemdynamics.org/conferences/2002/proceed/papers/Schieri1.pdf. 1136 

[141] A. Größler, M. Stotz, N. Schieritz, A Software Interface Between System Dynamics and Agent-1137 
Based Simulations - Linking Vensim and RePast, in: Proc. 21st Int. Conf. Syst. Dyn. Soc., New 1138 
York, 2003. http://www.systemdynamics.org/conferences/2003/proceed/PAPERS/346.pdf. 1139 

[142] H.J. Scholl, Agent-based and system dynamics modeling: A call for cross study and joint 1140 
research, in: Proc. Hawaii Int. Conf. Syst. Sci., Maui, HI, 2001: p. 62. 1141 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1142 
0034976460&partnerID=40&md5=ff7059c4b3a7fd883ba357f273e50813. 1143 

[143] R. Ramanathan, L.S. Ganesh, Energy Resource-Allocation Incorporating Qualitative and 1144 
Quantitative Criteria - an Integrated Model using Goal Programming and AHP, Socioecon. 1145 
Plann. Sci. 29 (1995) 197–218. doi:10.1016/0038-0121(95)00013-C. 1146 

[144] S.B. Malik, P.S. Satsangi, Data extrapolation techniques for energy systems planning, Energy 1147 
Convers. Manag. 38 (1997) 1459–1474. doi:10.1016/S0196-8904(96)00092-1. 1148 

[145] A. Papadopoulos, A. Karagiannidis, Application of the multi-criteria analysis method Electre III 1149 
for the optimisation of decentralised energy systems, Omega. 36 (2008) 766–776. 1150 
doi:10.1016/j.omega.2006.01.004. 1151 

[146] C. Jana, R.N. Chattopadhyay, Block level energy planning for domestic lighting-a multi-1152 
objective fuzzy linear programming approach, Energy. 29 (2004) 1819–1829. 1153 
doi:10.1016/j.energy.2004.03.095. 1154 

[147] D. Weisser, Costing electricity supply scenarios: A case study of promoting renewable energy 1155 
technologies on Rodriguez, Mauritius, Renew. Energy. 29 (2004) 1319–1347. 1156 
doi:10.1016/S0960-1481(03)00252-0. 1157 

[148] S.B. Malik, P.S. Satsangi, S.C. Tripathy, R. Balasubramanian, Mathematical model for energy 1158 
planning of rural India, Int. J. Energy Res. 18 (1994) 469–482. doi:10.1002/er.4440180406. 1159 

[149] K. Kusakana, H.J. Vermaak, B.P. Numbi, Optimal sizing of a hybrid renewable energy plant 1160 
using linear programming, in: IEEE Power Energy Soc. Conf. Expo. Africa Intell. Grid Integr. 1161 
Renew. Energy Resour. PowerAfrica 2012, IEEE, Johannesburg, 2012. 1162 
doi:10.1109/PowerAfrica.2012.6498608. 1163 

[150] T.R. Bowe, W.D. Dapkus, J.B. Patton, 5.3. Markov models, Energy. 15 (1990) 661–676. 1164 
doi:10.1016/0360-5442(90)90013-R. 1165 

[151] E.M. Nfah, J.M. Ngundam, R. Tchinda, Modelling of solar/diesel/battery hybrid power systems 1166 
for far-north Cameroon, Renew. Energy. 32 (2007) 832–844. 1167 
doi:10.1016/j.renene.2006.03.010. 1168 

[152] M.S. Ismail, M. Moghavvemi, T.M.I. Mahlia, Genetic algorithm based optimization on modeling 1169 
and design of hybrid renewable energy systems, Energy Convers. Manag. 85 (2014) 120–130. 1170 
doi:10.1016/j.enconman.2014.05.064. 1171 

[153] S. Phrakonkham, G. Remy, D. Diallo, C. Marchand, Pico vs Micro hydro based optimized 1172 
sizing of a centralized AC coupled hybrid source for villages in Laos, in: Energy Procedia, 1173 
Elsevier Ltd, Bangkok, 2012: pp. 1087–1092. doi:10.1016/j.egypro.2011.12.887. 1174 

[154] L. Ferrer-Martí, B. Domenech, A. García-Villoria, R. Pastor, A MILP model to design hybrid 1175 
wind-photovoltaic isolated rural electrification projects in developing countries, Eur. J. Oper. 1176 



Res. 226 (2013) 293–300. doi:10.1016/j.ejor.2012.11.018. 1177 
[155] S.S. Deshmukh, M.K. Deshmukh, A new approach to micro-level energy planning-A case of 1178 

northern parts of Rajasthan, India, Renew. Sustain. Energy Rev. 13 (2009) 634–642. 1179 
doi:10.1016/j.rser.2007.11.015. 1180 

[156] A. Gupta, R.P. Saini, M.P. Sharma, Modelling of hybrid energy system for off grid electrification 1181 
of clusters of villages, in: Int. Conf. Power Electron. Drives Energy Syst. 2006, IEEE, 2006: pp. 1182 
1–5. doi:10.1109/PEDES.2006.344272. 1183 

[157] X. Pelet, D. Favrat, G. Leyland, Multiobjective optimisation of integrated energy systems for 1184 
remote communities considering economics and CO2 emissions, Int. J. Therm. Sci. 44 (2005) 1185 
1180–1189. doi:10.1016/j.ijthermalsci.2005.09.006. 1186 

[158] R. Ramakumar, K. Ashenayi, P.S. Shetty, A linear programming approach to the design of 1187 
integrated renewable energy systems for developing countries, IEEE Trans. Energy Convers. 1188 
EC-1 (1986) 18–24. 1189 

[159] C.S. Sinha, T.C. Kandpal, Optimal mix of technologies for rural India: The lighting sector, Int. J. 1190 
Energy Res. 15 (1991) 653–665. doi:10.1002/er.4440150804. 1191 

[160] C.S. Sinha, T.C. Kandpal, Optimal mix of technologies for rural India: the irrigation sector, Int. 1192 
J. Energy Res. 15 (1991) 331–346. doi:10.1002/er.4440150408. 1193 

[161] C.S. Sinha, T.C. Kandpal, Optimal mix of technologies in rural India: The cooking sector, Int. J. 1194 
Energy Res. 15 (1991) 85–100. doi:10.1002/er.4440150203. 1195 

[162] B.K. Bala, S.A. Siddique, Optimal design of a PV-diesel hybrid system for electrification of an 1196 
isolated island-Sandwip in Bangladesh using genetic algorithm, Energy Sustain. Dev. 13 1197 
(2009) 137–142. doi:10.1016/j.esd.2009.07.002. 1198 

[163] M.S. Orosz, A. V Mueller, Dynamic Simulation of Performance and Cost of Hybrid Pv-CSP-1199 
LPG Generator Micro Grids with Applications to Remote Communities in Developing Countries, 1200 
in: ASME 2015 Power Energy Conf., San Diego, California, 2015: pp. 1–9. 1201 
doi:10.1115/ES2015-49513. 1202 

[164] W.X. Shen, Optimally sizing of solar array and battery in a standalone photovoltaic system in 1203 
Malaysia, Renew. Energy. 34 (2009) 348–352. doi:10.1016/j.renene.2008.03.015. 1204 

[165] N. Ramchandran, R. Pai, A.K.S. Parihar, Feasibility assessment of Anchor-Business-1205 
Community model for off-grid rural electrification in India, Renew. Energy. 97 (2016) 197–209. 1206 
doi:10.1016/j.renene.2016.05.036. 1207 

[166] M. Ranaboldo, B.D. Lega, D.V. Ferrenbach, L. Ferrer-Mart??, R.P. Moreno, A. Garc??a-1208 
Villoria, Renewable energy projects to electrify rural communities in Cape Verde, Appl. Energy. 1209 
118 (2014) 280–291. doi:10.1016/j.apenergy.2013.12.043. 1210 

 1211 

 1212 


