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Abstract In multirobot patrolling, a team of robots is deployed in an environment
with the aim of keeping under observation a set of locations of interest. In several
realistic mission scenarios, only human operators sitting at a base station are able to
assess the situation on the basis of data sent by robots. Examples include watching
pictures or video streams to detect intruders and correlating measurements to detect
leaks of contaminants. We assume that a communication infrastructure is available
only in some regions of the environments, from where messages can be exchanged
with a sufficient bandwidth between the robots and the base station. In this paper, we
first extend the classical multirobot persistent patrolling framework and the related
idleness evaluation metrics to such environments with a limited number of “com-
munication zones”. Then, we present some centralized and distributed patrolling
strategies tailored for this communication-restricted framework. Finally, we evalu-
ate their performance using ROS/Stage simulation.

1 Introduction

In the last few years, a lot of effort has been devoted in the autonomous robotics
community to the study of effective patrolling strategies in different problem set-
tings and under different assumptions [1–4, 9, 10, 13, 15]. In the basic formulation
of the multirobot persistent patrolling problem, a team of robots is deployed in an
environment represented as an undirected weighted graph, with the aim of mini-
mizing the idleness of each location (vertex) to be patrolled, defined as the time
elapsed since that location has received the visit of a robot [10]. Evaluation metrics

Marta Romeo, Jacopo Banfi, and Francesco Amigoni
Politecnico di Milano, Milano, Italy,
e-mail: marta.romeo@mail.polimi.it,{jacopo.banfi,francesco.amigoni}@polimi.it

Nicola Basilico
University of Milan, Milano, Italy, e-mail: nicola.basilico@unimi.it

1



2 Marta Romeo, Jacopo Banfi, Nicola Basilico, and Francesco Amigoni

related to this notion, such as average and worst-case idleness, are introduced and
investigated for different patrolling strategies and in a number of different condi-
tions [4, 9, 10, 13, 15].

Some realistic mission scenarios challenge an (often implicit) assumption made
in the above formulation, namely that a single robot is able to assess the situation
of the visited vertices solely on the basis of the data it collected. In these cases,
data must be reported to a base station, acting as a mission central room, where
human operators can assess the situation and take appropriate countermeasures. For
instance, think about the presence of an intruder or about a leak of contaminants,
when the robots might not have the physical capabilities required to detect the prob-
lem and intervene to solve it, because operators need to watch pictures or video
streams and to correlate measurements. In this paper, we assume that communica-
tion between the robots and the base station can only use existing communication
infrastructures, such as tactical networks or cellular networks, that are characterized
by the fact that only some regions of the environment are covered by a sufficiently
strong signal. The presence of such “communication zones” in the environment to
patrol was recently investigated in [1], where a centralized inspection tour for a team
of robots is calculated with the aim of minimizing the time lag between the visit of
a location and its report to the base station.

In this paper, we propose some strategies for multirobot persistent patrolling
in communication-restricted environments characterized by the presence of a lim-
ited number of communication zones. More precisely, we extend the classical idle-
ness evaluation criteria for the communication-restricted patrolling framework in-
troduced in [1]. Then, we present some patrolling strategies for such a framework.
One of these strategies is centralized and optimal, while the other two are dis-
tributed. Although non optimal in general, these last strategies are less computa-
tionally demanding and are particularly suited for coping with unpredictable events
(e.g., temporary unavailability of communication links). The proposed patrolling
strategies are implemented within a ROS-based architecture, and ROS/Stage simu-
lations are run to analyze and compare them in a number of different settings. The
results show that a centralized planning scheme is not actually needed to obtain
good performance and that both the proposed distributed strategies perform well.

2 Related work

The study of multirobot patrolling strategies is nowadays a rather lively sub-field
of autonomous robotics, especially from the theoretical point of view (although
some practical systems have been proposed [9]). Approaches can be broadly di-
vided in two categories: those considering an adversarial and those considering a
non-adversarial setting. In the former category, patrolling strategies are developed
considering a specific model of rational intruder [2, 3], while, in the latter cate-
gory, the patrolling strategies are in general agnostic about the particular events to
be monitored, preferring to maximize the frequency of visit of some locations that
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need to be kept under constant observation [4,6,9,10,13,15] (hence the name “per-
sistent patrolling”). In this paper, we concentrate on the last category of works. To
the best of our knowledge, there are few works in the literature considering commu-
nication constraints in robotic patrolling and in the more general context of robotic
information-gathering missions. For example, in [11], the authors consider a generic
multirobot routing task, in which robots are required to maintain, by means of local
and multi-hop transmissions, a global communication infrastructure while visiting
some target areas at minimum traveling cost. More recently, [16] considers the same
general setting, but with the additional requirement of planning robots’ paths while
maintaining a given minimum end-to-end data rate between robots.

Another problem setting is investigated in [7], where robots plan informative
paths under the constraint of regaining multi-hop connectivity after a fixed number
of time steps. The assumption on communication infrastructure we make in this pa-
per is rather different from that adopted in these works, because we do not rely on a
multi-hop network to deliver data to a base station, but on an existing infrastructure
that is available only in some areas. More precisely, motivated by recent military and
civil case-studies [12,17], in [1] we have introduced a patrolling framework model-
ing the presence of an existing communication infrastructure (for example, a tactical
network, a wireless network, or a cellular network) that robots could exploit to re-
liably communicate with a base station. (This setting is similar to that investigated
in [5], but in the context of static target search.)

In this paper, we investigate further along this line through the adoption of the
same communication model. However, instead of considering a patrolling mission
consisting of a single inspection tour computed offline (as in [1]), we focus on per-
sistent patrolling, in which vertices need to be visited multiple times in order to keep
them under constant observation.

3 Problem definition

A team R = {1, . . . ,m} of robots must persistently patrol some locations of a given
environment while sending reports to, and exploiting information provided by, a
base station (BS). Robots can communicate with the BS by exchanging messages
through a pre-existing communication infrastructure, which is only accessible from
some regions of the environment. To formalize this setting, we represent the envi-
ronment by means of an undirected graph G = (V,E) in which vertices represent
all the locations robots can visit, while edges encode physical connections between
them (without considering self-loops). Each edge (vi,v j) ∈ E is associated with a
positive number d(vi,v j) representing the physical distance between vi and v j in
the environment. We assume that our graph represents a physical environment. For
this reason, we impose that the distance d(vi,v j) associated to any physical edge
(vi,v j) ∈ E is not greater than that of any other (vi,v j)-path in G. Vertices V are
used to represent both locations to patrol and communication zones. Accordingly,
following the notation introduced in [1], each vertex in V is preassigned to up to two
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types: m, if the vertex needs to be persistently monitored (patrolled), and c, if the
vertex allows to exchange messages with the BS. We denote with Vm,Vc ⊆V the two
subsets of m-type and c-type vertices, respectively. (Notice that Vm and Vc may share
a non-empty intersection.) Robots move on the graph G by traversing the physical
edges E: once they reach a m-type vertex, they accomplish a (instantaneous) pa-
trolling visit at it; once they reach a c-type vertex, they are allowed to communicate
with the BS. At the moment, we do not assume any limit on the communication
from a c-type vertex to the BS. In Section 5, we consider errors in the transmission
of messages.

In order to define the objective of the patrolling, we now generalize the classi-
cal evaluation metrics related to the notion of idleness [4] to our communication-
restricted framework. The persistent patrolling task unfolds across an arbitrary long
time horizon T in which time evolves in discrete steps {1, . . . ,T}. The mission
undertaken by a robot r is represented by a walk on the graph G of the form
wr = (v0,v1, . . . ,vk), where v0 denotes the robot’s starting vertex, vk denotes the
last vertex visited before T , and a generic vi denotes the i-th vertex visited by the
robot. (Notice that, being wr a walk on G, the same vertex can appear multiple times
in wr.) For each walk wr, we define a function tr : {1, . . . ,k}→ {1, . . . ,T} mapping
the i-th visited vertex by robot r to the time step in which the visit takes place. In
particular, each tr(i) is determined by the total distance traveled until the i-th vertex
visited in wr (∑i−1

j=0 d(v j,v j+1)) and by robot r’s (possibly varying) speed along that
portion of the walk. Now, for any i ∈ {1, . . . ,k} such that vi ∈ Vm, let vc̄, c̄ ≥ i be
the first vertex after the i-th vertex visited s.t. vc̄ ∈ Vc, and call c(i) = c̄. Following
this notation, we define robot r’s reporting time of visit i to the BS (only for vertices
vi s.t. vi ∈ Vm) as tr(c(i)), assuming that this quantity will be infinite if the visit is
never reported before the patrolling task ends at T . (Notice that tr(c(i)) = tr(i) iff
vi ∈Vc∩Vm.)

Contrarily to many other patrolling settings, it may be possible in our frame-
work that the BS receives reports containing outdated information. This happens
when there exist two robots r,r′ ∈ R (not necessarily different), two walks wr =
(v0,v1, . . . ,vk),wr′ = (v0,v1, . . . ,vk′), and two visits i ∈ {1, . . . ,k}, j ∈ {1, . . . ,k′} s.t.
vi = v j, tr(i) < tr′( j), and tr(c(i)) ≥ tr′(c( j)). In such a case, we say that the i-th
visit of robot r is outdated, in the sense that the corresponding report to the BS will
contain outdated information. We are now ready for introducing metrics related to
communication idleness.

We define the instantaneous communication idleness of vertex v ∈ Vm at time
t̄ ∈ {1, . . . ,T} as:

ICv(t̄) = t̄− t̄ ′, (1)

where t̄ ′ ≤ t̄ denotes the timestep of the last not outdated report of vertex v to the BS
not after timestep t̄. We assume that the initial situation of all the vertices to be mon-
itored is known, and hence that ICv(t̄) = t̄ if there exists no visit to v that has been
communicated (by any robot) until time t̄. Notice that, according to our definition,
in case Vm =Vc =V no visit is considered outdated, and the notion of instantaneous
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communication idleness collapses into the notion of idleness classically adopted in
multirobot persistent patrolling (see, e.g., [4]).

The instantaneous graph communication idleness at time t̄ is defined as the av-
erage instantaneous communication idleness among the vertices to be patrolled:

ICG(t̄) =
∑v∈Vm ICv(t̄)
|Vm|

. (2)

In this paper, we are mainly interested in studying patrolling strategies allowing
to minimize the average graph communication idleness at the end of the mission,
formally defined as:

ICG =
∑t̄∈{1,...,T} ICG(t̄)

T
. (3)

Another interesting performance indicator we will investigate is the worst-case
graph communication idless at time T , WICG, which can be informally defined as
the largest instantaneous vertex communication idleness encountered through the
patrolling task. Average and worst-case idleness for the single vertices can be de-
fined in a similar way.

4 Communication-aware patrolling strategies

In this section, we present three different multirobot patrolling strategies (plus a
random baseline one) suitable for the patrolling setting introduced above, aimed
at minimizing the average graph communication idleness ICG. First, we present a
strategy in which the BS performs the planning phase by computing centralized
optimal visit plans for all the robots. Then, we present two distributed strategies in
which robots query the BS about the current situation of the environment in terms of
vertices idlenesses and teammates current commitments (plans) and then calculate
their plans.

4.1 Globally optimal strategy

The globally optimal strategy (G-OPT) is an optimal, centralized, and offline strat-
egy working as follows. At the beginning of the patrolling mission, the BS computes
(using brute force) the best set of joint robot walks w∗ = (w∗1,w

∗
2, . . . ,w

∗
m) spanning

the whole task horizon T and minimizing ICG; then, it communicates the plans to
the robots (that are assumed to be initially placed in possibly different starting ver-
tices belonging to Vc), which can then start to execute them. The pseudo-code of the
planning algorithm of G-OPT is shown in Algorithm 1.

About the computational complexity of such a planning scheme, notice that the
evaluation of ICG for a candidate set w of joint robots’ walks requires pseudo-
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polynomial time O(mT ) in general, while the number of joint walks of length not
exceeding T on G grows exponentially with the size of the input: therefore, this
strategy is suitable only for small problem settings. Moreover, it is evident that the
walks obtained by adopting this planning approach will be actually optimal w.r.t.
the minimization of ICG (if the errors in the predictions of their execution can be
assumed to be negligible).

Algorithm 1 G-OPT planning algorithm
W← {enumerate all joint walks of m robots on G with maximum length T}
for all w ∈W do

simulate the concurrent execution of w and compute the corresponding ICG
end for
w∗← {the best w obtained that minimizes ICG}
return w∗

We remark that an optimal strategy could also be obtained by formalizing the
problem as a Mixed Integer Linear Program, in the spirit of [1]. However, with
respect to [1], such an approach would require the additional modelling of the pos-
sibility of multiple passages through the same vertices at any time step along the
whole mission horizon, making the MILP overly-complicated.

4.2 Individually optimal strategy

The individually optimal strategy (I-OPT) can be thought as the distributed and on-
line version of G-OPT. When adopting this strategy, robots iteratively compute new
portions of their own walks as soon as they reach a new c-type vertex, querying the
BS about (a) the current m-type vertices instantaneous communication idlenesses
and (b) their teammates intentions, expressed in terms of portions of the walks they
are currently following. More specifically, let t̄ be a generic timestep in which a
robot r reaches a c-type vertex, and let ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm the portions of
walks its teammates are going to follow from step t̄. (Notice that such portions of
walks may be outdated, as they depend on the previous arrivals of the robots to
c-type vertices.) Robot r computes a new portion of its walk ŵr on G of estimated
travel time H (the planning horizon) as the walk minimizing the average graph com-
munication idleness between t̄ and t̄ +H, while taking into account the walks fol-
lowed by its teammates (if a teammate has communicated a plan that ends before
t̄ +H, it is assumed to remain still at the last vertex of the communicated plan). If
H is sufficiently small, a complete evaluation of all the possible walks of length H
can be completed in reasonable time; otherwise, a sampling strategy needs to be
adopted. The pseudo-code of this planning scheme is reported in Algorithm 2.
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Algorithm 2 I-OPT planning algorithm for robot r at time t̄
ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm← {query the BS about the walks followed by other robots}
query the BS about instantaneous communication idlenesses of vertices Vm
Wr ← {enumerate/sample walks from r’s current position along [t̄, t̄ +H]}
for all wr ∈Wr do

ŵ← (ŵ1, . . . , ŵr−1,wr, ŵr+1, . . . , ŵm)
simulate the execution of ŵ and compute the corresponding ICG in [t̄, t̄ +H]

end for
ŵr ← {the best wr obtained that minimizes ICG in [t̄, t̄ +H]}
return ŵr

4.3 A simple reactive strategy

The reactive strategy (RE) is still distributed, but does not involve long-term plan-
ning up to horizon H as the previous one; instead, it is inspired by the Cognitive
Coordinated strategy studied in [4,10]. (This strategy empirically showed good per-
formance when considering the classical notion of idleness.) By adopting this strat-
egy, robots iteratively choose a new m-type vertex v̂ to reach according to a heuristic
in which vertices with the highest instantaneous communication latency have higher
priority, and, in case the chosen vertex does not belong also to Vc, subsequently move
to the closest c-type vertex in order to communicate back data relative to v̂ and to
obtain from the BS the data needed for computing a new plan.

More specifically, when a robot r arrives at the c-type vertex selected for commu-
nicating the data relative to the previous v̂′ ∈Vm at a generic time step t̄, it queries the
BS about (a) the current m-type vertices instantaneous communication idlenesses
and (b) their teammates intentions, expressed in terms of portions of walks cur-
rently being followed (as in the previous strategy). It then decides to reach the m-
type vertex v̂ displaying the highest communication idleness that is currently not in
the portion of walk followed by any other robot (if each vertex will be visited by
at least one robot, choose one vertex randomly). The path from the current vertex
of robot r to v̂ is computed on G, so that, as a side-effect of the choice, additional
m-type and c-type vertices can be visited (in the latter case, the data relative to the
visited m-type vertices are sent to the BS). In case v̂ 6∈ Vc, the path is augmented
with the shortest path connecting v̂ to the closest c-type vertex. The pseudo-code
each robot runs for implementing this strategy is shown in Algorithm 3. Clearly,
the algorithm runs in linear time w.r.t. the number of graph vertices if the shortest
paths composing ŵr are already available (notice that they can be pre-computed at
the beginning of the mission).

In the next section, we will investigate the behavior of these strategies by also
comparing them against a baseline random strategy (RANDOM) in which each
robot chooses randomly a new vertex of G to reach, regardless of its current idleness
and membership to Vm and/or Vc.
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Algorithm 3 RE planning algorithm for robot r at time t̄
ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm← {query the BS about the walks followed by others}
query the BS about instantaneous communication idlenesses of vertices Vm
v̂← argmaxv∈Vm,v 6∈ŵi,i∈R\{r} ICv(t̄)
compute ŵr as the shortest path on G from r’s current position to v̂
if v̂ 6∈Vc then

let v̂c be the c-type vertex closest to v̂
augment ŵr with the shortest path on G from v̂ to v̂c

end if
return ŵr

5 Experimental evaluation

We validated the proposed patrolling strategies in simulated, yet realistic, scenar-
ios within the ROS/Stage framework [14, 18]. To enrich the Stage simulator with
regions providing a communication link with a BS, we implemented an additional
ROS node called Communication Server (CS) in charge of handling the commu-
nication between robots and BS. The CS node receives all the messages from the
robots (BS) and appropriately forwards them to the BS (robots), considering robots
locations in the environment. We selected three representative environments, repre-
sented as 800x600 pixels bitmap images, upon which we constructed the patrolling
graph G = (V,E) by randomly selecting vertices sufficiently far from the obstacles,
manually pruning some of them, and by adding edges only between vertices in line-
of-sight to obtain a reasonable topological representation of the environment. In all
the environments, communication vertices are chosen manually. The three selected
environments are (see Fig. 1):

• the Leonardo campus of the Politecnico di Milano (Poli – approx. size 200 m×
150 m), characterized by the presence of several buildings and discretized in 40
m-type vertices, 9 of which also belong to Vc;

• the “acapulco convention center” of the Radish dataset repository [8] (Open –
approx. size 80 m× 60 m), characterized by a large hall and discretized in 32
vertices, 11 of which only belong to Vc and the remaining 21 only belong to Vm;

• an imaginary grid-block environment similar to those used in [4, 13] (Grid),
discretized in 20 vertices, 4 of which only belong to Vc, 12 only to Vm, and the
remaining 4 to both Vm and Vc.

Each simulated robot is equipped with a controller allowing to choose between
one of the proposed patrolling strategies, and it is assumed to be able to perfectly
localize itself in the environment (by using its true position as given by Stage).
Given a waypoint to reach, path planning is performed by means of the A* algorithm
run on a grid-based discretization of the environment, followed by a simple path-
smoothing phase. Robots move at a maximum speed of 10 px/s, avoiding each other
by means of a simple behavioral rule according to which the robot with highest ID
is given precedence to pass.
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(a) Poli (b) Open

(c) Grid

Fig. 1: The three environments. Green, blue, and light-blue vertices define the sets
Vm \Vc, Vm∩Vc, and Vc \Vm, respectively.

Each run is repeated 5 times in order to cope with the non-deterministic outcome
of the experiments due to the message exchange protocol adopted by ROS (graphs
report averages over the runs and corresponding standard deviation bars). For each
team size, we initially place the robots in the corners of the environments, and we
keep fixed their initial positions across the different runs. The planning horizon of
I-OPT is kept fixed at H = 150 seconds, except where indicated otherwise, as this
value allows to perform a complete walk enumeration in reasonable time in all the
environments. (Notice that this is possible since robots’ movements along the edges
consume a significant amount of time steps.) All the simulations are performed on
a laptop equipped with an Intel P7450 processor and 2 GB of RAM.

We start by reporting in Fig. 2 the average idleness values obtained in the three
environments by the four proposed patrolling strategies (G-OPT, I-OPT, RE, and
RANDOM) through short mission durations T with 2 robots. Such durations are
chosen as the ones in which G-OPT is able to calculate a complete plan in the
same amount of time required by I-OPT (a few seconds); notice that the durations
are not equal for the different environments, as they depend on the complexity of
the planning graphs G (which follows from the topology of the environments, as
well as from the selected discretization method). All the performance curves remain
very close until the end of the mission, where the random baseline starts to behave
slightly worse than all the other strategies in the Poli and Grid environments. These
results show that I-OPT and RE are able to perform as well as G-OPT on short mis-
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sion horizons and justify their employment on longer mission durations for which
G-OPT is not a viable choice. Notice that, in the Open environment, I-OPT behaves
slightly better than G-OPT towards the end. This is due to several factors, such as
robots interfering with each other while executing their paths, and a non-perfect
simulation of the concurrent walks execution during the planning phase.
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Fig. 2: Comparison of G-OPT, I-OPT, RE, and RANDOM in short mission durations
with 2 robots.

We now focus on T = 30 minutes patrolling missions (the average idleness val-
ues tend to stabilize after this amount of time), and examine the impact of different
team sizes on the average and worst-case idleness values obtained by I-OPT, RE,
and RANDOM. Fig. 3 shows the average idleness values obtained in the three envi-
ronments by the three strategies for a number of robots m varying from 1 to 4. In all
the environments and for all the values of m, RE outperforms RANDOM and it is in
turn outperformed by I-OPT. These results show that the increased planning com-
plexity of the three strategies is immediately reflected in their effectiveness. Increas-
ing the value of m leads to an advantage for all the strategies, but the performance
gain becomes smaller. (For larger graphs with similar structures, we argue that the
performance should follow the same decreasing trend for a fixed ratio |V |/m.) If
we now look at the worst-case idleness values (Fig. 4), we can see that I-OPT is
outperformed by RE in Poli and Open. This is not surprising, as RE is designed to
always lead the robots towards the vertex currently displaying the highest idleness,
while I-OPT plans without considering worst-case idleness values. Again, larger
team sizes lead to lower worst-case idleness values in all the environments and for
all the strategies, with the only exception of RANDOM in Open, where there is
always at least one vertex whose situation is never reported to the BS.

To conclude, we report in Fig. 5 the results obtained with different parameters
on the Poli environment for 3 robots. Fig. 5(a) shows the average idleness values
obtained for different planning horizons H in I-OPT. As expected, a planning hori-
zon too short or too long leads to worse performance than a balanced one: in the
former case, the plan is obtained quickly, but it is not effective; in the latter case, the
longer time spent during planning is not compensated by its effectiveness. A way
to select a good value for H is to start from a value that allows to reach every node
from any node (closely related to the diameter of G) and, then, decrease it if com-
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puting strategies takes too long. Fig. 5(b) investigates the impact of varying the ratio
|Vc|/|V |, while keeping each vertex also in Vm. For |Vc|/|V | = 0.05 I-OPT behaves
as badly as RANDOM. The reason is that, in this case, there are only two c-type
vertices, placed at two opposite corners of the map: therefore, a planning horizon
of H = 150 seconds always leaves out from the plans some m-type vertices that are
too far. For |Vc|/|V | = 0.1,0.2 the performance is substantially similar for I-OPT
and RE, and augmenting the ratio to 0.4 does not lead to substantial improvements
for RANDOM and I-OPT, while RE is somehow biased by the presence of several
communication vertices since it is more rare that the obtained walk need to be aug-
mented to reach a c-type vertex, implying that less m-type vertices are visited as a
side-effect.

Finally, we focus on a realistic case in which we simulate the temporary un-
availability of a communication link. Faults are assumed to happen independently
from each other as follows: once a robot reaches a c-type vertex, with probability
p f the expected communication link will not be present (due, e.g., to a temporary
network congestion), while with probability 1− p f the robot and the BS will be
able to communicate as before. To deal with these unexpected events, we employ a
simple recovery procedure in which the robots decide to move towards the closest
c-type vertex. In Fig. 5(c), we report results on how performance of I-OPT in the
Poli environment degrades with increasing p f (note that the recovery procedure is
independent of the chosen patrolling strategy). Our simple recovery procedure is ef-
fectively able to mitigate the impact of communication failures up to 25%, while for
higher values of p f the performance worsens less gracefully, but not dramatically.
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Fig. 3: Average idleness values of I-OPT, RE, and RANDOM for different team
sizes for a 30 minutes mission.

6 Conclusions

In this paper, we extended the classical multirobot persistent patrolling framework
and the related idleness evaluation metrics in order to account for the presence of
a limited number of communication areas and we presented some patrolling strate-
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Fig. 4: Worst-case idleness values of I-OPT, RE, and RANDOM for different team
sizes for a 30 minutes mission.
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Fig. 5: Different parameters in the Poli environment (m=3).

gies tailored for such a setting. Experimental results show the effectiveness of the
proposed patrolling strategies in the optimization of our idleness-based evaluation
criteria in different environments and settings.

As future works, we intend to adapt the theoretical analysis of cyclic strategies
of [4] (relative to the classical worst-case idleness metric) to our framework and to
validate our multirobot system also on real robots.

References

1. Banfi, J., Basilico, N., Amigoni, F.: Minimizing communication latency in multirobot
situation-aware patrolling. In: Proc. IROS, pp. 616–622 (2015)

2. Basilico, N., Carpin, S.: Online patrolling using hierarchical spatial representations. In: Proc.
ICRA, pp. 2163–2169 (2012)

3. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in envi-
ronments with arbitrary topologies. In: Proc. AAMAS, pp. 57–64 (2009)

4. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: Proc. IAT, pp.
302–308 (2004)

5. Dames, P., Kumar, V.: Cooperative multi-target localization with noisy sensors. In: Proc.
ICRA, pp. 1877–1883 (2013)

6. Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-robot area patrol under frequency constraints.
Ann Math Artif Intel 57(3-4), 293–320 (2009)



Multirobot Persistent Patrolling in Communication-Restricted Environments 13

7. Hollinger, G., Singh, S.: Multirobot coordination with periodic connectivity: theory and ex-
periments. IEEE T Robot 28(4), 967–973 (2012)

8. Howard, A., Roy, N.: The robotics data set repository (Radish). http://radish.sourceforge.net/
(2003)

9. Iocchi, L., Marchetti, L., Nardi, D.: Multi-robot patrolling with coordinated behaviours in
realistic environments. In: Proc. IROS, pp. 2796–2801 (2011)

10. Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.: Multi-agent patrolling: an empirical
analysis of alternative architectures. In: International Workshop on Multi-Agent Systems and
Agent-Based Simulation, pp. 155–170 (2002)

11. Mosteo, A., Montano, L., Lagoudakis, M.: Guaranteed-performance multi-robot routing under
limited communication range. In: Proc. DARS, vol. 8, pp. 491–502 (2009)

12. Ochoa, S., Santos, R.: Human-centric wireless sensor networks to improve information avail-
ability during urban search and rescue activities. Inform Fusion 22, 71–84 (2015)

13. Portugal, D., Rocha, R.P.: Multi-robot patrolling algorithms: examining performance and scal-
ability. Adv. Robotics 27(5), 325–336 (2013)

14. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source
Software (2009)

15. Santana, H., Ramalho, G., Corruble, V., Ratitch, B.: Multi-agent patrolling with reinforcement
learning. In: Proc. AAMAS, pp. 1122–1129 (2004)

16. Stephan, J., Fink, J., Kumar, V., Ribeiro, A.: Hybrid architecture for communication-aware
multi-robot systems. In: Proc. ICRA, pp. 5269–5276 (2016)

17. Tortonesi, M., Stefanelli, C., Benvegnu, E., Ford, K., Suri, N., Linderman, M.: Multiple-uav
coordination and communications in tactical edge networks. IEEE Commun Mag 50(10),
48–55 (2012)

18. Vaughan, R.: Massively multiple robot simulations in stage. Swarm Intelligence 2-4(2), 189–
208 (2008)


