
Deep Learning-based Traffic Prediction
for Network Optimization

Sebastian Troia, Rodolfo Alvizu, Youduo Zhou, Guido Maier, Achille Pattavina
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy

e-mail: sebastian.troia@polimi.it

ABSTRACT
In recent years, researchers realized that the analysis of traffic datasets can reveal valuable information for the
management of mobile and metro-core networks. That is getting more and more true with the increase in the use
of social media and Internet applications on mobile devices. In this work, we focus on deep learning methods to
make prediction of traffic matrices that allow us to proactively optimize the resource allocations of optical
backbone networks. Recurrent Neural Networks (RNNs) are designed for sequence prediction problems and they
achieved great results in the past years in tasks like speech recognition, handwriting recognition and prediction of
time series data. We investigated a particular type of RNN, the Gated Recurrent Units (GRU), able to achieve great
accuracy (<7.4 of mean absolute error). Then, we used the predictions to dynamically and proactively allocate the
resources of an optical network. Comparing numerical results of static vs dynamic allocation based on predictions,
we can estimate a saving of 66.3% of the available capacity in the network, managing unexpected traffic peaks.
Keywords: Deep Learning, Machine Learning, Internet Traffic Prediction, Network Optimization.

1. INTRODUCTION
As telecommunications networks become increasingly important, understanding how to correctly predict network
behaviour plays a vital role in the management and provisioning of mobile and fixed network services. As a
consequence, traffic prediction has become very important for network providers [1]. Having an accurate traffic
predictor tool is essential for most network management tasks, such as resource allocation, short-time traffic
scheduling or re-routing, long-term capacity planning, network design and network anomaly detection.
A proactive prediction-based approach allows network providers to optimize network resource allocation,
potentially improving the quality of service. Recently, some relatively reliable predictive methods in the field of
temporal data prediction have been proposed. Zhuo et al. [2] have developed a prediction model based on the
analysis of the autocorrelation coefficients of the time series in order to improve the accuracy of the prediction.
After considering the autocorrelation features, they have implemented a Long Short-Term Memory Recurrent
Neural Network (LSTM RNN) as prediction algorithm. Azzouni et al. [3] presented a framework for network
traffic matrix prediction based on LSTM RNNs. They have validated the framework on real-world data from
GEANT network showing a very low mean squared error. In this work, we show an effective use of deep learning
as a tool to perform an intelligent network optimization. We have implemented a Gated Recurrent Unit Recurrent
Neural Network (GRU RNN) on real-world data from Abilene1 network. Our model proposes an Evaluation
Automatic Module (EAM), which has the task of automating the learning process and generalizing the prediction
model with the best possible performance. After that, we used the predictions as input for a network optimization
tool called Net2Plan [4] to optimize the Routing and Spectrum assignment in the underlying optical network. The
results of this work demonstrate the importance of traffic prediction for a network operator in the efficient
management of its network. The paper is organized as follows: Section 2 describes the dataset we used for our
experiments; Section 3 introduces the RNN and the GRU that represent the foundation of this work. Section 4
presents the proposed system to make predictions and network optimization, in which we explain the EAM.
Section 5 shows the results of our experiments and finally Section 6 provides the conclusions.

2. DATASET AND PROCESSING
In this work, we propose an end-to-end deep learning architecture for short-term traffic matrix prediction. A deep
learning architecture is trained and evaluated by using a dataset of traffic matrices of Abilene1 network. Abilene
is a backbone network created by the Internet2 Community2 that enables the development of advanced Internet
applications. Data traffic matrices are taken in 5 minute steps starting on March 1st 2004 at 00:00 and ending on
September 10th 2004. The traffic matrices were processed to obtain a dataset describing each traffic matrix as a
vector, where each element represents the traffic value of a specified couple of nodes. The result of this data
manipulation provides a dataset with a number of rows equal to the number of starting matrices, that is, 48096;
and a number of columns equal to the square of the number of nodes, or 144. Thanks to this number of samples
available, it is possible to create a reliable and effective prediction algorithm. The dataset was divided into 3 sets
using the following division: training 60%, validation 10% and testing 30%. The first, served to train the prediction

1 http://sndlib.zib.de/home.action
2 https://www.internet2.edu/

http://sndlib.zib.de/home.action
https://www.internet2.edu/

model in order to obtain the set of weights 𝑊𝑊 of the Artificial Neural Network (ANN) that minimizes the error
between the predicted value and the true value of the traffic. The validation set, served to generalize the model,
that is to solve the problem of overfitting. The latter is a frequent problem in machine learning algorithms, and
occurs when the selected algorithm learns to fit just the training data set, but starts performing badly with the
incoming (new) data. Finally, the testing set is left to test the algorithm with data that the prediction model has
never seen.

3. RECURRENT NEURAL NETWORKS
This section describes the Recurrent Neural Network (RNN) used for network traffic prediction and introduces a
special type of RNN: the Gated Recurrent Units (GRU) networks. RNN is a learning method in the fields of deep
learning that gained a lot of attention in recent years. It is different from the traditional Feedforward Neural
Network (FNN) because it introduces a recurring structure for implementing a memory mechanism, which until
now was absent in the FNNs. Through this structure, neurons keep track of past information and use it to influence
the output at the current moment, making it suitable for predicting time series data. Unfortunately, the RNN is
affected by a problem, called gradient explode or gradient vanish [5][6], that prevents complete learning of the
time series. Due to this issue, we investigated the Gated Recurrent Units Recurrent Neural Networks (GRU RNNs)
that are an evolution of the Long Short Term Memory (LSTM) RNNs proposed by Hochreiter in [7].

3.1 Gated Recurrent Units (GRU)
GRU was proposed by Cho et al. [8] to make each recurrent unit (or neuron) capable of adaptively capturing
dependencies on different time scales. Similar to the LSTM unit, the GRU has gating units that modulate the flow
of information inside the neuron, as shown in Figure 1, thus implementing a memory mechanism. The output of
the unit (or activation) ℎ𝑡𝑡

𝑗𝑗, where 𝑡𝑡 is time (or epoch) and 𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ unit (or neuron), is a linear interpolation
between the previous activation ℎ𝑡𝑡−1

𝑗𝑗 and the candidate activation ℎ�𝑡𝑡
𝑗𝑗:

ℎ𝑡𝑡
𝑗𝑗 = �1 − 𝑧𝑧𝑡𝑡

𝑗𝑗�ℎ𝑡𝑡−1
𝑗𝑗 + 𝑧𝑧𝑡𝑡

𝑗𝑗ℎ�𝑡𝑡
𝑗𝑗 ,

𝑧𝑧𝑡𝑡
𝑗𝑗 is an update gate that decides how much the unit updates its activation, or content. The update gate is computed

by:
𝑧𝑧𝑡𝑡
𝑗𝑗 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1)𝑗𝑗

where 𝑊𝑊𝑧𝑧 is the weighted matrix of the input and 𝑈𝑈𝑧𝑧 is the weighted matrix of the previous time step. The candidate
activation ℎ�𝑡𝑡

𝑗𝑗 is computed in a way similar to the traditional recurrent unit,
ℎ�𝑡𝑡
𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟𝑡𝑡 ∘ ℎ𝑡𝑡−1)�𝑗𝑗 ,

where 𝑟𝑟𝑡𝑡
𝑗𝑗 is a set of reset gates and ∘ is an element-wise multiplication. When off (𝑟𝑟𝑡𝑡

𝑗𝑗 close to 0), the reset gate
effectively makes the unit act as if it is reading the first symbol of an input sequence, allowing it to forget the
previously computed state. The reset gate 𝑟𝑟𝑡𝑡

𝑗𝑗 is computed similarly to the update gate:
𝑟𝑟𝑡𝑡
𝑗𝑗 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1)𝑗𝑗

The most prominent feature shared between these units is the additive component of their update from 𝑡𝑡 to 𝑡𝑡 + 1,
which is lacking in the traditional recurrent unit. The traditional recurrent unit always replaces the activation, or
the content of a unit with a new value computed from the current input and the previous hidden state. This additive
nature has one big advantage: it is easy for each unit to remember the existence of a specific feature in the input
stream for a long series of steps. Any important feature, decided by the update gate of the GRU, will not be
overwritten but be maintained as it is.

Figure 1. (a) GRU neuron example with j=1; (b) RNN neuron example with j=1.

RNN

1
thtWx

Input Output1 1
1tanh(,)t t th Wx Uh −=

1
th 1

t̂h

1
tz

1
tr

GRU

1
thtWx

Input Output

(a) (b)

4. SYSTEM MODEL

We input the processed dataset into the proposed prediction system. As shown in Figure 2, our method mainly
incorporates two section: the first part is the classical ANN based on GRUs, and the second part is the proposed
Evaluation Automatic Module (EAM). We use ANN to train the prediction model, and use the EAM to evaluate
the model at each iteration of learning. The evaluation module has the task of automating the learning model
without human intervention. In particular, at each iteration (or epoch3) of the ANN, EAM receives the result of
the prediction 𝑦𝑦�𝑇𝑇 and the respective target 𝑦𝑦𝑇𝑇, and evaluates performance based on the prediction error of the
training set 𝐸𝐸𝑇𝑇, and the one with the validation set 𝐸𝐸𝑉𝑉 (see Figure 2.c). At each iteration, it stores the error in a
database and compares it with the one of the previous iteration. When 𝐸𝐸𝑉𝑉(𝑒𝑒) < 𝐸𝐸𝑇𝑇(𝑒𝑒), EAM let the ANN continue
the training; otherwise, it stores the ANN at the epoch 𝑒𝑒1 = 𝑒𝑒, and continue the training for other 𝐾𝐾 iterations. In
the end, after the 𝐾𝐾 iterations, if it finds an epoch 𝑒𝑒2 where 𝐸𝐸𝑉𝑉(𝑒𝑒2) > 𝐸𝐸𝑇𝑇(𝑒𝑒2) and 𝐸𝐸𝑉𝑉(𝑒𝑒2) < 𝐸𝐸𝑉𝑉(𝑒𝑒1), then stores
the model and stops the training; otherwise, it considers the previous model at the epoch 𝑒𝑒1 as the prediction model
for the incoming traffic.

The choice of parameter K is arbitrary. In this work we have chosen 𝐾𝐾 = 50 because the errors 𝐸𝐸𝑇𝑇 and 𝐸𝐸𝑉𝑉 decrease
as a negative exponential. For other applications or for other datasets, it could happen that errors decrease more
slowly and in a very variable way; in such cases the parameter K needs to be increased. When the prediction model
has been obtained, it will be used to predict the traffic matrix of the next hour, thus making a prediction hour by
hour. The result of this prediction will be used as input for an optical network optimization algorithm based on an
heuristic, solving the Routing, Spectrum, Modulation Assignment (RSMA) problem with regenerator placement,
in a fixed grid optical WDM networks. The performance metric used is proportional to the amount of waisted
capacity on each established lightpath. The network optimization was done with the open source planning tool
Net2Plan [4].

5. EXPERIMENTS

In order to verify the accuracy of the prediction model, we used data from a backbone network called Abilene,
presented in Section 2. After processing the initial dataset, we obtained the traffic matrices in vector form and we
put them as input of the system proposed in Section 4, which has trained and generalized a prediction model in a
fully automatic way. We trained the model to perform a one-hour prediction given the previous six hours. After
that, the predicted traffic matrix is used to solve the RSMA (explained in the previous section) which provides the
optimal routing and resource allocation for the next hour. To evaluate the performance of our system we computed
the Mean Absolute Error (MAE) between testing-set matrices and predicted matrices over one day interval:
𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏

𝒏𝒏
∑ �𝒀𝒀𝒊𝒊 − 𝒀𝒀𝒊𝒊� �𝒏𝒏
𝒊𝒊=𝟏𝟏 , where 𝒀𝒀𝒊𝒊 is a vector of 𝒏𝒏 observed values and 𝒀𝒀𝒊𝒊� is the vector of the predictions. As the

name suggests, the mean absolute error is an average of the absolute errors �𝒀𝒀𝒊𝒊 − 𝒀𝒀𝒊𝒊� � and it is a measure of
prediction accuracy. MAE is a widely-used measure of prediction accuracy and a small value of it means that the
predictor has high performance. The prediction model that consists in an ANN with one hidden layer composed

3 From now on, iteration and epoch will be used as synonyms.

Figure 2. (a) General diagram of the ANN based on GRUs; (b) General diagram of the proposed system; (c)
Pseudocode of the EAM algorithm proposed in this work.

Training data

EAM

Validation data

ANN
INPUT
LAYER

OUTPUT
LAYER

HIDDEN
LAYER

Artificial Neural Network (ANN)

ˆ() | () () |
ˆ() | () () |

T T T

V V V

E e y e y e
E e y e y e

= −
= −

() ()V TE e E e<

1e e=

if2 ,e K∀ ∈ 2 2() ()V TE e E e> AND 2 1() ()V VE e E e<

Evaluation Automatic Module (EAM)

Algorithm: EAM
Evaluate the prediction error both for training data and
validation data at each epoch and store the best
prediction model.
1. Store the error at each epoch :

2. Compare the errors:
 if

Continue to train the ANN and repeat from 1.
 else

 , store the prediction model and
continue the training/evaluation for other
K epochs.

3.
store the prediction model and stop the
training

 else
consider the previous as prediction model

(a) (b) (c)

Prediction model

Network Optimization

e

by 5 GRU nodes and one output layer with one node, presents a MAE of 7.4. This promising result is given by the
memory structure implemented in each neuron of the ANN.

Figure 3. Capacity allocated to a link of Abilene net. Over
all hours of a specific day in the testing set.

Table 1. Total performances of the system over
the testing set

 Dynamic
Allocation

Static
Allocation

Capacity
saving 66.3% 0%

Over-
provisioning 68.9% 89.4%

Traffic Lost 3.0% 0%

We compared the resource allocation of our proposed method with a static planning of the network. The static
planning was done by calculating the maximum bandwidth of each link in the traffic matrix, over the training set.
In order to cope with unexpected traffic peaks, in both approaches we allocate 30% of extra capacity. Figure 3
shows the allocation of capacity between two nodes of the Abilene network. At 16.00 we found a prediction error,
that is, the system predicted a traffic value lower than the real one. This led the system to allocate less resources
than the required to satisfy the bandwidth request; generating traffic loss. On the other hand, the system managed
to predict a traffic peak at 22.00, allocating more capacity than needed; increasing the over-provisioning in the
network. Over-provisioning is the extra capacity that has been allocated compared to the capacity sufficient to
satisfy the request. The performance of our model over the whole testing set is summarized in Table 1. Using
dynamic allocation we obtained a capacity saving of 66.3% compared to the static case. In addition, we achieved
an over-provisioning saving of 20.5% when comparing with the static resource allocation. As expected, the
unpredictability of the network traffic lead to situations in which the traffic prediction is lower than the real one.
Even though we considered a 30% of extra capacity, our results reported 3% of traffic lost over the testing set.

6. CONCLUSIONS
This paper analyses the use of deep learning based traffic prediction to optimize proactively and dynamically an
optical network. The proposed EAM shows how the automation of the training and generalization of a deep
learning algorithm is effective for obtaining a reliable and high performance prediction model. Based on the
numerical results, the system has obtained very promising performances both from the point of view of the
prediction and from that of the allocation of resources. Furthermore, the model is part of one of the first attempts
to optimize the operator's network with machine learning.

ACKNOWLEDGEMENTS
The work leading to these results has been supported by the European Community under grant agreement no.
761727 Metro-Haul project

REFERENCES
[1] R. Babiarz, et al., “Internet traffic midterm forecasting: a pragmatic approach using statistical analysis tools”,
2006, Lecture Notes on Computer Science, 3976, 111–121
[2] Q. Zhuo, et al., "Long short-term memory neural network for network traffic prediction," 2017 12th
International Conf. on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, 2017, pp. 1-6.
[3] A. Azzouni, et al., “NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in SDN”,
arXiv preprint arXiv:1710.06799
[4] P. Pavon-Marino, et al., “Net2plan: an open source network planning tool for bridging the gap between
academia and industry”, IEEE Network, vol. 29, no 5, p. 90-96, October/November 2015.
[5] Y. Bengio, et al., “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on
Neural Networks, 2002, 5(2):157-166.
[6] S. Hochreiter, et al., “The vanishing gradient problem during learning recurrent neural nets and problem
solutions”, World Scientific Publishing Co. Inc. 1998.
[7] S. Hochreiter, et al., “J. Long short-term memory”, Neural Computation, 1997, 9(8):1735.
[8] K. Cho, et al.,“On the properties of neural machine translation: Encoder-decoder approaches”, arXiv preprint
arXiv:1409.1259, 2014.

Static Allocated Capacity
Predicted Allocated Capacity
Real Traffic

	1. INTRODUCTION
	2. DATASET AND PROCESSING
	3. RECURRENT NEURAL NETWORKS
	3.1 Gated Recurrent Units (GRU)

	4. SYSTEM MODEL
	5. EXPERIMENTS
	In order to verify the accuracy of the prediction model, we used data from a backbone network called Abilene, presented in Section 2. After processing the initial dataset, we obtained the traffic matrices in vector form and we put them as input of the...

	6. CONCLUSIONS

