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Abstract: Although bone has a high potential to regenerate itself after damage and injury, the
efficacious repair of large bone defects resulting from resection, trauma or non-union fractures
still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology,
can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants.
In particular, recent advances in materials science have provided several innovations, underlying
the increasing importance of biomaterials in this field. To address the increasing need for improved
bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from
organic or inorganic materials, incorporating drugs and growth factors, to induce new bone tissue
formation. This review emphasizes recent progress in materials science that allows reliable scaffolds
to be synthesized for targeted drug delivery in bone regeneration, also with respect to past directions
no longer considered promising. A general overview concerning modeling approaches suitable for
the discussed systems is also provided.
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1. Introduction

Bone diseases are among the most common conditions threatening human health worldwide,
becoming a major socioeconomic and global health care problem [1–3]. Bone tissue has the remarkable
ability to regenerate itself after an injury, through complex and strictly regulated biological processes.
Although, in some circumstances, such as extensive bone resections due to bone cancer, osteoporosis,
osteomalacia, osteomyelitis, avascular necrosis, and atrophic non-union, bone regeneration could
be impaired [4]. Thus, in these cases bone grafts are often needed in order to restore the normal
function and native biomechanical characteristics of the affected bone. Autologous grafts are the
clinical gold standard to improve bone regeneration, since they are osteoinductive, osteoconductive
and totally histocompatible, reducing the risk of immunogenic reactions and disease transmission.
However, despite these properties, autografts still show some limitations due to the little amount of
tissue available for grafting, donor site morbidity and the need for additional surgery, which may lead
to an implant failure.
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An alternative approach is represented by allogenic bone grafts, but possible immune reactions
and disease transmission are still important issues to solve [5–8].

Bone tissue engineering (BTE) is a valid emerging approach for bone regeneration, aiming to
overcome these problems (Figure 1). In contrast with most traditional approaches, BTE contemplate
the use of porous structures, called scaffold, which serve as a template to guide cell attachment,
differentiation, proliferation and tissue regeneration [9]. An ideal scaffold should have some particular
properties like: a good biocompatibility, meaning that the scaffold should be able to interact with
the cellular component of bone, without leading any toxic or immunological response; a suitable
porosity, that mimics the natural structure of bone tissue, which permit vascular ingrowth and cellular
transportation; adequate mechanical properties; and biodegradability, in fact an ideal scaffold is
expected to degrade over time in vivo, preferably at a predictable absorption rate [10–13]. So far,
many materials that possess some of these properties have been studied for applications in BTE,
but the development of a scaffold which can fulfill all of the above requirements is still challenging.
More recently, much interest has been addressed in exploiting scaffolds for delivering targeted therapies
to bone, in order to supply molecules like growth factors, which are fundamental to assist and enhance
bone regeneration, or drugs and small molecules, which can locally treat bone disorders. Moreover,
the intense research in integrating BTE with modern nanotechnologies has been demonstrating to
be a valid strategy in delivering therapeutic molecules to bone tissue [14]. An enormous literature is
available on the topic, demonstrating the critical and promising role of these novel approaches to treat
skeletal disorders.
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Figure 1. Tissue engineering approach to bone repair: undifferentiated stem cells were seeded within
polymeric scaffolds, together with differentiating agents (e.g., dexamethasone) and osteoinductive
agents and then implanted in vivo.

In this review, we summarize the most-studied materials for designing scaffolds in BTE, their role
as targeted drug carriers and pharmaceutics agents proposed for treating bone regeneration defects.
The eventual implications of this approach in the clinic are also assessed.

2. Biomaterials for Bone Scaffolds

2.1. Organic Scaffolds

2.1.1. Synthetic Polymers

Synthetic polymers have demonstrated being promising biomaterials for bone tissue engineering,
due to their biomechanical and biodegradability properties. Moreover, they provide a better controllability
in terms of porosity, physiochemical structure and immunologic adverse effects when compared to
other types of scaffolds [15–17]. The most studied synthetic polymers in bone tissue regeneration
are aliphatic polyesters like poly(lactic-acid) (PLA), poly(caprolactone) (PCL), and poly(glycolic-acid)
(PGA) and derivatives.

Other synthetic polymers include poly(methyl methacrylate), poly(e-caprolactone), poly hydroxyl
butyrate, polyethylene, polypropylene, polyurethane. These polymers are degraded by hydrolysis
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in vivo and have the advantage of being easily tailored in different shapes, according to mechanical
demands in the particular bone treated [18–21]. However, synthetic polymers still cause some concern
about the timing of absorption, which can alter their mechanical strength in vivo.

Some polymers, such as poly(propylene fumarate) (PPF) demonstrated great resistance to
compressive stress and a controlled biodegradability; however, their degradation leads to the release
of acid compounds that could constitute an adverse issue on native bone health [21].

2.1.2. Natural Polymers

The rationale of studying the role of natural polymers in bone tissue regeneration lies in their
similarity to native extracellular matrix (ECM) and, according to their chemical composition, they can
be divided in proteins (collagen, gelatin, fibrinogen, elastin) and polysaccharides (glycosaminoglycans,
cellulose, amylose) [20,22]. Their resemblance to the native ECM makes them scaffolds with high
osteoinductive properties and biocompatibility. Several strategies have been proposed for fabricating
natural polymeric scaffolds: they can be derived by cells, which are inducted to produce ECM, or
directly obtained from decellularized bone tissue [23]. ECM-based scaffolds are generally highly
biocompatible and display poor or no risk of host immune reaction; however, the need of an additional
surgery to sample grafts, with consequent loco-regional morbidity and limited availability of tissue
have not been of negligible limitations to this approach. Allografts, xenografts and demineralized bone
matrices in contrast show no concerns about availability of biomaterials, and have high osteoinductive
and osteoblast stimulation properties; however, possible host immune reaction and risk of disease
transmission still are concerning. Natural polymers scaffolds demonstrated to provide mesenchymal
stem cells differentiation to osteoblast and have shown a high biocompatibility. However, mechanical
properties and biodegradability are still less controllable in naturally derived biomaterials compared
to synthetic polymers [24]. Chitosan (CS) is a deacetylated derivative of chitin and is used as a
vehicle for drug delivery, being able to enhance the absorption of hydrophobic macromolecular drugs.
CS nanoparticles (CSNPs) are used to reduce the toxic effects of a drug and extending its activity by
holding the therapeutic agent in closer proximity to the site of action, due to its muco-adhesive cationic
nature [25]. CSNPs are usually modified in order to enhance cell internalization efficiency. For instance,
CSnP can be altered with sulfate groups to create a polysaccharide comparable in structure to heparin,
which can link favorably to the basic amino-acid stretches of BMP-2. By improving the sustained
release, this interaction can enhance the bioactivity of BMP-2 for the healing of the bone [26].

2.1.3. Lipid Nanoparticles

Lipid nanoparticles (LNPs), have great potential in comparison with inorganic nanoparticles,
due to their biocompatibility and low toxicity. LNPs are uniform nano-carriers including solid- and
liquid-state lipids, that can be organized into a core-shell or homogeneous particle structure [27].
They include lipid drug conjugate (LDC) carriers, nanostructured lipid carriers (NLCs), lipid
nanocapsules carriers (LNCs) and solid lipid nanoparticle (SLN) carriers [28].

2.1.4. Purified Bone Allografts

Different industrial processes exist to purify allogenic bone, i.e., from foreign donors, providing
safe and cleaned blocks for bone allografting, many of which are also marketed even if possible host
immune reaction and risk of diseases transmission still are concerning and are resulting in continuously
more stringent regulatory restrictions. Moreover, although allografts could potentially be true
biological scaffolds, cleaning processes often make use of chemical reagents that are aggressive for the
bone matrix and, hence, result in poorly performing materials both mechanically and biologically [29].

However, being still used, these types of graft are investigated also for local drug delivery
purposes, particularly antibiotics, although with contrasting results: loading of allografts with
antibiotics may not only protect grafts from bacterial adhesion but should be above the minimum
biofilm eradication concentration for a prolonged period of time to be efficient [30].
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2.2. Inorganic Scaffolds

2.2.1. Metallic Scaffolds

Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) have a number of features that make them specifically
interesting as a targeted delivery vector. MSNs are able to load diverse cargos because of the
pore size and morphology of MSNs. Surface-modified MSNs can release their cargo under control.
Multifunctional (magnetic and luminescent) MSNs have the possibility of bio-imaging and drug
delivery at the same time. The alteration of MSNs, with appropriate functional groups (such as
–NH2, –Cl, –SH, or –CN) or polymers, directly influence the drug release rate by rising the drug
diffusion resistance. MSN-based multifunctional drug delivery systems are able to deliver antitumor
drugs in a targeted fashion and release them on demand to increment their cellular uptake without
any premature release prior to reaching the target site [31]. They can accelerate bone formation by
upregulating osteoblast activity and decreasing bone resorption by downregulating osteoclast activity;
for this reason they are still a great option for treating osteoporosis [27].

Gold Nanoparticles

Gold nanoparticles (GNPs) are adequate for controlled drug delivery, cancer treatment, biomedical
imaging, diagnosis (due to their excellent compatibility with the human organism), low toxicity, small
dimensions, and the capacity of being encased with a variety of therapeutic agents [32]. GNPs can
downregulate the formation of osteoclasts by inhibiting the function of the osteoclastogenesis promoter,
RANK ligand (RANKL), and by reducing reactive oxygen species (ROS) levels [33]. GNPs can be
used with drugs or other molecules for drug delivery. To induce osteogenic differentiation, they
can provide mechanical stress on the membranes of mesenchymal stem cells (MSCs) to activate the
mechanosensitive p38 mitogen-activated protein kinase (MAPK) pathway [34,35].

Nanodiamonds

Nanodiamonds (NDs) are octahedral, nanoscale carbon allotropes that are perfect intracellular
carriers of bioactive compounds because of their properties such as: biocompatibility, reduced
dimensions and high surface chemical interaction [27]. NDs have been suggested to have a positive
role in osteoblast proliferation and differentiation but appears to have gained overall not much interest
for long term translational studies [36].

2.2.2. Ceramic Scaffolds

Bone tissue has the particular feature of combining biological components like osteocites,
osteoblasts and osteoclast to an abundant inorganic extracellular matrix, being composed of almost
70% hydroxyapatite and 30% collagen in weight [37]. Calcium phosphate nanoparticles (CPNs)
have received great attention for bone-related applications because of their superior biocompatibility,
biodegradability, and similarity in structure to the inorganic composition of bone minerals [38].

Ceramic scaffolds derive from CaP and, due to their analogy in physicochemical composition
to the inorganic component of bone, they have been extensively studied as substrates for BTE [39].
The most investigated CaP scaffolds are hydroxyapatite (HA), beta-tricalcium phosphate (b-TCP),
and a combination of HA and b-TCP, called bifasic calcium phosphate (BCF) [40]. Ceramic scaffolds
demonstrated of being able to integrate in natural bone tissue and stimulate osteoblast differentiation,
osteoblast growth and inorganic matrix deposition. However, clinical application of CaP scaffolds
is limited by their fragility, irregular absorption rate and overall poor clinical outcomes. Thus, new
bone tissue formed in a ceramic scaffold cannot sustain mechanical loading as well as natural bone.
More recently, it has been proved that doping CaP scaffold with various compounds could improve
mechanical resistance, biocompatibility and absorption rate. For instance, Fielding et al. demonstrated
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that the addiction of SiO2 and ZnO to b-TCP increase compressive strength to 2.5-fold and cell viability
to 92% [41], however, clinical evidence is still lacking. Further new approaches to the problem of
brittleness of ceramic scaffolds include composite materials, in which CaP are mixed with organic
polymers. Composite scaffolds also demonstrated a promising role in drug delivery, thanks to their
porosity and cell adhesion ability [42].

2.2.3. Composite Xenohybrid Scaffolds

It is a generally accepted paradigm that bone substitutes should resemble as closely as possible
naturally occurring human cancellous bone and a very commonly used source of bone matrices
are animal-derived bones, where mostly used in clinical practice are bovine xenografts, distantly
followed by equine and porcine. It is acknowledged that bovine-derived cancellous bone grafts are
the closest xenograft to human bone to be regenerated, second only to autografts [43,44] and are
products used in clinical practice where bone regeneration is needed in reconstructive surgeries [45,46].
However, necessary cleaning and sterilization processes of starting raw materials of animal origin
result in a decay of both mechanical and biological performances. Indeed, similarly to what is seen for
synthetic biomaterials, the application of composite technologies to bovine xenografts is becoming an
interesting trend, not only in research [47,48] but also in industrial and clinical practices [49,50]: the
adding of resorbable polymeric components improves mechanical and biological performances [51]
and can also be used to locally carry active molecules, or drugs to be delivered locally, to increase cell
colonization, promote osteoinduction and finally promote osteogenesis [52,53], hence, representing an
increasingly interesting family of biomaterials.

3. New Pharmaceutic Agents in Bone Targeted Therapies

Several drug therapies have been studied for their potential in enhancing bone tissue healing.
Historically, growth factors are the agents that have attracted greater attention, since they are
fundamental for bone regeneration. Bone morphogenetic protein-2 (BMP-2) and BMP-7 are the most
extensively investigated growth factors due to their ability to promote mesenchymal stems cell (MSC)
differentiation to osteoblasts, although often with debatable or contradictory results [54]. Parathyroid
hormone (PTH), which has already been approved for the treatment of osteoporosis, could be also a
therapy for bone healing defects [55,56]. Biphosphonates have demonstrated being drugs for targeting
bone and are among the most studied molecules in BTE. Several studies proved their efficacy in carrying
antibiotics or chemotherapy agents to bone, thanks to their affinity to hydroxyapatite [57]. Antibodies
have also been suggested as a model to target bone in diverse conditions. In addition, novel approaches
including small molecules like statins, steroids, prostaglandins agonists, and Wnt/beta-catenin agonists
have been explored, as they are relatively stable, affordable and display little immunogenicity [58–60].

An alternative strategy is represented by the delivery of nucleotides, like siRNA and miRNA,
which can be used to genetically rearrange cells acting at the site of healing, thus improving
regeneration of bone tissue [61,62].

3.1. Growth Factors and PTH

Growth factors are signaling proteins able to stimulate the proliferation and differentiation
of target cells, through a complex control of the cell cycle and gene expression. Several growth
factors are involved in bone maturation and normal healing processes, explaining the vast interest
they received as therapeutic agents in bone healing defects [54,63,64]. Systems for the delivery of
recombinant human BMP-2(rhBMP-2) and BMP-7 (rhBMP-7) have already been approved by the
FDA for clinical uses [65,66]. Jones et al. in 2006 demonstrated that a combination of allograft and
rhBMP2-INFUSE™ significantly improved bone healing in diaphyseal tibia fractures, when compared
to autograft approaches [67]. However, the administration of rhBMPs is still not approved in pediatric
patients, in pregnant women and in patients with tumors, due to the concerning side-effects they
can display [68,69]. More recently, several nanostructures have been developed for the delivery
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of BMP-2 and BMP-7 to bone, in order to overcome uncontrolled diffusion of the growth factors
and consequent adverse effects. Organic polymers and hydrogels are the most studied materials
in the field of BMPs controlled delivery to bone, since their chemical properties can be modulated
incorporating functional groups that make polymers susceptible to degradation at particular pH
and temperature levels. For instance, a pH-responsive and thermosensitive hydrogel, designed by
adding sulfamethazine oligomer (SMO) to copolymers made of PCLA and PEG units, showed a
functional release of BMP-2, leading to increased ALP activity and mineralization after subcutaneous
administration [70]. PTH is a peptidic hormone the action of which is crucial in regulating calcium
and phosphorus omeostasis. Systemic subcutaneous injections of PTH, and its derivative human
recombinant PTH (hrPTH 1-34), are FDA-approved for the treatment of osteoporosis, and have
been used as effective off-label treatments of fracture healing [56]. Furthermore, experimental
studies conducted in animal models of multiple fractures demonstrated that PTH enhanced callus
mineralization and bone remodeling [55,71]. Local administration of PTH to sites of fractures is now
being explored. An arginine-glycine-aspartic acid (RGD)-modified PEG hydrogel bound to hrPTH
1-34 was demonstrated to induce bone formation comparable to autologous bone graft implantation,
in a canine model of dental implants [72]. However, some concerns are emerging about the timing of
degradation of PTH during storage in such carriers and further studies on the role of polymers for
PTH delivery are needed for translation to clinical practice [73].

3.2. RNA Interference (RNAi)

RNA interference is a phenomenon first described by Fire and coworkers in which short sequences
of non-coding RNA, such as siRNA and miRNA, are able to alter gene expression in target cells [71].
The mechanism by which siRNA acts is complex: long molecules of double strand RNA (dsRNA) are
cleaved by an endo-ribonuclease called Dicer into siRNA molecules, which are then free to be enclosed
into a protein complex named RNA-Induced Silencing Complex (RISC). Once the RISC is formed,
it binds to target complementary mRNA which is then degraded, suppressing its translation into amino
acids. The mechanism of miRNA is even more complex, since miRNA derives from long coding-dsRNA
primary transcript, called pri-miRNA, that then undergoes extensive post-transcriptional modifications
which leads to the formation of pre-miRNA. The conversion of pri-miRNA into pre-miRNA is mainly
due to the action of an RNase III named Drosha and an RNA-binding protein, DGCR8. The pre-miRNA
sequence is then cleaved by Dicer, leading to the formation of mature miRNA, which can be integrated
in the RISC, that seems to be the final common pathway of RNAi phenomenon. The rationale of
studying RNAi in the context of BTE is to manipulate cells involved in bone healing, in order to silence
the expression of biological products that contrast new bone tissue deposition.

For example, administration of siRNA against DKK-1 or guanidine nucleotide binding protein
alpha stimulating activity polypeptide 1(GNAS1) showed an improved osteogenic differentiation
of MSCs, suggesting that the application of RNAi technologies could be promising in BTE [74,75].
Nevertheless, clinical translation of RNAi is still challenging, since these short sequences of RNA are
susceptible to nuclease action, and the absorption by targeted cells is hampered by cell and endosomal
membrane impermeability [76].

More recently, nanotechnology has been exploited for RNAi delivery, aiming to overcome
problems related to degradation by nuclease and cell membrane permeability. LNPs are the most
studied nano-carriers both in vitro and in vivo, but some limitations derive from high-dose toxicity
and adverse immune reaction [77,78]. Polymers such as PEI, poly-L-lysine, poly-L-arginine, chitosan,
and derivatives have also been explored for the development of structures for siRNA delivery [79].
In particular, PEI showed favorable interactions with target cell membranes and high cell uptake.
Its conjugation into photo-crosslinked dextran hydrogels through a biodegradable ester linker resulted
in a sustained delivery of siRNA [80,81]. PLGA has also been employed for siRNA delivery, offering
the advantages of high stability and low toxicity, but weak electrostatic interactions between PLGA and
siRNA result in a limited delivery potential [82]. Several strategies have been developed to overcome
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this problem demonstrating optimized results, such as loading the surface of PLGA with polymeric
NPs. Polymeric NPs are particularly promising systems in the field of siRNA delivery.

For instance, in 2009, Convertine et al. developed a diblock copolymer delivery system
containing a block of poly(dimethylaminoethyl methacrylate)(pDMAEMA) and a pH-responsive
block of DMAEMA, 2-propylacrylic acid (PAA), and butyl methacrylate (BMA), which efficiently
protected siRNA form degradation, improved cell uptake, realized endosomal escape, achieving an
optimal siRNA delivery to MSCs [83,84]. Furthermore, the same delivery system was combined
with siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1), a suppressor of
osteoblasts, and then enclosed into PEG-derived hydrogels; when inserted at the site of murine femur
fractures, it showed improved bone deposition and increased biomechanical strength [59].

3.3. Small Molecules

The term “small molecule” includes a variety of drugs and active molecules, with different
physicochemical properties, which have in common a molecular weight lower than 900 Daltons.
Thanks to their low weight, small molecules are generally affordable, stable, osteoinductive at low
doses, display lower risks in terms of immune responses [85] and, hence, represent a very promising
research arena. Numerous small molecules with osteoinductive properties have been discovered
in the last decades, and some of these are approved for clinical uses for other conditions [86,87].
Thus, another advantage of studying small molecules as a resource for BTE includes the large amount
of available data about toxicity and pharmacokinetic in humans, permitting a prompt translation
to orthopedic applications. For instance, statins, which are 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) inhibitors commonly used for the treatment of different types of dyslipidemia, exhibited
osteogenic potential both in vitro and in vivo [88]. In a murine mandibular bone defect model, a
gelatin sponge graft coupled with simvastatin showed an increased new bone formation, compared
to the control group [89]. Similar results have been obtained in experimental studies assessing bone
healing by radiographs and histology [90]. However, some concerns derive from an in vivo study that
showed inflammatory responses and impaired bone healing when statins when administered at high
doses [91,92]. Therefore, more studies about the role of statins are needed to better understand this
non-negligible point. Another approach extensively explored is the use of Wnt/β-catenin pathway
agonists. Wnt/beta-catenin is a signaling pathway which plays a key-role in all stages of bone
healing, by committing MSCs to osteoblast lineage and stimulating bone matrix deposition [93,94].
Lithium, which is already approved by FDA for the treatment of bipolar disorder, is able to inhibit
glycogen synthase kinase-3 (GSK-3); thus, the inhibition of GSK-3 results in an over-expression of
intracellular beta-catenin, that can promote and enhance bone regeneration [95].

Others GSK-3 inhibitors have been studied in pre-clinical rat model-based experiments, such
as 603281-31-8 and AZD2858, exhibiting enhanced osteoblast activity and bone healing [96,97].
Some delivery systems have been developed in order to reduce drug dispersion and to better target
bone healing site, like conjugating AZD2858 with poly(styrene-alt-maleic anhydride)-b-poly(styrene)
(PSMA-b-PS) [98]. Nonetheless, there are still some concerns about clinical use of GSK-3 inhibitors,
due to possible tumorigenic adverse effects, and more studied are necessary [99].

4. Clinical Applications in Drug Delivery

4.1. Osteomyelitis and Other Orthopaedic Related Infections (ODRIs)

Staphylococcus aureus is considered the causative agent of osteomyelitis for almost 80% of all
cases of human disease [100]. S. Aureus has high affinity to bone, is able to induce osteonecrosis
and resorption of the bone matrix [101]. The standard treatment consists in radical surgical
debridement of the infected tissues, obliteration of the dead space, adequate soft tissue coverage, and
intravenous antimicrobial therapy for at least 4–6 weeks [102]. Local delivery of antibiotics combined
to biodegradable polymer scaffold for bone regeneration was envisioned as a new therapeutic
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strategy to overcome the limitations of systemic treatment and effectively manage osteomyelitis [103].
Local antibiotic delivery presents many advantages: the antibiotic reaches much higher concentration
at the site of action, while keeping systemic antibiotic concentration at a minimum level, and
adverse side effects commonly occurring with high systemic doses of antibiotics can be avoided.
Biofilms, representing an aggregate of microorganisms embedded in a self-produced matrix of
extracellular polymers, are responsible for most of the Staphylococcal infection of bone and ODRIs [104].
Literature data demonstrate that the presence of biofilm-embedded bacteria is more resistant to
systemic antibiotic use because the biofilm decreases the local concentration of antibiotics at the
bacterial surface. The use of local antibiotic carriers increases concentration of antibiotics overcoming
the biofilm induced resistance [105]. The gold standard treatment for osteomyelitis and ODRIs is
the use of antibiotic-loaded carriers consisting on inert materials for example cements or beads of
polymethylmethacrylate (PMMA) impregnated with antibiotics capable to deliver high levels of
antibiotic at a local administration site [40]. PLGA was employed to compose a poly(ethylene glycol)
monomethyl ether (mPEG) and PLGA copolymer as a sol-gel drug delivery system for treating
osteomyelitis. It is shown to have diverse advantages in treating osteomyelitis, including simple
preparation, 100% encapsulation rate, near-linear sustained release of drugs, injectable design and in
situ gelling of the target tissue [106].

4.2. Cancer Bone Metastasis

The most prevalent solid tumors, such as breast, lung and prostate cancers, metastasize to the
skeleton and induce either osteolytic or osteoblastic lesions. Both types are often followed by bone
pain and increased bone fragility, producing extended suffering [107]. The skeleton is the most typical
organ to be affected by metastatic cancer, and this is the site of the disease that generates the major
morbidity rates [108]. Treatment includes surgical management and radiation therapy and is aimed at
the removal of cancer cells from a specific site and the prevention or treatment of impending fractures.
The systemic approaches, consisting of hormone therapy, chemotherapy, systemic radionuclides and
bisphosphonate therapy, can suppress the development of the tumor, providing symptomatic relief
and regression of bone disease [109]. Bone-targeted drug delivery systems are used to concentrate
chemotherapeutic drugs in bone tissues, reducing the adverse effects of neoadjuvant chemotherapy
and solving the problem of reaching the desired foci [110]. Bisphosphonates (BPs) represent the most
relevant drug family for the treatment of cancer bone metastasis. By decreasing osteoclast induced
bone turnover, BPs can maximize structural bone strength, treat or prevent osteoporosis, and treat
Paget’s disease of bone.

A case of intense and debated research was the suggestion that BPs might have antitumor
properties and can possibly be used to treat cancer bone metastases [111,112]. Because of their great
affinity to bone, BPs are used as targeting molecules on NPs to deliver anticancer drugs. Specifically,
NPs were used to load doxorubicin (DXR) and were evaluated for their antitumor effects in primary
or metastatic bone tumors in an orthotopic mouse model of breast cancer bone metastases. Both free
DXR and DXR-loaded NPs demonstrate an important dose-dependent growth inhibition of the breast
cancer cells [107]. Another study shown that a direct conjugate PTX–PEG–ALN (poly ethylene glycol
bearing paclitaxel and alendronate) NP exhibited an improved pharmacokinetic profile due to the
notable increase in their half-life. PTX is a potent anticancer drug that can result in serious side
effects. Alendronate is an aminobisphosphonate used to treat osteoporosis, bone metastases, and
bone targeting. This conjugate was shown to have a good binding affinity to the bone in vitro [113].
Some studies propose that targeting bone tissue biomarkers could represent another strategy to
stop cancer bone metastasis. Therefore, combining delivery systems of NPs, selective drugs, and
gene therapy may represent a new strategy to create effective treatments and prevention for bone
metastasis [114,115].
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4.3. Osteosarcoma and Other Musculoskeletal Malignancies

Osteosarcoma is the most common primary bone malignancy, often presented in the first or
second decade of life [116]. It is treated using a surgical, neo-adjuvant and adjuvant chemotherapeutic
regimen [117]. Locally advanced and metastatic soft tissue sarcoma have been managed only through
surgery, radiotherapy and chemotherapy. Despite the efforts, overall 5-year survival rate in patients
with soft tissue sarcomas of all stages remains only 50–60% [114]. The local relapses and systemic
diffusion of bone and soft tissue sarcomas depend on the partial efficacy of the chemotherapeutic agents
used. Their systemic and organ toxicity greatly limits the maximum tolerated dose of anti-cancer drugs
and, thus, restricts their therapeutic efficacy. New treatment methods are still required to improve
survival in patients with osteo- and soft-tissue sarcomas, the molecular targeted therapy may have
a potential to be a promising therapy [118]. NPs can extravase and accumulate inside the interstitial
space. This causes an enhanced permeability. Moreover, lymphatic vessels are absent or ineffective
in tumors, conducing inefficient drainage of the tumor tissue [119]. Many small anti-cancer drugs
have been encapsulated in PLGA based nanoparticles and have been studied in vitro and in vivo to
treat different cancers: doxorubicin (DXR), a highly potent anthracycline approved for use against
a wide spectrum of tumors is compromised by toxicities, cardiomyopathies leading to congestive
heart failures. PEGylated PLGA nanoparticles encapsulating DXR enhance DXR anti-tumor efficacy
compared with the free drug [119].

4.4. Osteoarthritis

Osteoarthritis is a prevalent, disabling disease leading to joint symptoms, signs associated with
loss of integrity of the articular cartilage, and changes in underlying bone and joint surface [120].
Existent therapies have no effect on reverting or slowing down the progression of the disease and
pursue only pain alleviation [121]. NPs could be useful as a local delivery system for osteoarthritis
drugs, such as anti-inflammatory chemokines or chondrocyte-stimulating peptides, and this could
increase the drug retention time in local tissues or fluids. For example, cationic polymeric hydrogel
was reported to increase the retention time of dextran, after ionically cross-linked with the NP in
synovial fluid without influence on the feature of the fluid [122]. Similarly, copolymer NPs were also
shown to increase the retention time of IL-1 receptor antagonist (IL-1Ra) and maintained cartilage
structure and composition [123].

4.5. Osteonecrosis

Osteonecrosis leads to osteoarthritis, especially in the hip and knee joints, during the third to fifth
decades of human life.

It depends on a vascular crisis inducing a massive remodeling of the vascular tree in the bone
and of the bone architecture leading to a temporary weakness often causing a collapse of the affected
subchondral bone. Although a number of surgical procedures have been developed, no single used
treatment method has so far provided a cure in our hands. New treatment methods are required, such
as biologic regeneration of necrotic bone [124]. The treatment using stem cells from bone marrow
have been recently introduced in the clinical practice [125]. Moreover, PDLLA and PLGA had been
utilized as promising means to deliver bioactive molecules. The inclusion of PDGF and simvastatin
into PDLLA–PLGA microspheres proved the improvement of cellular viability and showed a decrease
of inflammation by either simvastatin or PDGF treatment. In the osseous defect, release of PDGF
in the early phases promotes cell recruitment, imitating the early mitogenic stage in wound healing.
Simvastatin released after day 7, facilitates osteogenic differentiation and maturation [126].

4.6. Pseudo Arthrosis and Delayed-Non Unions

The late literature regarding the expected complications of the fractures identified clinical
parameters where pseudo arthrosis or delayed unions are more frequent [127]. Actual treatment
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of the complications is reserved after the onset of the pathological healing process. The treatment
requires curettage of the area and infusion of bone marrow derived stem cells [128,129]. The use of
bone scaffold is a novel treatment under investigation [130]. We envision as one of the future targets
of scaffolds loaded with osteogenic factors, antibiotics and/or mesenchymal stem cells delivery in
the fracture area during the primary surgical treatment in order to decrease the complications rate.
Summary of the discussed applications are summarized in Table 1.

Table 1. Clinical applications in drug delivery.

Disease Therapeutic Agent Drug Delivery
System Main Outcome

Osteomyelitis Antibiotics PMMA, PLGA Releases high levels of antibiotic at a local
administration site. No side effects.

Cancer bone
metastasis DXR PLGA-ALE

Higher or equal efficacy than free DXR in
prevention of osteolytic bone metastases
and reduction of DXR concentration in
healthy tissues.

PTX, ALN PEG Marked increase in their half-life. Great
binding affinity to the bone in vitro.

Osteosarcoma DXR PLGA Enhance DXR antitumoral efficacy
compared with free drug.

Osteoarthritis Dextran Cationic
nanoparticles

Increases the retention time, maintaining
cartilage structure and composition.

IL-1Ra IL-1Ra-tethered
nanoparticles

Osteonecrosis Simvastatin PDLLA, PLGA Decrease of inflammation. Facilitates
osteogenic differentiation and maturation.

PDGF
Decrease of inflammation. Cell recruitment,
(imitating the early mitogenic stage in
wound healing).

Delayed-non
unions

Osteoinductive
agents, antibiotics Composite systems Promotes fracture healing and decreases

risk of secondary osteomyelitis.

5. Mathematical Modeling

Currently, mathematical modeling has gained a key role in the engineering and design of drug
delivery systems. Models allow to rationalize and understand the most important involved phenomena
that determine system behavior and, once their predictive capability has been assessed, they can be
used to optimize the design of the device according to the desired performances. Starting from the
seminal contribution of prof. Takeru Higuchi in 1961 [131] (Higuchi equation is currently used for some
systems [132]) drug delivery modeling is still a growing field thanks, on one side, to the continuous
development of new methods and to software optimization and increasing computational power
on the other side. This allows to set-up complex simulations that can also involve, e.g., moving
boundary problems or the integration of different physical models. In addition, drug delivery
modeling takes advantage not only of standard approaches based on fundamental mass, energy
and momentum conservation equations, but also of those methods focused on molecular scale that
act as a “computational microscope”, which provide valuable insights not always accessible from an
experimental point of view.

5.1. Modeling Approaches

As mentioned, drug delivery modeling embraces different approaches, each one with different
accessible time and length scales, and thus with different purposes. Microscale models are aimed at



Pharmaceutics 2018, 10, 122 11 of 26

understanding the fundamental interactions between drugs and their carrier or the target receptors,
while macroscale models are commonly employed in order to optimize the device according to the
specific needs. These two approaches can be also integrated in a multiscale modeling framework,
where the effects of the specific interactions at molecular level are included in the macroscopic
description of the system. The following paragraphs are intended to provide to the interested reader a
general but comprehensive overview of the available modeling approaches employed and discussed
in the literature. For each class of scaffolds presented in the previous sections, the most suitable
computational method is discussed as well as the typical outcomes from calculations. Some relevant
examples of the application of modeling to bone tissue engineering are also provided.

5.1.1. Microscale Modeling

Molecular dynamics (MD) simulations are currently a well-established and widely employed
approach to investigate the system behavior at molecular scale. Atoms are represented as mutually
interacting spheres, whose motion is computed by integrating Newton law [133]:

mi
dri
dt

= Fi(r) = −∇U(r) (1)

where mi and ri are the mass and the coordinates of the i-th atom, respectively, Fi(r) is the force acting
on the i-th atom and U(r) is the potential energy; F(r) and U(r) depend only on atomic coordinates
r. This constitutes a reasonable approximation when quantum effects are not relevant, i.e., when the
motion of light species such as H2, D2 and He is not considered.

The potential energy function U(r) is usually called force field and accounts for several
contributions, such as bonds, angles, dihedrals, electrostatic and Van der Waals interactions.
Force fields are tested and parameterized according to high-level quantum chemistry calculations
and experimental data. Literature offers many examples of general purposes force fields [134–136] as
well as force fields tailored for a specific class of molecules, such as proteins [137], nucleic acids [138],
lipids [139] and carbohydrates [140]. The typical length and time scales of MD simulations are
nanometers and nanoseconds, although the microsecond time scale is becoming accessible thanks to
the synergic effects of software optimization and the increasing computational capability [141] such as
the use of Graphics Processing Units (GPUs). However, many phenomena of interest, such as protein
folding or drug unbinding, take place on a time scale that is still out of reach for MD simulations
(that is, from milliseconds to seconds). This issue can be overcome by employing enhanced sampling
methods [142]. Briefly, an external bias potential is applied to the system in order to enhance the
transition between metastable states separated by energy barriers whose magnitude is much higher
than kBT (where kB is Boltzmann constant and T is the absolute temperature) and are thus rarely
crossed in a standard simulation at constant temperature T. This also allows to recover the free energy
of the system as a function of few relevant degrees of freedom, usually called collective variables (more
details in Appendix). MD simulations are also ideal to investigate the non-covalent binding between
nucleic acids and polycationic carriers, such as polyethyleneimine [143–147], polyarginine [145],
polylysine [144,145,147] as well as dendrons of different generations [148–150]. Simulations at
molecular level allow understanding the impact of parameters such as charge density and molecular
flexibility. In addition, system behavior can be rationalized by computing a binding free energy with
approaches such as MMPBSA [148] or enhanced sampling methods [145]. Recently, MD simulations
started to be extensively employed for the simulation of lipid bilayers (which mimic cellular
membranes but also liposomal carriers) and the permeation of drug molecules across the membrane
(Figure 2C) [150]. Molecular simulations coupled with umbrella sampling (an enhanced sampling
method) allow to obtain the free energy as a function of the distance between the centers of mass
of the penetrant and the lipid bilayer [151–154] as a collective variable. This constitutes the input
for the inhomogeneous solubility-diffusion model [155,156], with which diffusion coefficients and
permeability as a function of the position into the membrane can be calculated, as well as average
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values (Figure 2A). Dickson and coworkers [152] employed MD-derived permeability values for
seven active compounds in order to build a mechanistic macroscale model for membrane permeation.
Lipid bilayers are also investigated by means of coarse-grain (CG) methods, where groups of atoms
are embedded into beads (i.e., grouped in a single interaction center), which account for the main
properties of the atoms that they include (hydrophilicity/hydrophobicity, charge, polarity). One of the
most popular coarse-grain force fields, MARTINI [157], has four different main classes of beads: polar,
non-polar, apolar and charged. As a matter of fact, MARTINI force field has been employed to simulate
not only lipid membranes but also entire lipid particles (Figure 2B) [158,159]. Thanks to the detail at
atomic scale provided by microscale models, systems like gold nanoparticles (Figure 2D) [160–163]
have been also investigated through MD-based methods [164]. The aim of the simulations is to
investigate the dynamic behavior at particle/environment interface, such as protein adsorption or the
effect of decorating groups at particle surface. Other inorganic scaffolds and their interactions with
proteins have been studied at a molecular level; a relevant example is constituted by the adsorption of
Bone Morphogenetic Factor 2 (BMP2) on hydroxyapatite surfaces [165,166].
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Figure 2. (A) Permeation of silatecan camptothecin drug analogue and a protonated 20(S)-4-aminobutyrate
substituted prodrug in a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer. Water molecules
are represented as silver CPK, bilayer is represented as light blue lines and drugs are shown as
VdW spheres. Reproduced with permission from Elsevier [155]. (B) Lipid vesicle containing a
mechano-sensitive protein channel simulated with coarse-grain MARTINI force field. Water is represented
as blue beads. Reproduced with permission from Royal Society of Chemistry [158]. (C) Binding between
G7 PAMAM dendrimer and siRNA fragment; siRNA is represented as dark solid ribbons, while charged
primary amine groups are represented as blue/white spheres. Reproduced with permission from
Elsevier [150]. (D) Interaction between α-synuclein with 12 nm gold nanoparticle functionalized
with partially ionized citrate ligands (charged moieties are shown as red spheres). Reproduced with
permission from Wiley [161].

5.1.2. Macroscale Modeling

Macroscale modeling is based on fundamental conservation equations and constitute a typical
engineering tool for design and optimization. In the drug delivery field, they allow to account for
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the release of an active compound loaded in a matrix as well as the degradation of devices made of
bioresorbable materials (like aliphatic polyesters), and their synergic effects.

Indeed, degradation (if present) creates new diffusive paths that imply a dynamic increase of
the diffusion coefficient of the drug and degradation products, which must be accounted for in a
comprehensive modeling framework. In general, first-principle-based or mechanistic models require
an understanding of the most important chemical and physical phenomena involved; they contain
input parameters with a precise physical meaning (kinetic constants, diffusion coefficients, et cetera)
that can be independently estimated from experimental data or suitable and validated correlations.
Because of this, mechanistic models can be used for an optimal device design since they allow to
make prediction for different operative conditions (that is, different from the ones used for model
validation). Focusing on polymer-based devices, the main challenge is a proper description of transport
phenomena within the device, since drug release can be due to different mechanisms and influenced
by several factors [167,168] (water penetration, phase transition of polymeric excipients, molecular
interactions with the device, changes in microenvironmental pH and ionic strength, et cetera); it is
not possible to formulate a model that takes into account all involved phenomena and simplifications
are an inescapable necessity to achieve a model that can be used for practical purposes. In most
cases, diffusion can be assumed as Fickian, i.e., it can be described by means of Equation (A1);
however, for other systems a non-Fickian diffusion is observed [169]. This is typical of glassy polymers
(when the temperature is below the glass transition temperature Tg), where the chains do not have
enough mobility to allow an immediate diffusion of the solvent. As mentioned, diffusion coefficients
must be properly estimated in order to achieve a reliable model. There are different theoretical
approaches to account for complex environment like polymer matrices, which can be summarized as
follows [169,170]:

• Obstruction theories: polymer chains are considered motionless if compared to solute and solvent
molecules. Polymer chains are modeled as fixed impenetrable rods in solution that increase the
mean diffusive path of the molecules;

• Hydrodynamic theories: this approach takes into account hydrodynamics interactions, like the
frictional ones between the solute and the polymer, the solvent and the polymer and the solute
and the solvent;

• Free volume theories: free volume is defined as the volume not occupied by matter or, more
generally, as the volume of the system at a given temperature minus the volume of the same
system at 0 K. Free volume rearrangements create pores and cavities where diffusing species
can diffuse through. In other words, free volume is considered the main factor that determines
molecular diffusion.

Additional efforts have been presented for hydrogels; apart from the diffusion coefficients
dependent on water concentration mentioned for swelling controlled systems, different approaches
have been discussed for polyelectrolyte hydrogels [171]. Amsden et al. [172] developed a model
based on obstruction theories, which takes into account polymer ionization degree. Fatin-Rouge and
coworkers [173] studied the motion of small ions in agarose hydrogels, accounting for steric and
electrostatic interactions. Vega et al. [174] investigated ions diffusion in agarose hydrogels, proposing a
model that explicitly underlines the effect of gel porosity and ions size. In this framework, microscale
models can provide valuable insights concerning the effects of solute/matrix interactions and their
impact on the observed release profile. In a recent work from Yan et al. [175], it has been observed that
the initial pH of a hyaluronic acid hydrogel influenced the release rate of the Bone Morphogenetic
Protein 2 loaded into the matrix. Molecular dynamics simulations allowed to highlight the presence of
pH-dependent protein/hyaluronic acid interactions, which resulted in a relevant protein adsorption
on hydrogel chain at pH 4.5 and a negligible one at pH 7. The understanding gained at molecular level
has been included in a macroscale model, which could describe the observed release rate at different
pH values.



Pharmaceutics 2018, 10, 122 14 of 26

Focusing on some specific systems of interest, aliphatic polyesters are experiencing an ever-growing
interest in the biomedical field, thanks to their degradation in vivo through hydrolysis (a second
surgical operation to remove the device is not needed, improving patient care), biocompatibility
(degradation products are metabolized by the human body itself) and versatility (material properties
can be easily tailored for the specific application); therefore, it is not surprising to discover that literature
offers a wide number of mathematical models for such systems [167,176–181]. This has been possible
also because the main phenomena behind aliphatic polyesters degradation are now well-established
and accepted in scientific literature [182]. Water diffuses into the polymer matrix (which exhibits
a limited swelling) and starts breaking the ester bonds that constitute polymer backbone (focus in
Appendix). Although the detail of the distribution is lost, the average properties of interest (molecular
weights, polydispersity) can be easily obtained as a function of statistical moments. Also, in this
framework there are models of different complexity [183–187]; Nishida et al. [184] obtained a simple
equation for computing average molecular weights and polydispersity, accounting for autocatalysis
but not for erosion. Casalini et al. [187] proposed a model that takes into account transport
phenomena, autocatalysis, erosion and diffusion coefficients which depend on polymer number
average molecular weight. Stochastic models describe hydrolysis as a random event; such an approach
has been adopted, e.g., by Siepmann et al. [188] to describe drug release from microspheres made of
poly(lactic-co-glycolic) acid. Diffusion coefficient depends on porosity, which increases in time and
space because of hydrolysis.

6. Conclusions

Skeletal conditions, such as fractures, osteomyelitis, osteoarthritis, osteonecrosis and bone cancer,
affect a vast portion of the population, often requiring surgical procedures associated with extensive
bone loss. Hence, in some cases, bone grafts are needed in order to restore the normal bone anatomy.
Autografts and allografts are the current standards of treatment in such cases, but these approaches
still display some non-negligible contraindications, like limited bone availablity for transplant or
immunogenic reactions. Recent progress in material science allows reliable scaffolds to be exploited
for bone repair. Several materials have already been studied both in vitro and in vivo, demonstrating
promising results in terms of biocompatibility and biomechanical properties. Moreover, scaffolds for
bone repair showed encouraging results when combined with drugs, growth factors and mesenchymal
stem cells, which can co-operate facilitating de novo bone tissue deposition and mineralization. For this
aim, the development of nanotechnology has a great potential, allowing to specifically target such
therapeutic agents to the site of injured bone, avoiding systemic adverse reactions and reaching
effective therapeutic effects with a low and steady dose. Although scaffolds for bone-targeted delivery
demonstrated to be a valid approach to treat a large amount of bone diseases, some critical issues
should still be investigated. In fact, due to the limited literature in humans, some concerns are still
open, like a better understanding of nanotoxicity, drug loading capacity and delivering, and possible
long-term adverse effects of such implants. Considering the vast amount of literature showing the
positive implications of such an approach in treating bone conditions, more extensive studies of novel
biomaterials and their clinical applications are encouraged.
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Appendix A. On Mathematical Modeling

Appendix A.1. Microscale Modeling

MD simulations do not allow to study chemical reactions (electrons are not explicitly taken into
account) but they provide valuable insights for those systems where non-covalent interactions are
fundamental. In addition, solvent molecules and ions are explicitly included and their role is accounted
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for in detail. For the sake of completeness, it is possible to study chemical reactions through hybrid
quantum mechanics/molecular mechanics (QM/MM) methods, e.g., when dealing with the covalent
binding of an inhibitor to an enzyme; an extensive discussion on this complex topic is beyond the
purpose of this paper, and the interested readers are referred to dedicated reviews [189,190]. A typical
application of MD simulation is constituted by the study of the non-covalent binding between a
drug molecule (the ligand) and the target protein (the receptor) [190]. When the crystallographic
structure of the complex is available, simulations allow understanding the most relevant interactions
that lead to binding and the specific amino acids involved. In addition, the affinity between the
receptor and the ligand can be quantitatively estimated by computing the binding free energy ∆Gbind.
If potential binding sites of the target protein are known, a preliminary in silico screening can be
performed in order to evaluate the affinity of potential ligands. The initial step is usually constituted
by docking, where binding poses are evaluated by computing the binding free energy as a function
of coordinates by means of an empirical formula [191]. The investigated compounds are ranked
according to the obtained affinity values. Docking is an efficient but simplified approach (receptor
and ligand flexibility are not always considered as well as entropic contributions, solvent and ions
are implicitly accounted for) that allows to discriminate between binders and non-binders, but not
between weak and strong binders.

The obtained binding poses can be used as input for molecular dynamics simulations, where
binding is described as a dynamic process and solvent and ions are accounted for; ∆Gbind values can be
calculated with different methods such as Linear Interaction Energy (LIE) [192], Molecular Mechanics
Generalized Born Surface Area (MMGBSA) [193], Molecular Mechanics Poisson Boltzmann Surface
Area (MMPBSA) [193] and Alchemic Perturbation (AP) [194]. Currently, MMPBSA and MMGBSA
represent a good compromise between efficiency and accuracy, at least for ranking similar ligands after
docking [195]. AP and enhanced sampling methods provide a more accurate estimation of the affinity,
but they are seldom used in the initial screening since they are demanding from a computational point
of view.

Appendix A.2. Macroscale Modeling: Diffusion

Concerning Diffusion Mechanisms

• Diffusion controlled systems: drug release is determined by the concentration gradient between
the loaded device and the external environment. The starting point for the description of such
systems is the Fick’s second law:

∂C
∂t

= ∇(D∇C) (A1)

where C is drug concentration in the device, t is time and D is the diffusion coefficient; this
parameter depends on several factors (drug, environment, temperature, et cetera) and accounts
for the ability of the loaded compound to move within the device. For simple geometries (slabs,
cylinders, spheres) and simplified cases (diffusion coefficient constant in time and space, initial
uniform drug distribution, and so on) analytical solutions of Equation (A1) are available in
literature [196]. The challenge is a robust estimation of the diffusion coefficient in a complex
environment such as polymer matrices, as explained below;

• Swelling controlled systems: in systems such as hydrogels, the swelling of the polymer matrix
can be the rate determining step for drug release. When the starting point is constituted by a dry
(non-swollen) polymer matrix, the drug is embedded in a dense network where the mobility of
polymer chains and active compound is strongly hindered. As soon as water starts to penetrate
into the matrix, polymer chains relax (their mobility increases) and device volume increases.
This dramatically changes the conditions for drug transport from the dry and swollen matrix,
since the active molecules become free to move towards the external environment. In this
framework, modeling approaches take into account at the same time water penetration into
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the matrix and drug diffusion, with time and spatial dependent diffusion coefficients that are
function of local water concentration. In addition, since matrix volume increases in time because
of water penetration, the model has moving boundary conditions that must be properly accounted
for [197,198];

• Degradation and erosion controlled systems: as already mentioned, the hydrolysis of the
matrix can promote drug release because of the dynamic increase of the diffusion coefficient.
Water penetrates into the matrix and starts breaking the backbone of long water-insoluble chains
in smaller fragments. In this framework, the meaning of “degradation” and “erosion” must
be properly specified. Degradation is the chain scission process, while erosion is the mass
loss from the bulk due to the diffusion of the small water-soluble oligomers. The dynamics
of water penetration and hydrolysis are determinant. If water penetration is much faster than
hydrolysis, water concentration is approximatively uniform into the device volume, which
is in turn experiences a uniform degradation; this situation is usually referred as bulk or
homogeneous degradation.

On the other hand, when water consumption is faster than its diffusion within the polymer, the
device experiences degradation and erosion only at the surface while its core remains intact; this is
referred as surface or heterogeneous degradation. A suitable modeling approach must contain both
degradation kinetics and transport phenomena (in order to take into account the different degradation
mechanisms) as well as diffusion coefficients that depend on polymer degradation. In addition, while
the volume of bulk degrading matrices usually remains constant at least during the time interval
needed for the complete release, surface eroding matrices experience volume decrease, which imply a
moving boundary problem [199,200].

Appendix A.3. Macroscale Modeling: Degradation

The interplay between the time scales for water diffusion and consumption determine whether
bulk or surface hydrolysis occurs. The resulting oligomers cause a decrease in the microenvironmental
pH, because of the dissociation of their carboxylic terminal; this, in turn, enhance hydrolysis rate which
is catalyzed in acid environments, thus leading to an autocatalytic degradation mechanism. If oligomer
concentration is high in the bulk of the device because of diffusive limitations, bulk degradation can
become inhomogeneous because the device core degrades faster, due to the lower local pH. In addition,
degradation creates new and wider diffusive paths, which implies a dynamic increase of the diffusion
coefficient of each specie, as previously mentioned. A comprehensive modeling approach for aliphatic
polyesters must combine degradation kinetics with transport phenomena, where diffusion coefficients
are not constant but they depend on the extent of degradation. In this framework, the purpose of
the model is twofold: on one side, it allows determining drug release rate as a function of time,
taking into account the synergic effects of degradation on diffusion. On the other side, it is possible
to characterize the decrease of number and weight average molecular weight over time, which is
extremely important in order to assure, e.g., the desired mechanical properties over a determined
time span. The existing mechanistic models can be divided in two categories: deterministic and
stochastic. Deterministic models employ deterministic equations to characterize polymer degradation.
Although models of different complexity have been proposed in literature, the starting point is usually
constituted by mass balances. A simple model has been proposed by Antheunis and coworkers [201]
where polymer degradation is described considering the concentration of ester bonds; transport
phenomena (i.e., water and oligomers diffusion) and mass loss are not included but autocatalysis is
accounted for. Rothstein et al. [202] developed a model for both bulk and surface eroding polymer,
taking into account transport phenomena and a porosity-dependent diffusion coefficient. However,
autocatalysis is not included. A common approach for a detailed modeling is constitute by population
balances, where a mass balance for each chain composed by n repeating units is written. Since this
approach is computationally expensive (writing a mass balance for each chain length value can lead to
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a system of 105 differential equations), the resulting model is usually solved through the method of
statistical moments [203].
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