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Age, Gender and Communication Networks 

Alina Stoicaa,b, Zbigniew Smoredaa, Christophe Prieurb, Jean-Loup Guillaumec

a. SENSe/Orange Labs (alinamihaela.stoica, zbigniew.smoreda@orange-ftgroup.com) 
b. LIAFA/Université Paris 7 (prieur@liafa.jussieu.fr) 

c. LIP6/Université Paris 6 (jean-loup.guillaume@lip6.fr) 

Abstract—In this paper, we address some sociological and 
topological issues associated with mobile phone communication.
Based on a dataset of a few million users, we use customers’ age 
and gender information to study relation between these 
parameters and the average behavior of users in terms of number 
of calls, number of SMS and calls duration. We also study the 
dataset from a networking point of view: we define different 
profiles based on the topological properties of the personal 
network of each individual and study the relations between these 
profiles and the age of customers. 

Keywords: mobile phone, age, gender, network structure 

I. INTRODUCTION

The ICTs landscape has been entirely changed by the cell 
phone diffusion. This individual and ubiquitous device, 
offering voice and text communication features, has 
transformed the frequency and the geography of 
communication as compared to older fixed phone practices. We 
are now virtually always accessible to others wherever we are. 
Moreover, the mobile phone gives us a direct access to a 
person: the phone line is no more filtered by household’s or 
bureau’s ―switchboard‖ [4]. This offers a useful insight into 
individual behavior and personal and social network analysis. 

The recent possibility to analyze large datasets of 
behavioral data coming from telecommunication operators 
gives us the opportunity to revisit some older research on 
telephone usages. It offers also a new prospect to work on 
nearly complete interpersonal communication networks. 
Among an increasing amount of behavioral traces collected by 
technical systems (internet, mail, IM, SNS…), the interpersonal 
communication data seem to be the best proxy of social 
interactions [1,2,3]. Indeed, we usually talk to people with whom 
we also have many other links, which is not always true in the 
case of communication with email contacts or SNS ―friends‖.
Such datasets therefore open the door to the analysis of close 
social relationship. 

II. DATASET

The raw data analyzed in this contribution – the CDRs (Call 
Detail Records) – contain all mobile phone exchanges observed 
in 2006/2007 over a six-month period between Belgian 
customers of a local mobile operator. After data cleaning the 
dataset contains 3.3 million users that exchanged over 6 billion 
calls and short messages (SMS). In addition to communication 
details (date, hour, duration of call), this anonymous dataset 
also includes customers’ age and gender. 

We compared the age and gender distribution of the mobile 
phone customers in our dataset to the general national 
population and concluded that there is no systematic bias in 
operator’s customer as regarding these two characteristics 
(except for people aged over 60 who are underrepresented 
amongst cellular users). 

III. RESULTS

A. Voice–text usages: a generational transformation? 
The mobile phone diffusion started in the mid-1990.

Classically, it first touched the young and wealthy part of the 
developed countries population before the rapid, massive and 
nearly universal adoption [5]. From the usage point of view, it
means that nowadays only the youngest groups of the 
population were entered in their ―communication age‖ directly 
with a cell phone at hand. Hence, it seems interesting to look at 
some basic indicators of the mobile phone usages by age. 
Figure 1 shows the average number of calls and SMS, and the 
mean call duration by age. We observe that the differences in 
voice call frequency or duration between ages are relatively 
minor. The main distinction concerns SMS usage: younger 
users send more SMS than older ones. In the age group 18 to 
25 this tendency is really impressive: the SMS is used 4 times 
more frequently than a conversational exchange!  

Figure 1.  Average monthly number of calls, number of SMS and call 
duration as a function of phone user's age. 

These data show that today interpersonal mobile 
communication is clearly distributed between voice and text 
exchanges. 
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B. Age groups and individual network profiles 

To develop these observations, we decided to test whether 
there is a relationship between the age of a person and the way 
she is linked to others, or not. We thus analyzed the 
connections between individuals from the perspective of the 
communication network they belong to.  

We represented the interpersonal communications by an 
undirected simple graph, where the vertices are the mobile 
phone customers. Two vertices are connected by an undirected 
edge if there had been at least one communication in each 
direction between the corresponding users during each month 
of the observation. This means that we only consider relatively 
strong interpersonal links. This gives us a social network with 
approximately 3 million vertices and 7 million edges that we 
use in order to characterize customers. Rather than a global 
approach, we decided to analyze the local structure of the graph 
around each vertex. More precisely we studied the personal (or 
ego-centered) network of each vertex (ego), i.e., the graph 
whose vertices are ego's neighbors and whose edges are the 
edges between the neighbors (note that ego is not included in 
its ego-centered network). 

For every ego we computed several parameters of its ego-
centered network: the number of vertices (ego's degree), the 
number of edges (the edges between ego's neighbors), the 
number of isolated vertices (the neighbors that are connected 
only to ego and not to any other neighbor of ego), the number 
of triangles (a group of 3 interconnected neighbors) and the 
number of ―stars‖ (a group of 4 neighbors where one of them is 
connected to the other 3 that are unconnected between them). 
We use these simple network motives to identify specific 
individual profiles. 

Note that the degree of vertices must be taken into account 
as the values of the different parameters are biased by it, we 
chose to compute profiles separately for each degree and 
distributed the vertices of each degree into 6 profiles defined as 
follows: 

 profile 1: densely connected networks: the number of 
edges is high and the number of isolated vertices is 
low; 

 profile 2: sparsely connected networks (the opposite 
situation):  the number of edges is low and the number 
of isolated vertices is high; 

 profile 3: mixed situation where there is a densely 
connected group of neighbors (many triangles) and a 
sparsely connected one (many isolated vertices); 

 profile 4: medially dense networks but with many 
triangles: these networks do not belong to the first 3 
profiles but have a high number of triangles; 

 profile 5: medially dense networks but with many 
stars: these networks do not belong to the first 4 
profiles but have a high number of stars; 

 profile 6: medially dense networks with no special 
structure: unclassified vertices. 

The question is to determine whether there is a connection 
between the different profiles and the age of a person or not. To 
answer this question, we computed, for each age from 18 to 

60
1
, the probability that an individual of that age belongs to a 

given profile (see: figure 2). The range of probabilities is 
different for different profiles which is due to the over-
representation of profiles 2 and 6 caused by the heterogeneous 
distribution of parameters, with many small values. However, 
there are important differences between these probabilities for 
different ages. We observe that middle age people (30 to 45) 
are generally involved in sparser structures when younger and 
older groups are more densely connected. However, the oldest 
keep a densely connected group even if they have isolated 
contacts, while the youngest belong to some cliques (profile 4) 
or have one or more correspondents who are the ―stars‖ of their 
ego-centered networks (profile 5).   

 

Figure 2.  The probability of belonging to the 6 profiles by age (the green line 

is the average profile probability)   

 

Figure 3.  Hierarchical clustering of ages on probabilities in the 6 connectvity 

profiles 

Let us now group together the ages that have similar 
probabilities for the 6 profiles. A hierarchical clustering was 
performed on profiles probabilities (see: figure 3). We observe 

                                                           
1 The persons older than 60 are underrepresented amongst mobile phone users. 
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that there are 4 main homogeneous age groups very similar to 
life stages categories [6]: 18-23 (students), 24-27 (young people 
starting their active life), 28-46 (in couple, usually with 
children), and 47-60 (at the final stage/end of professional life, 
children are adult or living apart). Interestingly, here the 
classification is based exclusively on structural characteristics 
of their local communication network (where network size 
effect was neutralized). 

C. Gender effect in mobile communication networks 

The second personal characteristic of people in our network 
is their gender. Some years ago, in a French study on the 
residential use of the (fixed) telephone, the communication of 
several hundreds of adult men and women has been followed 
for 4 months using telephone billing records [5]. The study 
focused on the correlation between the observed duration of 
phone calls and the gender of callers and receivers. Data have 
shown that the duration of calls are correlated with the gender 
of the call receiver and is on average longer when a woman is 
called. Therefore the reasons why women speak more on the 
phone [6] seem more related to the gender homophily in 
telephone networks than to ―their intrinsic tendency to talk.‖ 
An in-depth Conversation Analysis work on a recorded 
telephone talk’s dataset [7] has suggested that politeness rules 
governing the telephone call can explain in part why it is the 
gender of receiver that has the biggest effect on how the call is 
managed and on its overall duration. The conversations 
involving women tended to go through longer introductive 
sequences, to be more multi-thematic and digressive in nature 
with a corresponding lengthening and multiplication of closure 
sequences; and the conversations with men had a tendency to 
be linear and monothematic. In summary, the callers seem to 
adjust their interaction style to the gender of the receiver. 

Ten years after, the mobile usages still fit this gender 
communication pattern. As we can see in the figure 4, mobile 
phone calls towards a woman are, in average, longer than calls 
to a man, whatever caller gender is. 

0''

30''

60''

90''

120''

150''

180''

210''

Male to Male Male to Female Female to Male Female to Female

 

Figure 4.  Mean call duration (in seconds) according to call initiator and 

receiver gender 

To go further, we isolated all mixed-gender two-way 
communication pairs in our network and calculated average 
durations of call between them. We obtained 171 seconds when 
a male calls a female and 162 seconds when a female calls a 
male. As a consequence, it seems that we do not face a 

technological artifact but a more general social interaction 
pattern.  

The personal networks composition was also scrutinized 
looking at the fraction of men in ego communication network 
(see figure 5). We observed that the overall gender homophily 
in communication networks evolves with age for men and, less, 
in women’s networks. The life cycle transitions modify 
sociability patterns—from external to the household contacts 
for young people to more and more family-oriented links for 
older individuals [10]—and influences the shape of gender 
relations. In fact, as domestic and familial spheres are still 
associated with the role of woman, with age the male’s network 
starts to be populated by females. At the end of lifecycle, there 
are more women than men in the man’s mobile phone 
directory.    
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Figure 5.  Fraction of males in the communication network of females (red) 

and males (blue) by age 

Going back to communication practices, we can speculate 
about their hypothetical transformation. Of course, we do not 
have long-term time series, thus our interpretation remains 
tentative. However, some tendencies (see: figure 6) indicate 
differentiation of gendered mobile usages by age. The SMS 
usages seem to be more ―feminine‖ in general (fig. 6-a): for 
younger part of population (aged 18-25), we also notice that the 
between-gender ―texting‖ is particularly popular. And, in fact, 
it develops at the expense of voice calls (fig. 6-c); the number 
of voice communication is going down in young adults. The 
duration of calls varies less, but for the young adults it 
diminishes sharply for same gender calls. The mixed-gender 
conversation length remains at the level of other age groups.  

We can consider that in younger generations the mobile 
phone appropriation was deeper as it includes both 
communication functions offered by cell phones: text and 
voice. Some authors indicate that heavy SMS use in 
youngster’s relation with other gender is related to seduction 
tactics where a direct voice contact can be more ―risky‖ for 
interlocutors [11]. Anthropologists also emphasized the 
propensity of girls to write personal diaries, letters, etc., as well 
as women responsibility in familial correspondence [12]. The 
changing balance between voice and text in general and in 
between-gender communications can be in part a reflection of 
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new form of accommodation to a new communication channel 
offered by a popular technology.    
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Figure 6.  Mobile communication practices by age  and gender: (a) mean 

monthly SMS number, (b) average call duration, (c) mean monthly number of 

calls.  

IV. CONCLUSION 

We presented here a stage report of an ongoing research. 
Based on CDR of a mobile phone operator, we studied the 
relations between phone usages and networks properties of 
customer’s and their age and gender. We have shown that some 
already  known sociological results are still valid in the context 
of mobile phone. In particular, there are very different behavior 
depending on the age of the users and their gender: the gender 
of the receiver of phone calls is strongly correlated with the 

duration of the call, while the gender of the caller is less 
important. 

We also built ego-centered networks for each customer and 
tried to find some correlations between the topological 
structure of their neighborhood and their behavior. Automatic 
profiling based only on simple topological properties yielded 
groups of users which correspond to life stages categories. 

Much work remains to be done in this context, in particular 
more complex network properties and their correlations with 
age or gender could be studied. We could also propose models 
taking such behaviors into account. 
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Abstract—Human mobility and resulting contacts are driven
by intention, co-location, and social relations between people.
Based on wireless contact traces (Bluetooth, Wifi), we aim
at characterizing the structure in human contacts. Instead of
investigating the microscopic properties of contacts (e.g., duration
and occurrence distributions), we are more interested in a macro-
scopic view of mobility that can more easily capture the range of
human inter-relations. We hence turn to community detection.
However, since these algorithms require one-dimensional tie
strength metrics, we present a method to map contacts features
(evolving with time) to a scalar feature value. We then analyze
the outcome of the community detection by looking at inter- and
intra-community ties. This provides interesting insights on the
diversity of human inter-relations, which have applications to
diffusion processes, for example.

I. INTRODUCTION

The rapid proliferation of smartphones with wireless net-
working capabilities (Bluetooth, Wifi) creates amble oppor-
tunity for opportunistic networks where devices connect to
other devices in proximity (when within radio range), “on
the fly”, to exchange or spread information. This is a novel
networking paradigm that is envisioned to co-exist with (and
often complement) existing broadband wireless technologies
(e.g. cellular, WiFi, etc.). Since actions of interest can only
occur during a wireless contact, contacts and their statistical
properties become of key importance in the design and per-
formance evaluation of such opportunistic networks. To this
end, a number of efforts have been made recently to collect
relevant mobility data and analyze contact patterns; this is
done either implicitly, by looking at the access points and
base stations users are associated with over time in WiFi or
cellular networks [1], or explicitly with experiments designed
to log peer contacts (e.g. via Bluetooth) [2], [3], [4]. The
majority of these traces reveal a considerable heterogeneity in
contact patterns, but also significant structure and (statistical)
predictability of these patterns e.g. due to time-of-day period-
icity, location preference, etc. Nevertheless, the vast majority
of trace analysis research in networking has focused on the
inter-contact and contact duration statistics [5], [6], which are
important for network performance analysis but limits mobility
analysis to a microscopic view.

Recently, researcher have been looking at mobility at large-
scale [1], its predictability [7], and spatial connectivity prop-
erties [8]. Human mobility and resulting contacts are actually
driven by intention, co-location, and social relations between
nodes (e.g. friends, colleagues). The latter influences someone
to decide the destination (and often time) of a mobility
trip; location on the other hand dictates the path, as well
as (unknown) nodes encountered regularly at preferred/home
locations (“familiar strangers”) or occasionally (“random en-
counters”). This creates a rather intricate contact structure that

is not readily observable or usable at contact and inter-contact
pattern levels. To this end, a more abstract, macroscopic view
of mobility is needed that can more easily capture the range
of node inter-relations.

In this abstract, we present a detailed study and comparison
of the community structure of 4 mobility traces, namely the
Haggle trace [2], the MIT Reality Mining trace [3], and the
ETH trace [4]. We apply a state of the art community detection
algorithm [9] to study the nature of inter-community links
(e.g. bridging links vs. bridging nodes vs. community overlap,
etc.), and the inter- and intra-community weight distributions
in order to highlight the diversity of human relations. To our
best knowledge, this is the first in depth comparative study of
these properties.

In our context, nodes and contacts can be represented on
a contact graph, where a link between two nodes indicates a
measured “strong” relationship between nodes (e.g. frequent
meetings, or a recent meeting [10]) through its existence
(binary graph) or an edge weight (weighted graph). A variety
of metrics and algorithms could then be used to characterize
node importance on this graph, such as degree centrality,
pagerank, etc., as well as to identify similar nodes through
(implicit or explicit) community detection. Yet, the actual
“social properties” of mobility traces, such as the modular-
ity of communities and the distribution of inter- and intra-
community weights, have not received the same amount of
attention. These properties are particularly important for two
reasons: first, they allow us to better understand the underlying
structure governing human mobility and facilitate the design
of improved mobility models. second, they give hints on the
impact of the social structure on the dynamics of diffusion
processes e.g., in terms of delays but also in terms of capacity
(or conductance).

The outline of this abstract is the following. In Section II,
we describe the contact data used for our analysis and how
we pre-process them by mapping and aggregating pair-wise
contacts (i.e., different characteristics evolving over time) to a
scalar value suited for community detection algorithms with
weighted edges. In Section III, we analyze the outcome of the
community detection algorithm. Eventually, we conclude by
discussing ongoing work in Section IV.

II. DATA DESCRIPTION

We start by describing the data used for our analysis in
Section II-A. We then describe a metric of tie strength based
on the principal component of contact frequency and duration
(Section II-B).
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TABLE I
CONTACT TRACES CHARACTERISTICS.

MIT INFO ETH
Scale and 97 campus stud- 41 conference 20 lab stud-
context ents and staff participants ents and staff
Period 9 months 3 days 5 days
Periodicity 300s (Bluetooth) 120s (Bluetooth) 0.5s (WiFi)
# Contacts

Total 100′000 22′459 23′000
Per dev. 1′030 547 1′150

A. Contact Traces
We define a contact as the period of time during which

two devices are within radio transmission range of each other.
A contact contains of the information about the two nodes
involved, a starting time and a duration. In a opportunistic
network, such a contact is an opportunity to exchange or
spread information.

In order to cover a broad range of mobility scenarios with
our analysis, we use different measured contact data: the
MIT Reality Mining [3] (MIT), the iMotes Infocom 2005
(INFO) [2] and the ETH [4] (ETH). Their characteristics are
summarized in Table I. Note that in the MIT trace, despite
its long duration, a lot of short contacts were supposedly
not logged due to its time granularity of 5 minutes. For our
evaluation we cut the trace at both ends and used 100′000
contacts reported between September 2004 and March 2005.
Note that this time period contains holidays and semester
breaks and thus still captures varying user behavior. The ETH
trace contains more than 23′000 reported contacts and is
unique in terms of time granularity and reliability. Although
its measurement period spans a considerably shorter time than
MIT, we have on average more than 1000 reported contacts
per device. This is roughly the number of contacts per device
we also have for the MIT trace.

B. Tie Strength
To assess the strength of the tie between two nodes in a con-

tact graph different metrics such as the age of last contact [11],
contact frequency [12], [13] or aggregate contact duration [13]
have been used (i.e., in DTN routing protocols). Here we con-
sider two features: contact frequency1 and aggregate contact
duration. In a first step, we assign each pair of nodes {i, j}
a two-dimensional feature vector zi,j = (fi,j , di,j), where fi,j

is the number of contacts in the trace between nodes i and j,
and di,j is the sum of the durations of all contacts between the
two nodes – both dimensions centered (zero empirical mean)
and normalized to their respective standard deviation.

Figure 1 shows the scatter plots of the number of contacts
vs. the total contact duration (pair-wise) for the MIT and INFO
traces. They clearly show a high correlation between both
features.

Since state-of-the-art community detection requires one-
dimensional tie strength metrics, we transform the two-
dimensional feature vector to a scalar feature value: We use the
principal component (e.g., [14]), i.e., the direction in which
the data vector Z has the largest variance the direction of the
Eigenvector e1 with the largest corresponding Eigenvalue. We

1Note that contact age – assuming a stationary contact process – can be
considered an approximation of contact frequency, therefor we do not consider
it here explicitly.
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Fig. 1. Scatter-plots of number of contacts vs. total contact duration over the whole duration of the trace.
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Fig. 1. Scatter-plots of number of contacts vs. total contact duration over the whole duration of the trace.

(b) INFO

Fig. 1. Scatter-plots of number of contacts vs. total contact duration over
the whole duration of the traces.

define the tie strength between i and j as the projection of
zi,j on the principal component, wi,j = e1

T zi,j +wmin, where
we add wmin – the smallest tie strength of all node pairs – in
order to have positive tie strengths. With this metric we are
able to combine the frequency and duration in a scalar value
that naturally represents the heterogeneity of node pairs. We
can now define the weight matrix W with the respective wi,j .

Note that with this aggregation of the contact data, we loose
the timing information about contacts. We are not so much
interested in the actual timing of the contacts, but rather try
to capture the underlying structures that govern mobility.

The number of communities and the resulting modularity is
given for each contact trace in Table II.

III. COMMUNITY STRUCTURE ANALYSIS

We will now focus on the community structure of human
contacts contacts. Using the Louvain as well as Spectral
community detection algorithm and the Newman modularity
metric, we will first (Section III-A) assess how strongly modu-
lar contacts are. In a second step (Section III-B), we will focus
on the the conductance between the communities, and assess
how strongly communities are connected to other communities
and how the conductance between them is distributed (i.e.,
bridging links, bridging nodes or hierarchical overlap).

A. Intra-Community Ties
In order to assess the modularity of a given partition of

nodes to communities we compute the widely used Q function
as introduced by Newman [15]. The Q function

Q =
1

2m

∑
ij

(
wi,j −

kikj

2m

)
δ(ci, cj),

where ki =
∑

j wi,j is the strength of node i and m =
1
2

∑
j kj is the total weight in the network. ci denotes the

community of node i thus, the Kronecker delta function
δ(ci, cj) is one if nodes i and j share the community and
zero otherwise. Q = 0 is the expected quality of a random
community assignment and [15] reports modularities of above
Q = 0.3 for different networks (social, biological, technical,
etc.) for state-of-the-art community detection algorithms2.

In Table II we present some statistics of the trace networks’
community structure as found by Louvain. A first thing to note
is that the two clustering algorithms find different communities
but with similar modularity. In general the modularity of the

2Note that the quality of a community assignment is a function of (i) the
network, since it can be more structured or less, and (ii), the community
detection algorithm, since it can find a good community assignment or not.

2
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Trace/Model # Comm. Q
MIT 5 0.49
ETH 2 0.23
INFO 6 0.12

TABLE II
NUMBER OF COMMUNITIES AND MODULARITY (Q) OF CONTACT TRACES

USING THE LOUVAIN ALGORITHM.
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Fig. 2. Ranked Community Internal Weights (per Community and per Node).

Louvain communities is slightly higher communities than the
Spectral. In the rest of the paper, we will present all results
for the Louvain algorithm, though, the results hold also for
the Spectral clustering. Second, the modularity varies broadly
among the traces. We observe a strongly modular MIT trace,
lower modularity in the ETH case and very low modularity in
the INFO case. Similar values for other community detection
algorithms (K-Clique and Newman), different traces and other
strength metric (total contact duration) have already been
reported in [13], thus we confirm these findings as a first result.

To find out more about the insides of communities we
look at the distribution of intra-community weight. Figure 2
shows some typical representatives of community-internal tie
strengths, ranked over all node pairs of a community, as well
as per node. We observe that the weights are strongly skewed.
A community can thus not be thought of as a homogeneous
group of strongly connected nodes (like a mesh). Instead, there
is strong heterogeneity even within a community. This obser-
vation is consistent throughout all traces and all communities
(only few are shown in Figure 2 due to space limitations).

B. Inter-Community Ties

Comm.
Index

1 2 3 4 5

1 20.5% 1.0% 0.5% 0.1% 0.01%
2 1.0% 31.8% 4.2% 2.9% 0.2%
3 0.5% 4.2% 13.4% 2.7% 0.2%
4 0.1% 2.9% 2.7% 8.9% 0.1%
5 0.01% 0.2% 0.2% 0.1% 2.1%

TABLE III
PERCENTAGES OF TOTAL WEIGHT WITHIN AND BETWEEN COMMUNITIES

(MIT TRACE). ALL WEIGHTS SUM TO 100% AND INTER-COMMUNITY
WEIGHTS ARE HALVES BETWEEN TIED COMMUNITIES.

We now change our focus on the interface between the
communities. Table III shows an example matrix for the MIT
trace of how the total weight in the network is distributed
within the communities and between the communities. In
the matrix we see that the inter-connections of communities
are weak in many cases. For instance, communities 1 and 2
together contain more than 50% of the weights and 50% of

the nodes. However, between them there is only 1% of the
weight.

IV. DISCUSSION AND CONCLUSIONS

The results presented herein are preliminary investigations
of using community detection algorithms to highlight the
community structure of contact traces. Actually, it does not
only matter how much of the weight falls between two
communities, but also how this weight is distributed. Thus,
we are currently aiming at identifying the type of interface as
either (i) bridging links (people linked to one specific person
in another community), (ii) bridging nodes (people part of two
communities i.e., overlap), or (iii) hierarchical communities.
We characterize these three types in the following.

Note that certain community detection algorithms inherently
identify some of these interfaces. For instance the K-Clique
algorithm [16] allows nodes to be in more than one community
and thus identifies bridging nodes. Similarly, a class of algo-
rithms such as Newman Girvan [17] is based on a hierarchical
tree (dendrogram) and thus inherently identifies hierarchies.
However, neither of them provides a distinction between all
the three types of inter-connection. We are hence currently
combining the peculiar features of existing algorithms at once.
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I. INTRODUCTION 

The modern telecommunication, such as mobile    
communications, unites people around the world into a Wide 
Area Social Network (WASN). In WASN, people form groups 
or clusters based on interests, goals, etc. Since the mobile 
phones have become an important tool of modern human daily 
life, telecommunication patterns may reflect different human 
relationships and behaviors, and changes in 
telecommunication patterns may expose signs of social 
relationships and behavior changes. For example, the calling 
patterns of a person with his/her friends differ from those with 
spammers.  

A social network dynamically changes since the social 
relationships (social ties) change over time. The evolution of a 
social network mainly depends on the evolution of the social 
relationships. The social-tie strengths of person-to-person are 
different one another even though they are in the same groups.  

Almost all existing social network research has focused on 
overall social-network structures and properties. These 
research efforts lack analysis for one-to-one or one-to-many 
relationships and behaviors in the detail-necessary when 
interested in special groups or clusters of people. These 
detailed features of human relationships are more important 
for detecting terrorists, spam and user preferences. Because of 
human social-behavior’s diversities and complexities, 
applying one technique will not detect the many different 
features of human social behaviors. Therefore, we use 
multiple probability and statistical methods, integrating them 
for social-network and human-behavior analysis. We propose 
an integrated platform for analyzing the properties of social 
structures and human behavior; for quantifying and measuring 
interpersonal relations in groups; for predicting social ties; for 
detecting change points, unusual consumption events, opt-in 
bursts; and for identifying willingness levels of users to 
communicate each other based on human telecommunication 
patterns.  

The integrated platform consists of several components 
including zoom, scale, and analysis tools, which are used for 
analyzing network structures, for discovering social groups 
and events, for quantifying relationships and so on. The 
integrated platform is extensible; new tools can be added as 
needed. By zoom-in we may use multiple scales to analyze 
social-group member behavior up to one-to-one. By zoom-out 
we may analyze general social-network structures and 
properties.  

Pentland uses the mobile phones programmed, electronic 
badges and microphones as a Socioscope to sense and capture 

human behavioral data (location, proximity, body motion) [9], 
[10]. These behavioral data are then used to analyze the 
characterization of group distribution and variability, 
conditional probability relationships between individual 
behaviors and focuses on human relationship analysis based 
on physical distance proximity. Eagle extends the approach in 
[9], [10] to study a variety of human cultures as a culture lens 
[11]. Eagle et al. present a method for measuring human 
behavior, based on contextualized proximity and mobile 
phone data, to study the dyadic data using the nonparametric 
multiple regression quadratic assignment procedure (MRQAP) 
[2]. Our approach focus on quantifying human behaviors, 
interpersonal relationships, changes of relationship by 
studying human calling patterns based on mobile phone call 
detail records.  

II. OVERVIEW OF THE PROPOSED APPROACH  

As presented in Figure 1, the integrated platform consists of 
a number of components, including data extraction and 
transformation; network visualization; and zoom, scale, and 
several analysis tools used for analyzing network structures, 
discovering and quantifying social groups, predicting social 
ties and detecting events, quantifying relationships, etc. The 
integrated platform is extensible. New tools can be added as 
we identify additional features. The model is composed of the 
three layers briefly described below.   

Data Processing: This layer consists of two components: 
Data Extraction and Data Transformation. In data extraction, 
related information is extracted from raw datasets and then 
transformed in data transformation into required data format 
for visualization and analysis.   

Visualization and Zooming: An open-source visualization 
tool is used for drawing the social networks. Using zooming-
in levels we may use multiple scales to analyze social-group 
member behavior up to one-to-one. Using zooming-out levels 
we may analyze general social-network structures and 
properties.  

Behavior Analysis and Detection Tools: This layer, the core 
of the model, consists of four components: Quantifying Social 
Groups, Reciprocity and Predicting Social Ties, Change Point 
Detection and Unusual Consumption Detection, Opt-in 
Pattern Detection and Willingness Level inference.  

We describe these components and solutions in details next. 
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Fig.1 The architecture of the proposed approach. 

III. QUANTIFYING GROUPS AND PREDICTING TIES 

The approach proposed here for the social-group 
identification relies first on a computation of a reciprocity 
index. We then use the index to compute the affinity between 
two users. Finally we use this affinty to define the socially 
related groups. These steps are presented in the next Sections.  

A. Dyads and Reciprocity Index:
In social networks, one of the important relationships 

between people is reciprocity. Reciprocity can be defined as 
the action of returning similar acts [1], [5]. In this study, our 
interest is to investigate how people use technology to 
construct social relationships. 

In [5] the authors propose the index of mutuality, kpρ . This 
index focuses on the probability of a mutual choice between 
two actors i and j in a graph.  

Our approach for reciprocity differs from the above work. 
We observed that the structure and transactions in reciprocity 
are different when compared with face-to-face interactions. 

Existing approaches measure the tendency of mutual choices 
for actors (nodes) in a graph. These approaches do not deal 
with frequency and duration of real-time electronic 
communications between two actors. In real life, the frequency 
of communication plays an important role in the relationship 
between persons. To the best of our knowledge no similar 
work has been reported. We propose a new reciprocity index 
based on mobile-phone call-detail records.             

In a mobile-phone social networks, actor i and actor j may 
call each other multiple times. Reciprocity reflects their 
relationship in a period of time. The mutual index in [5] and 
other existing mutual indices cannot measure this kind of 
relationship. The existing mutual (reciprocity) indices measure 
the tendency of mutual choices for actors (nodes) in a graph. 
They do not deal with communication frequency. We propose 
a reciprocity index, ba↔ρ which does measure the tendency of 
reciprocity for actors a and b in a group. 

Suppose that the number of phone call arrivals is a Poisson 
process. Then the probability of no arrivals in the interval [0, 
t] is given by 

tetP λτ −=> )(
where λ is the arrival rate and τ is interarrival time. The 
occurrence of at least one arrival between 0 and t is given by 

tetP λτ −−=≤ 1)(
Considering actor a calls actor b at time it with rate taλ ,

the probability of actor b calling actor a back (reciprocity) at a 
time jt with rate tbλ can be computed by 
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The expected value, )|( baRE ↔ρ , of number of reciprocity 
from b to a is the total number of calls, S, from a to b times 
this probability, i. e.  
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After rearranging the terms, we have                         
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where R is observed number of reciprocity. 

The ba↔ρ is 0 if there is no tendency toward reciprocity and 
1 if there is a maximal tendency toward reciprocity. 

B. Social Group Identification  
Groups correspond to data clusters. Cluster analysis 

concerns a set of multivariate methods for grouping data 
variables into clusters of similar elements. In our work we use
probabilistic models for classification of variables by their
affinity [3]. 

Affinity measures the similarity between probability 
distributions. Because our problem belongs to discrete events, 
we only consider finite event spaces. Let 

}1,0|),...,({
1

21 =≥== ∑
=

N

i
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be the set of all complete finite discrete probability 
distributions and 

NSQP ∈, . The Hellinger distance between 
P and Q is defined as   
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The affinity between probability measures P and Q is 

defined as   
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Q are disjoint [3].  

We clasify our social network members into three 
categories: socially close members, socially near members and 
socially far members.  

In this paper, we use three attributes incoming (in), 
outgoing (out) and reciprocity (reci) of calls and messages.  

Let ii nm , be the number of calls, where 

},,{ recioutini∈ . ),,( recioutin pppP =  is a vector of 
normalized frequencies over the training period. 

),,( recioutin qqqQ =  is a vector of normalized frequencies of 
the same attributes observed over the testing period. Then  

∑=
i iii mmp  where },,{ recioutini∈  and  

∑=
i iii nnq  where },,{ recioutini∈ .  

The reciprocity part is computed by Eq. (1).  
We compute affinity between P and Q is as follows:  

∑= i iiqpQPA ),(  where },,{ recioutini∈    (2)  

C. Predicting Social Ties   
We map call-log data into time series (social-tie strengths) 

by our affinity model and apply Seasonal Auto Regressive 
Integrated Moving Average (SARIMA) models for predicting 
the future values.  

Seasonal Auto Regressive Integrated Moving Average 
(SARIMA) models integrate Seasonal (periodic), Auto 
Regressive (AR), Integrated (I), and Moving Average (MA) 
into a general comprehensive time series model [12].   
The seasonal ),,( qdpARIMA model with period s is given as 

t
s

Qqt
D
s

ds
Pp eBBZBB )()()()( Θ=∆∆Φ θφ  

or  
  

t
s

Qqt
Dsds

Pp eBBZBBBB )()()1()1)(()( Θ=−−Φ θφ   
 which are denoted by sQDPqdpSARIMA ),,(),,( × .  
   The Box-Jenkins method [12] uses an iterative approach of 
identifying a possible model from a general class model. The 
chosen model is then checked against the historical data to see 
whether it accurately describes the series. The model fits well 
if the residuals are generally small.  

IV. EVENT DETECTION  

Another important element that we can extract from call 
records is the occurrence of events. This capability could be 
used for detecting network attacks. To identify events in the 
call records we first use a wavelet de-noising method to 
process the data and then we apply the modified method 

described in [6] for detecting change points based on number 
of calls and call durations. These steps are described next.  

Social network structures and relationships dynamically 
change over time. Still, change point and event detection 
methods can be used to discover human relationship and 
behavior changes based on human communication pattern 
changes.   

A. Wavelet Denoising 
Generally, for the denoising, the wavelet scaling function 

should have properties similar to the original signal. The 
general wavelet denoising procedure follows 3 steps: wavelet 
selection, threshold selection and inverse wavelet transform.  

In a Discrete Wavelet Transform (DWT) the scale factors 
between levels are usually chosen to be powers of 2. For 
DWT, the mother wavelet is defined as:  

)2(2)( 2/
, ktt jj
kj −= −− ψψ  

where j, k є Z. 
The DWT is given by  

dtkttxW jj
kj )2()(2 2/

. −= −∞

∞−

− ∫ ψ  

where 
kjW ,
 is wavelet coefficients, x(t) is the signal to be 

transformed, and ψ(t) is the mother wavelet or basis function.   
The inverse transform of DWT used to compute original 

data is given as:  
)()()( ,1 ,,1 , tctWtx kjj kjkjj k kj φψ ∑∑ ∑ ∞

=
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= Ζ∈
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where )(, tkjφ denotes the scaling function and kjc , denotes 
scaling coefficients, which are defined by  

∫
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The inverse wavelet transform (IWT) reconstructs the signal 
from its coefficients.  

B. Change Point Detection Procedures: 
A change-point analysis method attempts to find a point 

along a distribution or trend of values where the characteristics 
of the values before and after the point differ.  
Let ),...,,( 21 θXXXX = be a process.  
The multiple change points for the process is defined as [6] 
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where 
θfff ,...,, 21

are either known or unknown probability 
density functions or trends; 

121 ,...,, −θτττ are change points.  
We first use a wavelet-denoising method to pre-process the 

data, and then we use a sequential estimation scheme in [6] for 
detecting multiple change points which chooses increasing 
subsamples and finds one change point at a time until all 
change points are found.  

The general procedure for change point detection is as 
follows.  

a) Sequential Detection:  
A widely used change-point-detection method based on 

Page’s cumulative sum (cusum) rule is defined by 
}:inf{)( aSnaT n ≥=  
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where  
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is maximum likelihood ratio based cumulative sum, a is a 
threshold, and f and g are pre- and post-change density 
functions. When density functions are unknown, the best 
estimates for each value k of a change point are used. The 
cusum is computed by  

∑ +=≤≤
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and the stopping rule described in [39], defined by   
}ˆ:inf{)(ˆ aSnaT n ≥=  

    We use a leased-squares method for nonlinear trends. 
Whether a trend is linear or exponential is decided by the 
lower sum of squares for each segment. In this way, the 
maximum likelihood ratio is replaced by a minimum weighted 
sum of squared residuals  

})ˆ(ˆ)ˆ(ˆ{minˆ
11 ∑∑ +==
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and the stopping rule is defined as  
}:inf{)(ˆ αα ≤= npnT  

where 
np is a p-value testing significant based on 

nŜ of a 
change point at k.  

b)  Post-estimation:  
The detected change point must be estimated after a 

stopping rule has detected it. The change point estimator we 
use is based on the cusum stopping rule T̂ and the minimum p-
value 

),ˆ,(minargˆ
ˆ1

XTkp
Tk<≤

=τ  

where ),ˆ,( XTkp  is the p-value of the likelihood ratio test 
comparing )( ,...,11 kxxX =  and )( ˆ,...,12 Tk xxX += .  

c) Significance Tests:  
    To eliminate false change points, we use ANOVA F-type 
tests.  If the test is significant, we repeat step 1-3 to search for 
next change point, else, the test is a false change point and the 
search continues based on an initial sequence after the last 
significant change point.  

For fitting linear trend
ii btaxE +=)( , we use a standard 

least-square estimate   
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for initial approximation.  
    When the preliminary estimator of a change point is 
obtained, we perform a refinement of this estimator by least 
square fitting from the segment in the neighborhood of the 
preliminary estimator. If the change points are not significant 
for the chosen level α, they are removed and the 
corresponding segments merged.  
    After the iterations end, all the change points are significant 
at the chosen level α.  

We select a Coiflets5 wavelet and the Minimax threshold 
method to denoise the data by the principles described above 
and, then, apply the sequential change point detection method 
in [6].  

C. Unusual Consumption Event Detection  
Change-point-detection methods do not deal with bursts of 

short width in time series. Bursts in time series are related to 
events such as attacks in networks. We propose the 
inhomogeneous Poisson model for detecting these bursts, 
which we term as unusual consumption events.  

We assume that the number of calls follows an 
inhomogeneous Poisson process and call duration follows an 
inhomogeneous exponential distribution.  

The maximum likelihood estimates are used to estimate 
average number of calls and call duration. Next we consider 
the maximum average number of calls and call duration 
obtained for all weekday/weekend and week by week. 
Suppose that the m week data is used to compute the rates of 
number of calls and call duration for user p. Let 

p
d

p
d

p
d 721

ˆ,...,ˆ,ˆ λλλ be the rate of number of calls obtained for all 
weekday/weekend and  p

wm
p
w

p
w λλλ ˆ,...,ˆ,ˆ

21
 be the rate of call 

duration obtained week by week for m weeks of user p 
respectively.  Let p

d
p
d

p
d 721 ˆ,...,ˆ,ˆ µµµ  be the mean of call 

duration obtained for all weekday/weekend and 
p
wm

p
w

p
w µµµ ˆ,...,ˆ,ˆ 21  be the mean of call duration obtained week 

by week for m weeks of user p respectively. 
 Then the maximum means of the number of calls and call 

duration are respectively computed by:  
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where p
maxλ̂ and p

maxµ̂ are the maximum likelihood estimates of 
number of calls and the call duration for user p over the 
number of days specified respectively.  The thresholds define 
the limits for all weekday/weekend and week by week. Our 
assumption is that the calling pattern could be different. Each 
caller has his/her own thresholds, and if the number of calls or 
call duration is greater than their usual thresholds for some 
day, we define that some event has occured in that day.  

To calculate the threshold of number of calls for user p, 
p

thresN , we define  

         ppp
thresN maxmax ˆˆ σλ +=                          

where p
maxλ̂  and p

maxσ̂ are the maximum rate of number of calls 

and correspondent standard error with positive p
maxσ̂ .  

To calculate the threshold of call duration for user p, p
thresD , 

we define  
     ppp

thresD maxmax
ˆˆ δµ +=                         

where p
maxµ̂  and p

maxδ̂ are the maximum mean of  call duration 
and correspondent standard error with positive p

maxδ̂ .  
Definition of an unusual consumption event  

A collection of call-log data can be represented as                                                                   
>=< ),,,),...(,,,(),,,,( 22221111 nnnn ldatldatldatC  ,  
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where it  is a time point, id is a call duration, il is a location 

and ia is a pair of  actors, caller-callee < is , ir > where is is an 

actor who initiates a call at  time it  and ir  is an actor who 
receives the call. An unusual consumption event is defined as 
a subset E ⊂C of a tuple  

)},,,),...(,,,(),,,,{( 22221111 mmmm ldatldatldatE =     

such that either thres
m

i i Dd >∑ =1
or thresi Ndcount >)( defined 

as the above in the time period 1ttt m −=∆ .  

V. PATTERN RECOGNITION  

Opt-in is an approach to e-mail or phone marketing in 
which customers must explicitly request to be included in an 
e-mail or phone call campaign or newsletter. In addition, 
customers can easily choose to be removed from a mailing or 
phone list if the advertisements are unwanted, thus eliminating 
unsolicited emails or phone calls. People may be interested in 
some advertisements for a period of time, but will not want 
receive those advertisements later. Ultimately, the customer 
comes to consider this traffic as spam and decides to opt-out. 
We believe that current spam filters have great difficulty 
detecting this type of traffic. Note that several kinds of opt-ins 
exist. We consider opt-ins whom customers show lot interest 
for a short period of time and later have no interest but still 
keep getting unwanted emails or calls as opt-in bursts.  

Another instance where researchers and developers can find 
pattern recognition useful occurs with presence awareness. We 
propose use of a Bayesian inference model to compute the 
willingness level of people’s communications with one 
another at a given time. Another example of willingness level 
of people’s communications is a computer and 
telecommunication presence. Emergency of presence-aware 
communications allows people to quickly connect with others 
via the best choice of communication mean, whether on the 
road, in meetings, or working from remote locations. Presence 
awareness also lets users know when others in their contact 
list are online. For those interested in studying presence 
awareness, presence information can include more user 
details, such as availability, location, activity, device 
capability and other communication preferences. Researchers 
and developers can use presence to detect and convey 
willingness and ability to talk on the phone. Presence-enabled 
telephony services can reduce telephone traffic, as well as tag 
and improve customer satisfaction. The existing approaches 
provide presence for “online,” “busy,” “away,’’ “offline,” etc.  

A. Opt-in  Detection  
Opt-in burst detection is related to burst detection on data 

streams and to time series which are continuous data. 
However, the Opt-in behavior resembles accumulated 
impulses and is not continuous. The existing approaches to 
detect bursts are used for text, novel and unusual data points 
or segments in time-series that either have contents or are 
traffic data. However, none of the previous work focuses on 
the specific problem we study here, opt-in bursts by studying 
the calling pattern based on call detail records to detect opt-in 
bursts that reflect human activity.  

We define the opt-in bursts as dense sequences of 
accumulated impulses with an interval of length w.  
Let B={b 1 , … b k } be a subsequence of  bursts contained in a 

sequence  S ={s1 , …, s n }. The ith burst value is defined as  
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where w i is total number of impulses of the ith burst, i.e. the 

ith burst width, t i
j is the occurrence point of the jth impulse of 

the ith burst and δ(t) is a delta function denoting the 
occurrence of  a impulse at point t= t i

j .  

The ith burst amplitude A i  can be calculated as  
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where s t is the value of an pulse at point t.  

To detect the bursts, we define the sliding window SW k  as 
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where A k  is the amplitude of a sliding window k,  

rect((t-t m )/τ k ) is rectangle function denoting the occurrence 

point of a burst at time t=t m and τ k  is the width of  a sliding 
window k.  
Definition of an opt-in burst  

A collection of call log data can be represented as  
>=< ),,,),...(,,,(),,,,( 22221111 nnnn ldatldatldatC ,  

where it  is a time point, id is a call duration, il is a location 

and ia is a pair of  actors, caller-callee < is , ir > where is is an 

actor who initiates a call at  time it  and ir  is an actor who 
receives a call. An opt-in burst is defined as a subset E ⊂C of 
a tuple E = {( 1t , 1a , 1d , 1l  ), ( 2t , 2a , 2d , 2l ), …, 

( mt , ma , md , ml ) } such that thresi Ndcount << )(0  in the time 
period 1ttt m −=∆ , where thresN  is a threshold which can be 
estimated from the historical data.  

We process the sequence S by Exponentially Weighted 
Moving Average (EWMA), and then apply the dynamic-size 
sliding windows to detect opt-in bursts. The EWMA places 
more emphasis on the most recent data. Therefore, EWMA 
would be more useful in dynamic systems.  

Let S ={s1 , …, s n } be a sequence. Then the moving 
average (MA) is given by   

∑
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where ks is moving average of the k’s instance and M is the 
number of latest values. The EWMA can be derived from MA 
as  

3
3

2
2

1 )1()1()1( −−− +−+−+−= kkkkk sssss αααααα  
where 0 ≤  α < 1 is a constant. This is a recursion function.  
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B. Willingness Level Inference   
When callers want to make a call, they would like to know 

if the callee is in a mood to receive a call. In other words, 
callers would like to know when it is a good time to call the 
particular callees. We estimate the chance that a callee will 
accept a call based on the time of the day, call duration and the 
location.  

We propose a Bayesian inference model to compute a 
receiver’s willingness level in a given time.  

Let X and Y be two events. We have Bayes’ theorem [8]:  

)(
)()|()|(

YP
XPXYPYXP =  

    P(X | Y) is called posterior probability, P(Y | X) is referred 
to as likelihood and P(X) is prior probability.  
Let X = (incoming call = accept, incoming call = missed)  
Let Y = ( iT , jD , lLoc ), where iT  is time interval, i = 0, 1, 2, 

…23, (e.g. : 0 – 1 O’clock), jD is a day, j=1,2, …, 7, i.e.,     

1D =Sunday, 2D =Monday, … 7D = Saturday, lLoc = location 
name, l=1, 2, …n  
Then, by Bayes theorem, the willingness level to accept a call 
is  
  
 
 
 
 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS   

A. Real-life Data Sets and Parameters 
Real-life traffic profile: In this paper, actual call logs are 

used for analysis. These call logs of 81 users were collected 
for a period of 8 months at MIT [4] by the Reality Mining 
Project group. Additionally, the call logs of 20 users were 
collected for a period of 6 months by the Network Security 
team at UNT.  

The Reality Mining Project group collected data on mobile 
phone usage of 81 users, including user ID (unique number 
representing a mobile phone user), time of call, call direction 
(incoming or outgoing), incoming call description (missed or 
accepted), talk time, and tower ID (location of phone user). 
These 81 phone users were students, professors, and staff 
members. The collection of the call logs was followed by a 
survey to gather feedback from participating phone users 
about behavior patterns such as favorite hangout places; 
service providers; talk-time minutes; and phone users’ friends, 
relatives and parents. More information about the Reality 
Mining Project can be found in [4].  

(Because of the limited space we will show the 
experimental results in the workshop)  

The experimental results show that our approach is 
effective.  

VII. CONCLUSION 

In this paper we propose an integrated platform for social 
relationship and human behavior analysis based on mobile 
phone call detail records. Because of the diversities and 
complexities of human social behavior, one technique cannot 

detect all the different features of human social behaviors. 
Thus, we used multiple probability and statistical methods.   

We propose a new reciprocity index for measuring the 
levels of reciprocity between users and their communication 
partners, propose affinity model for quantifying social groups, 
map call-log data into time series and apply SARIMA model 
for predicting social ties, combine wavelet denoising and 
sequential detection for detecting change points, propose 
inhomogeneous Poisson and inhomogeneous exponential 
model for detecting unusual consumption events, combine 
dynamic slide window and exponentially weighted moving 
average for detecting opt-in bursts and propose  Bayesian 
inference model for quantifying willingness levels.  

We may quantify relationships for a short-term period, say a 
month, or a long-term period, say, a year or more, using our 
model by adjusting the parameters.  Errors appear when the 
number of calls is small. However, these kinds of cases 
seldom occurred in our experiments.  

This work is useful for homeland security and for detecting 
unwanted calls, e.g., spam, telecommunication presence, and 
marketing. The experimental results show that our model 
achieves high accuracy. In our future work we plan to analyze 
and study social-network dynamics and evolution.  
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Mobile phone networks have raised a wide interest in
the past years, thanks to the recent availability of large
sets of mobile phone call records (CDRs). Those data-
sets consist of calls made by users from mobile phone
providers during time periods ranging from a couple of
weeks to several years. They provide interesting advan-
tages compared to other datasets as fixed phone call
records or emails. First, a mobile phone is a personal
object (in opposition to fixed phones that are usually
shared between groups of people), this allows to derive
a social network directly from the call data records. Se-
condly, as a call can only involve two persons at the
time, the calls contained in the dataset represent real
interactions between individuals. This is not always the
case, as for email networks, where one email can be sent
to a large number of recipients in a small time.
Moreover, those datasets possess a strong temporal
component, as the edges of a mobile phone network
are originated by calls between users. The timestamp
of a call is particularly interesting as it allows to quan-
tify the strength and the regularity of a relationship.
This is a significant advantage compared to datasets
provided by online social networks, where friendships
are usually defined in a static way.
The availability of such datasets have led to various
analyses of the structure of mobile phone networks,
which followed all a systematic procedure : from the
dataset, a digraph is constructed by representing custo-
mers as nodes, and drawing an edge between two nodes
if they have made at least one call over the whole per-
iod. The edges are then usually weighted, either with
the number of calls, or with the total calling time bet-
ween the two users. In some cases, some thresholding is
performed to remove outliers from the dataset.
When one uses this approach, the strength of an edge
represents the frequency of interaction between two
users as a fixed value, with the assumption that the fre-
quency of calls is constant over time. When one thinks
about it, the frequency of interaction between two users
should logically be varying over time, but the represen-
tation of the network by a static graph hides completely
the dynamics of the edges.
To avoid this, one needs to represent the network as an
evolving graph.
As said earlier, a dataset representing a mobile phone
network is a collection of events ((i, j) , t), meaning that

customer i has called customer j at time t.
When the time resolution is high, only a few events
happen at a single timestep and the graph is composed
of sparse edges changing at a high frequency. It is then
hard to make a clear analysis of the dynamical behavior
of such a graph.
The classical approach to eliminate the high-frequency
noise and extract global trends from an evolving graph
is the segmentation of the dataset into time windows.
The time interval is sliced into several continuous time
windows, and for each window, one static graph that
contains all the events happening within the window is
built.
This approach is similar to a moving average technique
in time series analysis that are used for denoising pur-
poses. It presents also the same issues : if a window is
too small, high frequency noise is not eliminated and
hides the general trends. If it is too large, the result is
a static network, without dynamical information.
Therefore, a good choice for the length of time win-
dows is crucial, but usually left behind by researchers
and motivated by intuition.
In this work, we propose a method to analyze the in-
fluence of the length of a time window on the graph it
generates and to characterize the growth of an evolving
graph with time.
We consider the evolving graph as a stochastic process,
each possible edge being a variable that appears with
a non-stationnar probability. We estimate the quantity
of information of a growing set of events and track the
redundancy of the set of events. We use the redundancy
to quantify the graph growth and as stopping criterion
for the graph aggregation.
We apply our method to a mobile phone network of 3
million users making 360 million calls over 6 months,
and show that after 3 weeks, the network growth
reaches a steady state that can be expressed matema-
tically. We also analyze similarity measures on the se-
quence of graphs created by windows of different sizes
to validate 3 weeks as an adequate window length.
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1 Motivation

Clique (clique.ucd.ie) is a research project started in January 2009, focussing on complex
network analysis and visualization. In conjunction with three industrial partners, Clique is
addressing four core research challenges, namely: the identification of coherent communities,
the identification of nodes that have pivotal roles, the identification of network structure that is
remarkable or anomalous and the question of how to model and analyze information flow. Our
research concerns datasets that are massive, multi-attribute and dynamic and is driven by the
industrial contexts provided by our industrial partners.

One of our research domains is very large scale mobile telecoms datasets. These datasets
provide a rich source of human social interaction data and provide an excellent opportunity to
investigate large scale complex networks. The particular data provided by our industry partner
1 yields call graphs where a single week worth of data contains many millions of nodes, with
the sparse edge structure typical of such networks. Having access to week by week snapshots of
this rich data, over a period of time spanning many months, we are conducting research to find
structure and regularity in this data, with a view to investigating the underlying social structure
and attempting to discover the channels through which influence propagates in complex and social
graphs. We are specifically considering the problems of finding interesting graph structures - such
as the clusterings of nodes that form communities - and diffusion modeling of user influences in
areas such as network churn and handset adoption.

(a) (b)

Figure 1: The degree distribution of (a) one months worth of raw call data and (b) one months
worth of SMS data. No filtering of high degree nodes, call centers etc has been performed on
this data.

1We would like to acknowledge Idiro Technologies for providing us with access to this data.
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(a) (b)

Figure 2: The connected component size distribution of (a) one weeks raw SMS data (b) one
months raw call data. Huge components clearly visible.

2 Completed Work

As a prerequisite for developing techniques to predict influence diffusion within a social graph,
it is first necessary to investigate the structure and dynamics of the graph. Much work has
been done on community assignment in graph datasets - thoroughly summarized in the review of
[Fortunato, 2010]. However, after the analysis of [Leskovec et al., 2008] some question exists over
whether the existing community assignment solutions will successfully operate within the densely
overlapping cores of large social graphs, and effectively extract useful community structure. It
is against this backdrop that we attempt to find structure in our data.

As a first step, we attempt to characterize our data in terms of several metrics that have
previously proven useful in the study of complex networks. The degree distribution of static
graphs extracted from a month long time period is shown in Figure 1, where we separately
examine call and SMS data. Note that the degree distribution of the both networks, when viewed
as an undirected, unweighted graph, exhibits the heavy tail properties previously described in
the work of [Onnela et al., 2007] and [Dasgupta et al., 2008]. In Figure 2, the distribution of
connected component sizes of a weeks worth of SMS data, and a months worth of call data is
shown. Again, in agreement with the findings of [Onnela et al., 2007],[Dasgupta et al., 2008] the
vast majority of nodes are part of a huge connected component. This result holds true in SMS
and call graphs, and even when we consider graphs covering time periods as short as one week.

In reality, the edges in the call graph have multiple attributes, including call type, total call
duration and total number of calls, accumulated over the extracted time-period. In Figure 3,
the distribution of edges weighs is plotted, where the edges are weighted according to firstly the
total number of seconds two nodes spend calling each other, and secondly the total number of
SMSs two nodes send to each other.

Having conducted some simple characterization, we have attempted to replicate the experi-
ments of [Onnela et al., 2007], which investigate the ‘weak tie hypothesis’ of [Granovetter, 1973].
Our initial results indicate that our dataset, whether we view a weeks worth of data at a time,
or consider longer time periods, such as month by month, also displays the property that the
ties that are most important for network connectivity are those with smaller dyadic edge weight.
Our work indicates that this analysis holds regardless of whether we weight edges according
to the number of calls sent and received, or by call duration, or by number of SMS messages
exchanged. These initial results are part of an on-going analysis and we expect that structural
characteristics such as this will have an important impact on the development of a good model
of influence diffusion.

Investigating correlations between different graph statistics is also important in order to
obtain a useful characterization of the data. Currently, we are investigating whether relationships
exist between the degree of a node and the summed weight of its edges, whether there is assortivity
[Newman, 2002] between high degree nodes in our dataset, and to what extent the SMS and call
graphs are similar to, or different from, each other. A further area of research is an attempt to
classify nodes by the proportion of communications that they emit and receive, and to study the
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(a) (b)

Figure 3: The edge weight distribution of (a) one months worth of raw SMS data (b) one months
worth of raw call data.

dynamics of changing calling patterns across nodes with different local structural properties.
Edge significance State-of-the-art research has attempted to filter the more ‘casual’ edges from

a mobile telecoms network in order to eliminate noise from the social graph, and also decrease
the computational complexity of processing such large networks. For instance, reciprocated
communications are used in [Lambiotte et al., 2008][Dasgupta et al., 2008] as evidence of more
meaningful social connection. With similar motivations, and believing network dynamics an
interesting area of investigation, we are attempt to characterize the dynamic properties of edges,
such as the distribution of the length of time an edge that appears in the graph persists for, and
correlating this with other edge properties such as call duration, bidirectionality, and number of
calls.

Influence diffusion In addition to anonymised summary call data records, we also have access
to data describing which network users churned from the network at certain times. We also
have information on the handset currently used by each user. One of our ongoing goals is to
investigate whether we can find a significant social dimension to the spread of changes in handset
adoption, and network churn, after [Dasgupta et al., 2008], as a tool of investigating the social
properties of the spread of influence.

3 Outlook

We intend to proceed along this line of investigation, attempting to find structure in the the
social network we approximate with mobile call graphs. We are investigating whether well
defined structure can be found in such large networks. We are also investigating the impact of
social effects on influence change, specifically on churn and handset uptake. We are scientifically
interested in whether we can develop a generic way of investigating influence spread that can
extend across mobile datasets and to other complex network domains, and whether we can
leverage the dynamic nature of the graph across time to make better models and find richer
structure than we could with a single time slice.

We hope to present some results on this ongoing work by the time of the workshop.
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Dynamics and temporal correlations in mobile phone based social networks
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Complex networks are rarely static, but involve dynamics on several time scales. Often, the

networks studied in the literature represent either static ”snapshots” of dynamic entities or aggre-

gates over some period of time. In the first case, all dynamics are entirely lost, while in the second

case some trace of dynamics can be retained e.g. by representing edge activation frequencies as

edge weights. However, in this case, all information on short-term temporal correlations between

dynamics of edges is lost.

Here, we study the microdynamics of a large social network reconstructed from mobile commu-

nication billing records with time stamps for each communication event (calls and text messages).

It is natural to assume that such events are temporally correlated i.e. incoming calls trigger out-

going calls as some information is relayed, and call patterns of social groups contain temporal

correlations as messages are exchanged between group members in a conversation.

We begin with the smallest scale interactions, showing that there is clear evidence of correlations

where incoming calls trigger outgoing calls, and discuss the associated time scales. Then we move

on to multipoint correlations by showing that ”temporal motifs” exist within short time windows

in significantly greater numbers than in a temporally uncorrelated reference system. Having shown

the existence of correlations, we assess their significance in the function of a social system in terms

of information transmission. We show that unexpectedly, temporal correlations appear to slow

down the transmission dynamics compared to a null reference.

emails: ∗ mkarsai@lce.hut.fi ] jsaramak@cc.hut.fi

† lkovanen@lce.hut.fi ∗∗ kertesz@phy.bme.hu

‡ mtkivela@cc.hut.fi †† alb@neu.edu

§ rajkp@lce.hut.fi ‡‡ Kimmo.Kaski@hut.fi

Book of abstracts for NetMob 2010 32



Communication Motifs: A Novel Approach to
Characterize Mobile Communications
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Abstract: Social networks mediate not only the rela-
tions between entities, but also the patterns of information
propagation among them and their communication behav-
ior. In this paper, we extensively study the temporal anno-
tations (e.g., time stamps and duration) of historical com-
munications in mobile phone networks and propose two
novel tools for – qualitative and quantitative – characteri-
zations of the patterns of information propagation in these
networks. Specifically, we define communication motifs

and maximum-flow communication motifs in a mobile net-
work as structures that satisfy certain communication and
topological constraints. We propose two motif discovery
algorithms and apply them to the mobile phone network.
Using the discovered motifs to characterize the commu-
nication behavior and information propagation patterns
in the mobile networks, we verify the following hypothe-
sis: 1) the functional behavioral patterns of information
propagation within mobile networks are stable over time;
2) the patterns of information propagation in mobile net-
works seem to be sensitive to the cost of communication;
and 3) the speed and the amount of information that is
propagated through a mobile network are correlated and
dependent on individual profiles.

Summary: Social networks represent the links between
a set of entities connected to each other with different
types of relationships. For example, papers are linked by
citations in a citation network, bloggers are linked by com-
ments or blogrolls in a blog network, while cell phones are
connected via phone calls in a cell phone network [8, 11,
1]. In the literature, social networks have been extensively
studied from a graph theory perspective (e.g., power laws,
small worlds phenomenon, coverage, etc.) [3, 6, 2]. Prop-
erties of different types of complex networks have been
compared [9, 11, 3]. Recently, research studies on social
networks from a behavioral perspective have received a
lot of attention. These works, dealing with problems such
as community identification, spam detection, or model-
ing information flows [8, 4] have a lot of applications in
recommender systems, social search, economics, and ad-
vertising [12, 5, 7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In this paper, we study the communication characteris-
tics (from a behavioral perspective) within mobile phone
networks. In particular, we aim at identifying topologi-
cal subgraph structures with frequency and temporal con-
straints, which we refer to as motifs, to characterize com-
munications in mobile networks.

caller callee timestamp duration

2 3 9:00 am, 11-Aug-08 2 minutes

3 4 9:10 am, 11-Aug-08 5 minutes

4 3 9:41 am, 11-Aug-08 3 minutes

3 7 9:51 am, 11-Aug-08 2 minutes

3 8 10:36 am, 15-Aug-08 6 minutes

7 4 10:08 am, 11-Aug-08 6 minutes

7 2 10:43 am, 13-Aug-08 6 minutes

8 4 9:36 pm, 15-Aug-08 6 minutes

Table 1: CDR(Call Detail Records) data

A fundamental issue in analyzing information flow or
propagation patterns within communication oriented so-
cial networks is how to represent the communication data
in such a way that it captures every piece of useful informa-
tion. Consider the example in Table 1, which shows eight
entries from a phone call detail record (CDR) dataset,
where calls between users and their associated durations
and timestamps are recorded, with one entry per call. A
number of alternative representations of the CDR data in
Table 1 are shown in Figure 1. Here G1 is constructed by
taking each user as a node and each call between any two
users as an edge between the two corresponding nodes,
while G2 extends G1 by adding weights to the edges pro-
portional to the frequency of calls between any two nodes)
and G3 is obtained by removing the direction of the edges
in G1.
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Figure 1: Graph Representations of CDR data.

These representations are meaningful and valid in cer-
tain social networks such as friends or citation networks,
where the nature of the relationship is embedded in – or
may be easily derived from – the records. However, in
the case of social networks derived from communication
logs, it is difficult to properly infer the nature of the rela-
tionships due to the multiplicity of reasons for making a
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call (e.g., business, personal, service, etc.) and the impor-
tance of the temporal context. In other words, once one
paper cited another, the cited relationship between both
papers always holds true. However, phone calls are made
for different reasons and hence the nature of a relationship
between two nodes in the network may also depend on the
temporal context of calls, i.e., a call made during work-
ing hours is probably of different nature than a call made
at night. The same applies to other temporal attributes
such as duration and frequency of the interaction, or tem-
poral distance between two calls (inter-call time delay).
As a result, the representations that are used in existing
information propagation studies are not valid under the
context of our study in this paper. Furthermore, many
studies on information propagation assume that consecu-
tive interactions transmit the same piece of information
within the inferred networks, and we shall argue that this
assumption is not always valid.

In [6], Kleinberg et al. notice the importance of the tem-
poral annotation in instances of communications. They
find an information pathway where users are updated with
the latest information at the quickest speed based on the
temporal distance between the communications. However,
their work does not consider the case of different pieces of
information being propagated in the same network. More-
over, by using part of the temporal information only, they
are not able to generalize the local behavior patterns of
individuals or small groups to the entire network.

In this paper, we propose to study information propa-
gation and behavior patterns in communication oriented
social networks, taking a mobile phone network as an ex-
ample, by leveraging the temporal annotations of these
communications together with the topological structure of
the network. The proposed approach is based on the fol-
lowing observations:

• Calls or interactions between the same two users in
the network may have different purposes and thus
transmit different information, causing different ef-
fects in terms of information propagation. The in-
teractions between any two users may range from
being intense and frequent to being isolated events
without further impact on the network. As a result,
we propose to differentiate the calls by incorporating
the temporal information of the calls into the social
networks.

• The semantics associated with each interaction (e.g.,
topics discussed, purpose of a call) are hard to in-
fer [9, 11, 3]. It is possible that two adjacent in-
teractions (i.e, interactions that share at least one
common user) have no causal relationship between
them. However, the temporal attributes associated
with the interactions may shed some light on the
amount of information propagated. For example, it
seems reasonable to assume that the closer in time
two adjacent interactions take place, the more likely
it is that they are about the same topic.

• The amount of information passed from one node
to another in the social network may be quantified
in different ways. For example, in a CDR dataset
the amount of information can be quantified by the
duration of the call, whereas in a Facebook dataset
the amount of information can be quantified by the

length of the text typed on a user’s wall. In both
cases, we assume that the longer an interaction is,
the larger amount of information is propagated via
this interaction.
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Figure 2: Representation with temporal constraint.

Based on the above observations, we aim to find novel
and meaningful ways to model the users’ behaviors and in-
formation flow patterns. For example, based on the CDR
data in Table 1, five different calling sequences are con-
structed by taking the call timestamps into account as
shown in Figure 2. In these graphs, two edges are con-
nected if and only if their corresponding timestamps are
within 30 minutes of each other. Compared to the graphs
in Figure 1, the five sequences in Figure 2 take into ac-
count the temporal information of the calls.

In order to model how information is propagated within
a mobile phone network, we propose the concepts of com-

munication motifs and maximum-flow motifs. The pro-
posed motif concepts are an extension of the network mo-
tifs in biological networks [10], which refer to patterns
that recur within a network much more often than at ran-
dom. We propose two efficient algorithms to automati-
cally identify communication motifs in a network, carry
out extensive experiments with a large mobile phone net-
work dataset and discuss the properties exhibited by the
discovered motifs. Finally, we characterize the informa-
tion propagation behavior in the mobile phone network
using these motifs as a measurement, which leads us to
the following findings:

• The functional behavioral patterns of information
propagation are stable over time;

• The patterns of information propagation are sensi-
tive to the cost of communication;

• The amount of information being propagated and its
speed are correlated and depend on user profiles in
the mobile phone network.

As supported by our research results, we shall claim that
the temporal attributes associated with communication
data are critical to model information propagation and
characterize the nature of the relationship between any
two nodes in the network. In future work, we plan to
continue this line of research.
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Abstract
The technologies of mobile communications and ubiquitous
computing pervade our society, and wireless networks sense
the movement of people and vehicles, generating large vol-
umes of mobility data. Miniaturization, wearability, perva-
siveness are producing traces of our mobile activity, with
increasing positioning accuracy and semantic richness: lo-
cation data from mobile phones (GSM cell positions), GPS
tracks from mobile devices receiving geo-positions from
satellites, etc. This paper gives a short overview of the an-
alytical tools developed within the European Project GeoP-
KDD (Geographic Privacy-aware Knowledge Discovery and
Delivery), a project funded by European Commission under
the FET program of the IST FP6 framework.

1 Introduction
Research on moving-object data analysis has been recently
fostered by the widespread diffusion of new techniques
and systems for monitoring, collecting and storing location
aware data, generated by a wealth of technological infras-
tructures, such as GPS positioning and wireless networks.
These have made available massive repositories of spatio-
temporal data recording human mobile activities, that call
for suitable analytical methods, capable of enabling the de-
velopment of innovative, location-aware applications. The
GeoPKDD project [1], since 2005, investigates how to dis-
cover useful knowledge about human movement behavior
from mobility data, while preserving the privacy of the
people under observation. GeoPKDD aims at improving
decision-making in many mobility-related tasks, especially
in metropolitan areas.

The GeoPKDD system, originally presented in [5], al-
lows to handle the whole knowledge discovery process from
mobility data, in particular it provides tools for reconstruct-
ing a trajectory from raw logs, storing and querying tra-
jectory data, classifying trajectories according to means of

Figure 1: The GeoPKDD process

transportation (pedestrian, private vehicle, public transporta-
tion vehicle, extracting spatio-temporal pattern and models
as useful abstractions of mobility data, find an optimal trade-
off between privacy protection and quality of the analysis.

2 Experimenting on real GSM data
To demonstrate the power of our framework we have tested
it on different real scenarios and different data sources. Here
we present a set of experiments on a dataset of real GSM
data logs. The observations are collected by the Telecom
Italia Lab, the research laboratory of the main telecommuni-
cation company in Italy, using an estimation of the position
of the devices by means of triangulation. The dataset con-
tains the points recorded along a whole day (in particular the
21st May, 2009). The first step was the importing of the ob-
servations in the data management system which is based on
Oracle 11g database. The trajectories are built starting from
this raw data using the trajectory reconstruction algorithm,
and cleaning them from errors and outliers obtaining a set of
useful data (Fig.2).

1
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Figure 2: The reconstructed moving points dataset

The resulting set is composed by more than four million
trajectories in the urban area of Rome.

2.1 Statistical Analysis. A set of statistical analysis can be
easily computed having the data storage system integrated
with a set of spatio-temporal primitives, that allow to effi-
ciently compute spatial and temporal measures, like tempo-
ral gaps and spatial distances between consecutive points.

2.1.1 Distribution of movements during the day. For this
analysis we partition the day in hours (0-24) and we will
intersect the trajectory dataset with this periods counting the
presence of the trajectories in them. The result is shown in
Fig.3.

Figure 3: The Time distribution of movements

The analysis shows two major peeks during the day
corresponding to the periods of time where the people are
going or coming from work. Another aspect of the mobility
is highlighted: the period between the peeks has a very high
number of movements which gives to the mobility agent a
clue about the sustainability of the traffic during such hours.

2.1.2 Density of movements in space. The distribution
of movements can be analyzed not only in time but also in
space. For example, by dividing the territory in a grid of
50 × 50 cells, we can compute the density within each cell.
In this case we can take advantage from the previous analysis
obtaining a spatio-temporal density distribution which can be
navigated in both dimensions. The global result is shown in

Fig.4.

Figure 4: The density distribution plot (Left) and the density
distribution on the grid (Right)

Using the temporal dimension we can focus the view
only in a specific period, say from 6 am to 12 am, obtaining
the Fig.5. As we can see in the morning the mobility is
greater between two dense points in the south part of the city
giving to the mobility manager the idea of where the peek of
detected in the first analysis is focused.

Figure 5: The density distribution in the morningof move-
ments

To better understand the traffic flows of the traffic we
proceed with the next statistical analysis called O-D Matrix.

2.1.3 O-D Matrix. Usually this analysis is obtained by
the mobility agencies using a survey obtained from direct
or by telephonic interview to the citizens. The quality of
the data obtained in this way is very poor and has very high
costs. Instead thanks to our system this can be done with
a very low cost and high precision avoiding incomplete and
incorrect data. For this example we introduce a bigger grid
20 × 20 which simulates the districts of the city. Having
more information like real districts or regions of interest
given by the mobility agency we can use them to perform
this analysis. Joining the matrix with the used grid we can
browse it by selecting a region as origin or destination. In
Fig.6 we show how the people move from and to a cells.

The next section will show a further step: the statistical
analysis using data mining algorithms such as T-ClusteringBook of abstracts for NetMob 2010 37
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Figure 6: The OD Matrix focused on the yellow cell. The
destinations (Left) and the origins (Right)

[3] and T-Pattern [2] and how they can interact with the
previous analysis thanks to the unifying system.

2.2 Data mining analysis. The understanding of the
mobility in a city is a very complex process, here we
present an example of how the presented framework helps
the analyst in the discovery process. An example of analysis
is looking for common behavior of people who move toward
a common destination. To perform this task the first step
is to find this communities of people: the Fig.7 shows
two clusters obtained applying the T-Clustering using the
common destination distance function. Once the analyst
identifies the clusters of intersect, it is possible to refine the
analysis by investigating other regularities in their behavior,
for example by applying the T-Pattern algorithm on the
trajectories of one of the selected cluster (say, for example,
the red cluster in Fig.7). The resulting T-Patterns are shown
in Fig.8.

Figure 7: Two Clusters discovered using common destina-
tion distance function

To give semantic to the T-patterns extracted we can
intersect the regions of the T-Patterns with a set of interesting
places (specified by the mobility agency), and discover that
the T-Pattern in Fig.8(b) represents the behavior of people
coming in a common area. This simple process show
the capabilities of the system allowing the user to perform
iterative querying mixing together different data mining

Figure 8: The T-Patterns discovered on the trajectories in a
cluster

algorithms obtaining a deep understanding of the data.
The approach of combining the extracted patterns with

the information available in the system can be also exploited
to learn another type of model: the Location Prediction
[4]. The location prediction algorithm aggregate the local
patterns found in the previous step to produce a global
model for the considered dataset: the model gives a high
level description of the mobility allowing also to predict the
possible destinations of an individual by observing his/her
movements in the recent past.

3 Conclusions
The analysis capabilities of our system have been applied
onto a massive real life GSM dataset and we demonstrated
how the various methods and systems developed in the
project support the creation of novel analytical services for
mobility management, such as: i)Analysis of the move-
ments in space and time ii) the automated construction of ori-
gin/destination matrices from mobility data in a timely, reli-
able and objective manner. It allows to analyze users’s flows
between geographical areas, overcoming the limitations of
the current survey-based approach; iii) discovery of mobility
patterns with different data mining tools which can be com-
bined to go deep on the data understanding iv) the detailed
analysis and discovery of systematic movement behaviors,
i.e., the movements that repeat periodically during the week,
with particular emphasis to commuting patterns like home-
to-work and work-to-home.
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Abstract: 

The history of technological viruses is intrinsically linked to the history of computational devices. Since 

the inception of the Internet, programmers begun writing self-replicating executables such as Creeper, 

the first known instance of a computer virus. From there on, the field of computer security grew 

together with the ability of programmers to write increasingly more sophisticated viruses. In recent 

years mobile phone devices have become the new frontier for self-replicating programs. The availability 

of these devices together with its constant online presence makes them an ideal breeding environment 

for technological viruses. Yet, society has not been affected by major mobile virus outbreaks. A natural 

question then becomes: Why are desktop and laptop computers so vulnerable to a problem that mobile 

phones do not seem to be? This paper shows that the spread of mobile phone viruses is limited by the 

type of viral behavior (topological or scanning), the existence of a market share providing sufficient 

homogeneity in the world of devices, and the mobility of individuals. We find that hybrid mobile viruses 

that include some level of random scanning have a higher chance to bring havoc to the mobile 

community than their standard topological counterparts even under adverse conditions to the virus, 

such as protection mechanisms used by phone providers. 
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Abstract

Modern technologies allow collection and processing of
an abundance of information on human activity, in par-
ticular, its mobility patterns. This opens unprecedented
opportunities for development of computational models
of many human-mediated phenomena such as the spread
of infectious diseases. The main modeling approach for
spatial epidemics explicitly incorporating traveling be-
havior of the host is the reaction-diffusion model. It as-
sumes random, markovian movements of the host. This
approach seems to be inappropriate for humans that typ-
ically return to their home locations after traveling. We
investigate a model explicitly incorporating bidirectional
human movements on star-like network topologies con-
sisting of central home nodes and distant locations. We
show for various topologies that dependent on parameters
both models exhibit strong differences as well as similar-
ities. An important result is the attenuation of epidemics
in bidirectional systems as compared to generic reaction-
diffusion systems. Global outbreak of an epidemic is de-
termined by a threshold value of the characteristic time
spent by an individual on distant locations. Our results
provide a framework for incorporating an abundant data
on human mobility available today.

1 Introduction

Infectious diseases remains a pressing challenge for
humankind. Understanding the dynamics of epi-
demics would significantly contribute to the bat-

tle against them. In the past mathematical epi-
demiology approached this problem relying on rare
empirical data and posteriorly predictions. Nowa-
days availability of large amount of data on hu-
man activity, in particular its mobility patterns, al-
lows us to approach an ultimate goal of forecast-
ing the progress of an epidemic and planning re-
sponse measures on the fly. We already experienced
such kind of forecasting during the recent outbreak
of H1N1 influenza pandemic [1, 2]. However, the
detailed computational platforms simulating epi-
demic spread could be used in non-ambiguous way
only if one fully understands the driving factors and
essential constituents of a model. This requires a
thorough theoretical investigation of the underlying
epidemiological model. To this end in the present
contribution we address the role of human mobility
on the spread of infectious diseases.

Recent empirical studies on human mobility re-
vealed complex although universal dynamical fea-
tures of human movements. The laws governing
human mobility include anomalous diffusion [3]
and high degree of predictability [4, 5]. An impor-
tant property of human mobility is their tendency
to return to a few most preferred locations such as
home and workplace. This empirical evidence lead
us to devising an epidemiological model, explicitly
incorporating the last property.

A major theoretical framework for modeling the
spread of infectious diseases explicitly taking into
account host movements is the reaction-diffusion
approach. This approach assumes that hosts are
indistinguishable and move randomly between all
available locations like chemical particles. How-
ever recent empirical findings suggest a high degree
of regularity and predictability in human move-
ments and thus the reaction-diffusion approach
is not appropriate for description of human epi-
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demics.
In what follows we introduce a model explic-

itly incorporating human travel into epidemiolog-
ical framework. We show for various topologies
that there can be a significant difference in the
behaviour of reaction-diffusion and bidirectional
models. We discovered a novel kind of a thresh-
old behaviour of an epidemic outbreak depending
on the dwelling time of individuals on distant loca-
tions. We show that even in the parameter range
where the global outbreak occurs, there is still a
pronounced differences in the speed of propagation
of both kinds of epidemics.

2 Model

We consider an epidemiological model explicitly
incorporating movements of hosts distinguishable
according to their location of origin [6]. If Xm

n de-
notes the number of individuals originating from
location m and sojourning in location n. Then the
traveling between different locations is described
by the following scheme

Xm
n

ωn
km!

ωn
mk

Xk
n , (1)

where ωn
km and ωn

mk are forward and backward
travel rates. Note, that considering all individu-
als indistinguishable we get rid of n-dependence of
travel rates ωn

km ≡ωkm ∀n and recover random walk
or diffusive travel.

We chose an SIR epidemiological model [7] to
model the local infectious dynamics, which subdi-
vide individuals into classes according to their in-
fectious status. These include infecteds Im

n , suscep-
tibles Sm

n which can catch a disease, and recovereds
Rm

n denoting either immune or dead individuals de-
pending on which disease is modeled. Then the lo-
cal epidemic is described by the following scheme

Ik
n +Sk

m
α→ Ik

n + Ik
m (2)

Ik
n

β→ Rk
n,

where α and β denotes infection and recovery
rates. Combined, (1) and (2) define our model.
We assume that individuals in locations are well
mixed and one can apply standard chemical kinet-
ics rules. Note, that up to now we did not spec-

Fig. 1: Illustration of the approach used to
parametrize the bidirectional model. Large
circles represent two locations populated
by different species (red and blue). Color
arrows correspond to fluxes of different
species. On the right a transection of the
total flux Fnm between locations is shown
consisting of sub-fluxes F n

nm (blue) and
F m

nm (red).

ify any conditions on travel rates ωn
km, which de-

fine how and along which links in a mobility net-
work individuals travel. In the following we re-
strict our-self to the case of traveling on overlap-
ping star like topologies [8, 9], where nodes repre-
sent a center of a star and links to the next neigh-
bors in a network of locations represent rays of
the star. Individuals of one particular location can
travel only on the corresponding star. If they visit
one neighbor location, they need to return home,
before visiting another neighbor location. Mathe-
matically we can describe this by choosing travel
rates as ωn

km = ωn
nmδkn + ωn

knδmn. We will call this
model bidirectional because individuals travel forth
and back between locations always returning home
before traveling further in contrast to erratic usu-
ally not returning random walk travel of reaction-
diffusion model. This setup is a good approxima-
tion to describe movements of humans, in particu-
lar, commuting behaviour.

2.1 Parametrization
In order to investigate bidirectional model and com-
pare it with widely used reaction-diffusion model,
we need to use conventions concerning the param-
eters of the model and underlying mobility net-
work. As an artificial mobility network we will
use a regular one-dimensional lattice and uncorre-
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lated scale-free network [10, 11]. We also consid-
ered other random networks (Erdős-Rényi, Watts-
Strogatz), which we do not discuss, but the major
results are independent of particular topology and
are present in all of them.

After numerically generating a particular topol-
ogy, we assign to every node a nominal population
size Nn, chosen randomly from a uniform distri-
bution. In order to compare epidemiological mod-
els explicitly incorporating travel, i.e. bidirectional
model and reaction-diffusion model, we calibrate
both system in a way, that the total fluxes of trav-
elers between locations are kept the same in both
systems. Being aware only of the total fluxes be-
tween locations it is impossible to distinguish be-
tween bidirectional and reaction-diffusion traveling
mechanisms. Further convention is a constant re-
turn travel rate ωn

nm ≡ ω$ corresponding to equal
dwelling times on distant locations independent
from the location of origin. However the knowl-
edge of only total fluxes between locations is not
enough to extract travel rates of bidirectional model
as it becomes clear from Fig. 1. You see there,
that the total flux Fnm from location m to location
n consists of partial flux F m

nm of individuals orig-
inating from location m and traveling to location
n as well as partial flux F m

nm of individuals origi-
nating in location n, having dwelled in location m
and returning to location n. We solve this dilemma,
by proposing a vein model which states that par-
tial fluxes are proportional to the sizes of different
local populations:. F n

nm = FnmNn/(Nn +Nm). Us-
ing the last expression, conservation of individuals
originating from a particular location, and detailed
balance conditions on travel rates we derived a sys-
tem of linear equations which uniquely maps total
fluxes onto travel rates

$ωnm +
Fnm

Nn +Nm
∑
k

Akm
ωkm

ω$ =$ Fnm

Nn +Nm
.

Numerical solutions of the last equation reveals a
lower boundary for the return rate. We could ex-
plain the existence of such a boundary by consid-
ering a simple one dimensional homogeneous lat-
tice topology, where we can easily obtain relation
between forward travel rate ω+ and random walk
traveling rate ω being the total flux normalized by
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Fig. 2: Attack ratio % in dependence on return
rate ω$ for a fixed value of total averaged
flux rate %ω& = 1 for a SIR epidemic on
a scale-free network with power-law expo-
nent & = 1.5 and with 1000 nodes popu-
lated uniformly with %N& = 250 individu-
als each. Inset shows the dependence of
peak time ' on return rate ω$ for bidi-
rectional epidemic (circles) and reaction-
diffusion model (dashed line). Results were
averaged over 50 stochastic realisations. In-
fection rate α = 1, recovery rate β = 0.1.

the number of individuals pro location

ω+ =
ω$ω

2(ω$$ω)
,

where from follows ω$ > ω which is a constrain of
constant total flux rate ω . To assign total fluxes in
an inhomogeneously populated complex network
of location we use an ansatz Fnm ' NnNm remi-
niscent of gravity law [12].

3 Results

Most important questions which could be answered
by an epidemiological modeling are under which
conditions an epidemic outbreak occurs and how
fast it spreads. The conditions under which an epi-
demic outbreak occurs are usually given by thresh-
old parameters. The most important threshold pa-
rameter in epidemiology is a basic reproduction
number R0, giving a number of newly infected in-
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dividuals in a fully susceptible population caused
by one infected [7]. For SIR model R0 = α/β . If
R0 > 1 there is an epidemic outbreak, otherwise
— no outbreak. In the context of reaction-diffusion
SIR epidemic model, the concept of global inva-
sion threshold was recently introduced [13]. This
global invasion threshold is determined by a min-
imal flux between locations in order for epidemic
to affect the majority of locations. We discovered a
new invasion threshold in a bidirectional SIR model
which is determined by the return rate ω$ or by the
time an individual spends on distant locations. The
existence of this threshold is evident from Fig. 2
where the dependence of the attack ratio % on the
return travel rates ω$ for a bidirectional SIR epi-
demic on a uncorrelated scale-free network [11] is
presented. Attack ratio % gives a fraction of the
overall population affected during an epidemic. We
fixed total flux at a value sufficient for a global out-
break in a reaction-diffusion system. As one ob-
serves for low return rates the attack ratio is close
to unity as it is expected for given parameters α
and β thus witnessing a global outbreak. However,
with growing values of the return rate, the attack
ratio drops almost to zero reflecting the absence
of the global outbreak. The regime of high return
rates corresponds to small dwelling time on dis-
tant locations and thus an infected has not enough
time to transfer an infection to susceptibles in un-
affected locations before returning home. Thus we
can define a threshold value of the return rate deter-
mining with a high probability the existence of the
global outbreak (in Fig. 2 ω$

threshold ( 103 $ 104).
If we consider the dynamics under the threshold,
where the global outbreak occurs, there are still
significant differences in the behaviour of bidirec-
tional and reaction-diffusion models. In the inset
of Fig. 2 we present the dependence of a peak time
' =
´

I(t)tdt/
´

I(t)dt or a time from the start of
an epidemic to the the average moment when the
number of infecteds reaches its peak. We see that
by varying return rate we can obtain ten-fold in-
crease in the peak time in the bidirectional model as
compared to the reaction-diffusion model, which of
course do not depend on return travel rate and only
on the total flux. Elsewhere [6] we showed analyt-
ically that attenuation of the bidirectional epidemic
on a lattice as compared to reaction-diffusion model
is a generic feature of a bidirectional model.

To assess the mutual impact of major travel pa-
rameters, i.e. forward and backward (return) travel
rates as well as total flux on the dynamics of bidi-
rectional SIR epidemics we calculated the attack
ratio for various travel parameter values in a lat-
tice of homogeneous locations. The results are pre-
sented in Fig. 3. One observes that the global in-
vasion threshold in terms of the total flux rate ω at
low values of travel rates ω+, ω$ still exists in the
bidirectional system. This confirms again the sim-
ilarity of both reaction-diffusion and bidirectional
framework at low travel rates, what we showed
elsewhere. However for increasing total flux (go-
ing away from the beginning of coordinates), we
observe that for small value of return rates there is
a global outbreak, but for increasing return rate we
arrive in the region of no global outbreak, even for
the same value of a total flux rate ω . This effect
could not be observed in the reaction-diffusion sys-
tem, which is fully determined by a total flux, and is
specific for the bidirectional model. Except upper
left region of no epidemic outbreak one can also ob-
serve an another smaller outbreak-free region in the
low right corner. This region corresponds to high
values of the forward travel rates and is unrealis-
tic, because then individuals would spent most of
the time on distant location compromising the no-
tion of a home location. However the effect is very
similar to the case of high return rates, because in-
fected individuals spent so little time at home that
they could not infect significant number of people
there.

4 Conclusions

Summarizing, we have investigated a bidirectional
epidemiological model, explicitly incorporating the
highly regular movement patterns of human. The
model reflect the tendency of humans to travel
among a few most preferred locations bidirection-
ally. We systematically compared bidirectional
model to the standard, also explicitly incorporat-
ing travel behavior of the host, reaction-diffusion
epidemic model on regular topology and complex
networks. We showed that as compared to an
equivalent reaction-diffusion system, bidirectional
travel with the same total fluxes between locations,
leads to significant attenuation of epidemic spread.
The global invasion threshold in terms of total flux
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Fig. 3: Attack ratio % in dependence on forward
travel rate ω+ and backward (return) travel
rate ω$ for a bidirectional SIR epidemic in
a homogeneous one-dimensional lattice of
locations. Black lines corresponds to con-
stant values of the logarithm of the total flux
rate ω . Dark red regions corresponds to an
infection outbreak, dark blue — to the ab-
sence of epidemic. Infection rates α = 1,
recovery rate β = 0.1. Lattice consists of
100 nodes with 1000 individuals each. Re-
sults were averaged over 50 stochastic real-
isations.

between locations known in the reaction-diffusion
framework (SIR epidemic) still exists in bidirec-
tional model at low travel rates. This indicates the
equivalence of reaction-diffusion and bidirectional
approaches in this regime. However bidirectional
epidemiological model exhibits a new global inva-
sion thresholds in terms of return travel rates. Even
in the regime of global outbreak in terms of the
total flux of individuals, high enough return rates
would lead to the extinction of epidemic. In the
light of new findings we convinced that bidirec-
tional model provides a framework for incorpora-
tion of the abundance of data on human mobility
available today into comprehensive computational
epidemiological models.
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Characterizing human mobility patterns is critical to
a deeper understanding of the effects of human move-
ment. For example, the impact of human travel on
the environment cannot be understood without such a
characterization. Similarly, understanding and model-
ing the ways in which disease spreads hinges on a clear
picture of the ways that humans themselves spread [2].
Other examples abound in fields like urban planning,
where knowing how people come and go can help deter-
mine where to deploy infrastructure [1].

Human mobility researchers have traditionally relied
on surveys and observations of relatively small num-
bers of people to get a glimpse into the way that hu-
mans move about, for instance by studying airline flight
paths [4]. These methods often result in small sample
sizes and may introduce inaccuracies due to intentional
or unintentional behaviors on the part of those being
observed. However, with the advent of cellular wireless
communication, ubiquitous networks are now in place
that must know the location of the millions of active cell
phones in their coverage areas in order to provide the
phones with voice and data services. Given the almost
constant physical proximity of cell phones to their own-
ers, location data from these networks has the potential
to revolutionize the study of human mobility.

In this work, we explore the use of location infor-
mation from a cellular network to characterize human
mobility in two major cities in the United States: Los
Angeles (LA) and New York (NY). More specifically, we
analyze anonymous records of approximate cell phone
locations at discrete times when the phones are in ac-
tive use. Our data set spans two months of activity for
hundreds of thousands of phones, yielding hundreds of
millions of location events. We then compile aggregate
statistics of how far humans travel daily. We introduce
the concept of a daily range, that is, the maximal dis-
tance that a phone, and by assumption its owner, has
been seen to travel in one day. Finally, we make var-

ious observations about these daily ranges in the two
populations of interest.

Our results show significant differences in mobility
patterns between Angelenos and New Yorkers, and bring
out unexpected aspects of human behavior. Our main
observations are as follows:

Fridays are Weekend Days: When considering
daily ranges, Fridays are more similar to Saturdays and
Sundays and therefore we treat them as weekend days.

Weekends are Varied: Although more daily range
maxima occur on weekends, this does not necessarily
correlate to greater distances traveled on weekends. Our
results show that weekends tend to be more variable
than weekdays. Some people travel less on weekends
and some travel more, when compared to their typical
weekday behavior.

Angelenos Commute Farther: There is a non-
trivial differences between the weekday travel patterns
of Angelenos and New Yorkers. Specifically, the median
for weekday daily range in LA is 34% larger than in NY,
whereas the 25th percentile weekday LA ranges are 53%
larger.

This trend of Angelenos traveling farther than New
Yorkers continues when examining maximum daily ranges.
Our results show that people living in the LA area travel
about 20% farther than those from the NY area, regard-
less of the percentile considered.

Commuting Estimates: The median daily range
of people in the greater NY and LA regions are 3.8 and
5.0 miles, respectively. Moreover, as shown in Figure 1,
cell phone users in downtown LA have median daily
ranges that are nearly double those of their Manhattan
counterparts.

Interestingly, even though the data released by the
US Census Bureau [6] indicates that people in NY have
the longest commutes in the nation by time, our data
suggests that people in NY have significantly shorter
commutes than people in LA by distance. If not nec-
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essarily contradictory, our data indicates that commut-
ing is done differently in NY and LA. It is possible that
generally slower forms of transportation, such as pub-
lic transport or walking, are responsible for the long
commute times reported in NY.
City of Neighborhoods: We found that variations

in mobility are striking even between subareas of the
same city. Within LA, variations span from 1.3x (at the
median) to 3x (at the 98th percentile). The differences
within LA itself are thus equal to, or perhaps even a bit
greater than, differences between LA and NY.
Differences within NY are even greater — variations

span from 1.8x (at the 75th percentile) to 4.2x (at the
98th percentile). The map overlays in Figure 2 also
show that LA is more self-similar than NY.
Manhattanites Travel Very Far: Examining max-

imum daily ranges only for residents of the city centers
reveals an interesting reversal of the general pattern of
Angelenos traveling farther than New Yorkers. Here
the medians are at 69 and 29 miles for Manhattan and
downtown LA, respectively. For the 75th percentiles the
corresponding numbers are 735 and 129 miles. These
numbers show that when Manhattanites travel far, they
travel very far and farther than Angelenos.
US vs Unnamed European Country: It is possi-

ble to compare some of our statistics to those computed
by González et al. for an Unnamed European Country
(UEC) [3]. Our maxima show that in the greater LA
area, 50% of people traveled more than 36 miles on
at least one day, and that in the NY area 50% trav-
eled more than 27 miles. This is in sharp contrast to
González et al.’s findings that nearly 50% of all the peo-
ple in their study remained within a 6-mile range over
a 6-month period. The LA maxima are more than 5x
larger than those in UEC and the NY maxima are more
than 4x larger. While it is not surprising that the num-
bers in the US are larger, as the US is more car-oriented,
the magnitude of the difference is unexpected.
Overall, we conclude that the study of operational

records from cellular networks holds great promise for
the large-scale characterization of human mobility pat-
terns without compromising individual privacy. For
more details on our data set, our analysis methodology,
and our results, we refer the reader to our full paper [5].
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(a) Manhattan (b) Downtown Los Angeles

Figure 1: Maps giving a visual representation of the median daily ranges of cell phone users in Manhattan and

downtown Los Angeles. The radii of the inner, middle, and outer circles represent the 25th, 50th, and 75th percentiles,

respectively, of these ranges across all users in a city. Ranges for all users in a city are made to originate in a common

point for clarity of display. The two maps are drawn to the same scale.

(a) New York and New Jersey subregions (b) Los Angeles subregions

Figure 2: Maps giving a visual representation of the median daily ranges of cell phone users in subregions of the

LA and NY metropolitan areas. The radii of the inner, dashed, and outer circles represent the 25
th, 50

th, and 75
th

percentiles, respectively, of these ranges across all users in a subregion. Ranges for all users in a subregion are made

to originate in a common point for clarity of display. The two maps have different scales.
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For the last decade, activity-based models have set the standard for modelling travel demand. 

The idea behind these models is that travel demand is derived from activities that individuals 

and households need or wish to perform. As a result of this, travel in itself is often also 

derived in these models by means of simple categories of travel, such as commuting, leisure, 

or business, as if these activities exist separate and are self-contained.  

 

Only recently, social networks have been added to these traditional classifications, as a new 

possible predictor of travel behaviour and movement. Researchers such as Urry and others 

(see Urry, 2006; Sheller, 2006; Larsen, 2006) ) have argued that flows and meetings of people 

produce small worlds which require connections and meeting places; a phenomenon which is 

also known as the new mobilities paradigm. The paradigm states that mobility of people in 

our postmodern era is no longer restricted to ‘corporeal mobility’ in which people (and goods) 

have face-to-face contacts. These contacts are extended and complemented with contacts 

mediated by interfaces like mobile phone, e-mail, Blackberry, etc. the so called ‘face-to-

interface-to-face’ contacts. In trying to understand this completion, one should focus on the 

interaction and ‘interconnections’ (Larsen, 2006) between these mobilities. In other words: 

travel and social meetings require systems of coordination using virtual and communicative 

travel in-between physical travel and meetings. With this understanding of social networks as 

a facilitator of virtual as well as physical networks and the movements within them, travel 

becomes a result of human networking (see for some research on how to model this Dugundji, 

2008; Axhausen 2008; Arentze 2008). 

 

ICT developments have enabled communication with distant others without physical co-

presence, which makes that ‘face-to-face’ meetings are not a prerequisite to build or maintain 

social contacts any more. A large body of literature on the transportation impacts of specific 

ICT applications has been produced. Although recent publications from physics seem to prove 

the contrary, it is widely believed in transportation research that it is crucial to understand the 

geography of the social networks to which the travellers belong, if one wants to understand 

the destination choices of the travellers. Recently, Mok and Wellman (2007) have contributed 

to this line of research. Axhausen has shown for instance how to examine distance decay 

functions and market shares of face-to-face meetings, phone, e-mail and SMS (see Axhausen, 

2004, 2007). Axhausen and Frei (2007) have shown geographical size and structure of global 

social networks, where Frei and Axhausen have shown distance decay of different new media 

that are used in maintaining the social network. 

  

 

While these papers contribute  a lot to the understanding of the spatial distributions of 

individuals, they do not lay emphasis on the relationship between virtual and physical travel 
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in social networks on the one hand and the corresponding spatial and temporal distributions 

on the other hand.  

 

The main research question that we therefore want to address is whether behaviour in terms of 

activity-space use by social network members can be explained (or predicted) by their usage 

of new ICT means in general and mobile phone in particular. To the best of our knowledge, 

this is the first study that aims to examine the relationship between a travel activity space and 

a phoning activity space (in short defined here as the square area that a person would have to 

cover if he wanted to meet distant others all over this area face-to-face, and as a fact now is 

having contact with  by mobile phone contact (in other words: ‘virtually meeting’). This the 

face-to-interface-to-face contact) and the travelling activity space for members that belong to 

the same social network (with the ‘ego’ as the central person, surrounded by his ‘alters’). If 

such a relationship can be found, phoning activity geographies can be used as an 

approximation (or prediction) for travel geographies, leading to more and larger quantities of 

data (and thus potentially lower error-bounds) that can be relied upon for training and testing 

the derived activity-spaces in model environments, given the large inflow of spatial-temporal 

information which can be extracted from mobile devices. The methodology could contribute 

to the existing literature and research that has been carried out in the field of individual 

accessibility measures, and may finally be used as input for a destination choice component of 

activity-based travel demand models. Apart from the obvious applications in transportation 

models, added insight can also lead to a better understanding of the basic laws governing 

human mobility. Indeed, as many scientists have pointed out, the goal of social sciences is not 

simply to understand how people behave in large groups (as it was studied in Gonzalez et al. 

2008), but to understand what motivates individuals to behave the way they do (Editorial 

Nature, 2008).  

 

The main research goal that has been outlined above (degree of possible prediction of 

travelling activity spaces based on phoning activity spaces by social networks members), 

needs to be further specified in two additional specific research questions.  

First of all, one obviously needs to know how the geographies of mobile phone usages by 

travellers that maintain social networks look like. 

Secondly, one is obviously also interested in what kind of usages of mobile phone during 

travelling show maintenance of social networks and what usages don't show maintenance.  

 

In the workshop we want to focus on the construction of social network and phoning 

geographies, relying upon existing measures of spatial distributions that are based on daily 

activity spaces. We want to higlight some (im)possibilities in this context. The results of a 

first analysis are focused on the relations between mobile phone usage and travelling. For 

instance how much distance respondents travel compared to their phoning distances.  

 

We found that the following points need to be addressed further: 

- The new mobilities paradigm is about corporeal, digital, virtual and even mental 

mobilities. All these mobilities show coordination patterns, interactions, etc. So far, 

researchers and scholars have focussed on corporeal travel and mobile phone 

interactions, partly because the data availability, partly also because of the fact that 

corporeal travel and mobile phone are both mobile. These spatial and temporal 

interactions are self-evident. But e-mail use has become mobile as well (for instance 

Blackberry, mobile internet via mobile phone, etc.), so the spatial and temporal 

interaction of corporeal travel, mobile phoning and e-mailing looks very interesting. 

Book of abstracts for NetMob 2010 54



So we are looking forfeasible data sources to use for constructing the spatial and 

temporal interactions. 

- Social networks are maintained by human interactions. For instance by phoning or     

e-mailing each other (and consequently after a while meeting each other face-to-face). 

We still need to find out how to present such multi-interaction manifestations, what is 

a useful way to present social networks and ‘their’ multi-level (or: corporeal and 

digital and virtual and even in a conceptual way mental!) mobilities?   

- One of the main methodological issues in these humanistic studies concerns the 

difference between stated preferences (‘I’m use my phone five times a day’ etc.) and 

revealed facts (an individual using his phone six times a day). In a more general way 
we still need to discuss which survey methods can be validated with these revealed facts 

(which don’t) and how these validation should be developed.  
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In recent years, a new approach for estimating people's movement in cities through mobile 
phone traffic analysis has been developed. Compared to the traditional methods of urban 
surveys, the use of aggregated and anonymous cellular network log files appears to be a 
promising tool for large-scale studies with notably smaller efforts and costs. 
In particular, the use of mobile traffic phone data shows many advantages, for example: 
 

- large data samples, proportional to the pervasiveness of mobile phone use; 
- monitoring of any area, given the extent of mobile phone network coverage; 
- generation of data almost in real time; 
- high spatial and temporal resolution, compared to traditional and institutional data 

sources. 
 
However, despite the positivist approach to the new methodology, additional evidence is 
needed to show how cellular network signals correlate with the actual presence of people in 
the city, how this source of information can be used to characterize and to map different urban 
situations and their occupants and how this tool could support urban planning and urban 
policies. 
The presentation will deal with this topic by showing the results of a research carried out by a 
Department of Architecture and Planning of the Politecnico di Milano research team, during 
the 2009, for Telecom Italia, the main Italian mobile phone operator. 
Purpose of this paper is to address this shortcoming by presenting the results of a survey 
effectuated with Telecom's cell-phone-network data in Lombardia Region (Italy) during the 
year 2009, as a promising approach for characterizing and mapping urban domains and their 
occupants, assisting traditional databases and analyses of urban dynamics. 
The aim was to assess the contribution of cellular phone traffic data for understanding and 
analyzing urban dynamics and to propose possible uses of this kind of information in urban 
planning. 
In order to analyze the complex temporal and spatial patterns of mobile phone activity, we 
were given access to data covering the whole Lombardia Region (Northern Italy), provided by 
Telecom in form of Erlang, a measure which describes the mobile phone activity as a function 
of position and time, recorded at a spatial resolution of about 250 meters, every 15 minutes in 
the period January -October 2009. 
 
The first step of our research was the analysis of mobile phone activity trends for some 
already known urban sectors, subjects of previous research, selected on the basis of present 
land-use patterns of population and activities, densities and socio-economical profiles. For 
each of these urban situations we studied the Erlang trends during a typical week, to verify 
temporal and spatial patterns of cellular phone usage for similar urban sectors in terms of 
population and activities characteristics. 
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The results show that mobile phone activity patterns can provide useful information for 
interpreting the specific dynamics of different urban situations such as monofunctional 
residential zones, railway stations, urban sprawl areas, factories. 
In the second step of the research, we focused on the reliability of Erlang data with respect to 
traditional data sources. 
 
We therefore compared mobile phone data of the main cities of Lombardia Region and their 
population dynamics1 during a typical weekday and we found a strong correlation between 
these variables proving the potentialities of Erlang data for describing the variability of daily 
changes of urban population at the municipality scale. 
 
We also worked on mobile phone traffic data at the Milano urban region scale2, during the 
2009 International Design Week, a leading event which concentrates its activities in the Fair 
area and in hundreds of places within and outside the city. 
We therefore performed several analysis to evaluate the potential contribution of Erlang data 
to describe, to represent and to manage an event, from the beginning until its conclusion. We 
mapped and interpreted the spatial configuration of mobile phone activity in order to highlight 
which parts of the city showed a significant concentration of traffic comparing the days when 
the event occurred with other days without events.  
We defined a set of significant spatial operations between Erlang matrixes aimed at underline 
the territorial effects at a wider scale and at different temporal patterns of the event such as, 
for example, ratio between nighttime and daytime mobile phone activity, ratio between 
weekdays and holidays.  
This type of information, if suitably interpreted, may be useful to assess the consequences of a 
specific event on the entire urban system in its spatial and temporal patterns and to evaluate 
its impacts on the whole urban system (mobility, congestion, tourism). 
Urban planning traditional data sources are mainly based on static statistical surveys and are 
not able to catch the variability in the intensity of urban space’s use by present population. 
Further analysis focused on the correlation between the intensity of telephone calls at certain 
times of the day with the spatial configuration of residents and workers in the Milan area. 
Preliminary results showed that telephone traffic data can effectively help to represent and to 
describe, dynamically over time, the intensity of activities and of presences at the urban scale. 
Because of its spatial and temporal resolution, mobile phone data constitute an interesting and 
unique source of information on urban uses. Indeed, if we consider the observed and 
aggregated telephone traffic as the result of individual behaviors and habits, we conclude that 
mobile phone data can provide information, which changes over times, on urban contexts, and 
can bring to new interpretation of urban dynamics. 
 
This study therefore suggests that cell-phone-network data has the potential to drastically 
change the way we view and understand the urban environment. 

                                                           
1
 The latter was obtained from a traditional mobility data-base, the 2002 Lombardia Region Origin-

Destination survey, which is widely used in urban and traffic studies. 
 
2
 The Milano Urban Region is defined as an extended region that go far beyond the traditional 

administrative structure. Milan is the main center of the urban region which is characterized by a 
stratum of dense urbanization stretched over the ancient framework while the bordering provinces 
have been incorporated in the strongly urbanized and enlarged urban region. 
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Secondly, it explores whether mobile network data can reveal the significant time-dependent 
variation which is missing from traditional analysis and can thus describe cities dynamically 
over time.  
Another conclusion is that urban planning competences, together with specific knowledge on 
urban systems and on the distribution of activities and population within the territory are 
needed to correctly interpret mobile phone data and to characterize and to map urban contexts 
and their occupants. 
In the final phase of the research activity, we presented our work to different stakeholders, 
belonging to private and public sectors in order to collect ideas and proposals on possible 
applications of this approach to different topics such as event management, civil protection, 
mobility monitoring, urban rhythms analysis and mapping; we have seen a great interest from 
most of them in terms of the potential contribution of this data to provide new decision tools 
for the development of action and policies in different sectors. 
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Analyzing cell-phone mobility and social events

Francesco Calabrese∗, Giusy Di Lorenzo∗, Francisco Pereira∗, Liang Liu∗, Carlo Ratti∗

Abstract
Location-based services and traffic planning may benefit

from predicting leisure preferences for people living in a

particular location. To make such predictions, surveys are

often administered, but surveys are notoriously expensive

and easily become out-of-date. Recently, researchers have

proposed to automate the process of extracting preferences

by analyzing user-generated content. Here we propose to

analyze digital information that is implicitly generated by

users while they carry their mobile phones. We show that, by

analyzing mobility traces we are able to associate locations

with travel demands for different types of social events.

1 Introduction
According to the US Federal HighwayAdministration

a “special event” is an occurrence that “abnormally in-
creases tra!c demand,” unlike an accident, or construc-
tion and maintenance activities, which typically restrict
the roadway capacity. Planned Special Events (PSEs)
include sporting events, concerts, festivals, and conven-
tions at permanent multi-use venues. They also include
less frequent public events, such as parades, fireworks
displays,bicycle races,seasonal festivals,etc.

The often mentioned outburst of mobile phones
during late 20th century accompanied by the more
recent trend of sensors and advanced communication
systems (e.g. GPS, digital cameras, Bluetooth, WiFi)
allow for unforeseen amounts of data from urban areas
through which to study both groups [1], individuals
[2] or both [3]. On the other side, the emergence
of web 2.0 techniques, especially geospatial enabled
web services, such as upcoming.org, etc, enables the
citizens organize and inform the audience in a real time
way. The convergence of these two trends in ubiquitous
computing open a new opportunity and challenge to
understand the travel demand triggered by PSE.

In our work, we analyse fine grain anonymized indi-
vidual mobility information for travel demand forecast-
ing in the context of PSE [5]. Both the process followed
and the data precision are thus far novel and unique to
our knowledge.

∗MIT Senseable City Lab, fcalabre@mit.edu

2 Extracting Preferences for Social Events
To determine the social events people living in certain
areas go to, we use two datasets:

• Location of Mobile Phones. We process 130 millions
of anonymous location estimations - latitude and
longitude - from roughly 1 million mobile phones
in greater Boston (an area of 15km2). The dataset
consists of anonymous cellular phone signaling data
collected by AirSage [4]. The finest-grained estima-
tion of location we are able to achieve is represented
by a cell of 500 x 500m2.

• Boston Globe website. We crawl the “Boston Globe
Calendar” website to extract social events. This
website is a reputable and comprehensive list of so-
cial events in Greater Boston (more than 500 daily).
The events are organized in 14 categories: Arts &
Crafts, Business & Tech, Community, Dance, Edu-
cation/Campus, Fairs & Festivals, Food & Dining,
Music, Other, Performing Arts, Shopping, Sports
& Outdoors, Visual Arts, and Cinema.

By using those two datasets, we generate pairs of
the type:

• home|destination - For each user, we determine
her home location and her set of destinations, i.e.,
we extract trajectories and generate tuples of the
form home|destination. Our dataset contains
location estimations for mobile phones. To extract
mobility traces from location estimations, for each
user, we infer her stops (places where the user has
stopped for more than an hour), and we then collect
the trajectories that originate from those stops. A
trajectory is set of subsequent physical locations
visited by the user such that the time interval
between two subsequent points is less than twelve
hours. We pick the user’s home location to be the
most frequent stop at night (i.e., between 10pm and
7am).

• destination|event – We associate destinations
with types of social events by crawling the event
section of the “Boston Globe” website. We select
the destinations (other than home locations) at
which users stay while big social events are taking
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(a) Boston Red Sox vs. Bal-
timore Orioles at Fenway
Park, 2009-9-9

(b) Shakespeare on the
Boston Common, 2009-8-13

Figure 1: Examples of events in Boston. Figures show
the locations of the events (diamond) and estimated
origins distribution of people attending the events:
shade from light (low) to dark (high).

place. We consider only users who stay for at least
70% of an event duration, and only events that are
“unique” - no other big event is taking place within
the radius of 1 km at the same time. In so doing, we
are able to create tuples that associate destinations
with social events. This results in 58 types of social
events across 7 locations [5].

• home|event - We combine pairs in the previ-
ous two points (home|destination pairs and
destination− event pairs) to obtain, for each
home location, the list of types of social events its
residents go to.

3 Methodology
Our methodology for describing events through mobility
choices is based on the use of the estimated origins of
people attending to the events. Figure 1 shows some
examples of spatial variation of the estimated origins of
people attending different events.

Sport events such as baseball games attract about
double the number of people which normally live in
the Fenway Park area. Moreover, those people seem
to be predominantly attended by people living in the
surrounding of the baseball stadium, as well as the south
Boston area (Figure 1(a)).

Performing arts events such as the “Shakespeare
on the Boston Common” (Figure 1(b)) which his held
yearly, attract people from the whole Boston metropoli-
tan area, and very strongly people which live in the im-
mediate surroundings of the Boston Common (average
distance lower than 500 meters). The number of people
attending the event is instead about 1.5 times greaten
than what it is usually found in the Boston Common.

By comparing the two images in Figures 1(a) and
1(b) it is easy to understand that most of the people

attending to one type of event are most probably not
attending the other type of events, showing a comple-
mentary role of sports and arts events in attracting dif-
ferent categories of people.

Since the origins of people attending an event are
strictly related to the location and type of events, we ar-
gue that by using just this information we would be able
to predict the type of event. If a relationship between
origin of people and type of event is found, it would be
possible to determine the abnormal and additive travel
demand due to a planned event by just considering the
type of that event. It would then be possible to pro-
vide a city with critical information on which to take
decisions about changes in the transportation manage-
ment, e.g. increasing the number of bus lines connecting
certain areas of the city to the venue of the event.

In the next section we will show 8 different models
that we have developed to perform the prediction of the
type of event starting from the mobility data associated
with it.

3.1 Prediction The task at hand is to understand
the relationships between events and origins of peo-
ple. Particularly, we seek for the predictive potential
of events in respect to mobility phenomena. This can
be seen from two perspectives: a classification task in
which we want to understand how a vector of features
(e.g., attendees origin distribution) predicts a classifica-
tion (e.g., an event name or type); a clustering task, in
which the feature vectors are distributed according to
similarity among themselves.

We used the Weka open source platform [6], which
contains a wide range of choices for data analysis. For
classification, we use a Multilayer Perceptron, with one
hidden layer and the typical heuristic of (classes +
attributes)/2 for the number of nodes. For clustering,
we apply the K-Means algorithm (with K = # event
types or K = # event places). In each experiment,
we used 10-fold cross-validation, in which a tenth of the
dataset is left aside for testing the algorithm while using
the remaining for training. This train-test process is ran
10 times (one for each tenth of the dataset).

4 Experiments
We aggregated attendees in terms of zipcode area and
distance to event, discretized in 2000 bins. We did so
because if we were to use a geographic coordinate of
individuals, the resulting data would be sparse. Instead,
by aggregating data geographically, we could find useful
patterns. To avoid the strong bias towards attendees in
the neighborhood of the event, we also remove those
that live in the same area of the event (their home
location falls in the same 500m x 500m cell of the event)
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because we would not be able to distinguish between
event and home.

For each event, we created an instance that contains
the corresponding attendee origin pattern distribution,
evaluated at the level of the zipcode area (with average
size of 4.5km2). For example, for one showing of
the Shakespeare’s “Comedy of Errors” at the Boston
Common, we have 96 attendees (users monitored by the
system, with a share of about 20% of the population)
and then count the total number of people coming from
each zipcode. Our goal is to test whether similar events
show similar geographical patterns. More specifically,
given origin pattern distribution, the goal is to predict
the type of event.

We met this goal by testing 3 prediction models,
and we measure their accuracy in terms of fraction of
correctly identified event types.

Before training our algorithms, we analyzed the
overall distribution of events to get the classifier base-
lines. The principle is to know the accuracy of a clas-
sifier that simply selects randomly any of the 5 event
types or that always chooses the same event type, and
use them as a baseline to compare for the improvement
of the quality. The average value of this baseline is
23.34% (standard deviation of 4.03) for random classi-
fication. Differently, if the classifier chooses the event
with highest probability (performing arts), the accuracy
will be 35%. The first experiment was to use all vectors
as just described, applied to a Multilayer Perceptron.
The result is a surprising 89.36% of correctly classified
events in the test set. From the clustering analysis, we
see that mostly attendees come from the event’s zipcode
area, suggesting that people who live close to an event
are preferentially attracted by it. To focus on effects
other than close proximity, we created a new prediction
model considering only people coming from zipcode dif-
ferent from the event’s.

The result is 59.57%, which still indicates the
recurrence of origin patterns for events of the same type.
A clustering analysis brings the distributions that we
can see in Figure 2.

5 Conclusions
Based on our analysis of nearly 1 million cell-phone
traces we correlated social events people go to with their
home locations. Our results show that there is a strong
correlation in that: people who live close to an event
are preferentially attracted by it; events of the same
type show similar spatial distribution of origins. As a
consequence, we could partly predict where people will
come from for future events.

References

(a) Cinema (b) Family

(c) Music (d) Performing arts

(e) Sports

Figure 2: Spatial visualization of clusters centroids.
The circles correspond to the zipcode areas with value
greater than zero. The shade from light (low) to dark
(high) is proportional to the value.
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Abstract - We use mobile phone data to study the impact 
of two weekend festivals – Fête de la Musique and Nuit 
Blanche –  on the city of Paris compared with a standard 
weekend. Using the mobile data we can study collective 
dynamics in the city and separate normal fluctuations from 
anomalous fluctuations, i.e. spatio-temporal changes caused 
by the two events. We also detect cultural scenes, allowing 
us to more precisely identify urban usages and the relative 
audiences for the different events in each festival.

Keywords - Mobile phone data, complex networks, urban 
dynamics.

Introduction

The Economist recently devoted an issue to «The Data 
Deluge», the vast potential of the exponential availability of 
massive volumes of digital data [1]. These data are 
increasingly used to reveal urban dynamics in ever more 
refined spatial and temporal terms [2]. In recent years, works 
were developed to reveal the pulse of the city - Milan [3], 
Graz [4], Rome [5], New-York [6] - and to understand 
individual and collective movements [7-9]. The mobile 
phone data were also mixed with transport data [5], business 
data [10], photo activity [11]... The introduction is detailed 
in the paper but outlined in this abstract. In particular, we 
present the sociological characteristics - differences, 
similarities and regularities - of the two events for Paris, 
explaining the choice of methods deployed in the paper.

From communications to paths

The mobile phone data

We have access to data provided by the Orange 
operator for the weekends of Fête de la Musique, an annual 
national music festival (June 21-22 2008) and Nuit Blanche, 
an art festival (October 04-05 2008), and a weekend when 
there was no event liable to have a major impact on the city 
(October 18-19 2008). For each weekend the data are 
anonymous and include the start and end time of the 

incoming and outgoing calls, the handovers (cell changes) 
during a call and the incoming and outgoing text messages. 
Finally, the data are collected by antennas in real time.

The data can be considered to be representative of the 
communication activity of Ile-de-France residents. Orange 
has a market share of around 40% and mobile penetration in 
Ile-de-France is around 120%. We therefore have access to 
the communications made entirely or partially within the city 
of Paris by, respectively, 1,148,552, 1,143,687 and 1,163,273 
anonymous individuals during Fête de la Musique, Nuit 
Blanche and the standard weekend.

The mobile phone network

All the measurements were collected by Parisian 
antennas. The Paris mobile network is made up of 3,692 
antennas on 1,365 cell sites; we only have these cell sites' 
geolocation. We take each cell site to cover a Voronoi region: 
every point in the diagram is at an equivalent distance from 
the cell sites [12]. The area of the city is 105km2, while the 
area covered by the network is a little larger – 127km2 – 
because of boundary effects. This technique breaks the city 
down into small areas equivalent to 300m x 300m squares.

Figure 1. The mobile phone network - nodes (yellow) and edges (blue).
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We constructed the Paris mobile network in the 
following way. We see the cell sites as nodes in the mobile 
network; it is important to remember that each site is made 
up of several antennas. The edges in the network are thus all 
the existing connections between the adjacent sites. The 
length of each edge is measured very simply by the 
geographic distance between the furthest sites. This gives us 
a spatial network of 1,365 nodes and 3,979 edges. [Figure 1]

In conclusion, we studied the city of Paris purely in the 
form of its mobile network.

Individual dynamics

We consider all the measurements collected to be the 
locations of an anonymous individual at a given moment of 
time, whatever the communication type. We focus on 
periods of fifteen minutes rather than on real time. As a 
consequence, we duplicate the communications which are 
spread over several quarter-hour periods. We then transform 
the communications into individual trajectories: each end of 
a call and start of the next call thus become an individual’s 
trajectory, giving us a set of trajectories performed by 
individuals geo-located by the antenna they are using.

As we do not have the geographic location of the 
antenna, we make the following adjustment. The variable 
Piik(T) measures: on the one hand, the static presence of an 
individual using an antenna located on a cell site i, and on 
the other hand, the path made by an individual between 
antennas in a single cell site i. The variable Piik(T) thus 
measures the path made by an individual k between two 
antennas located in two different cell sites i and j. These two 
different cell sites must be adjacent. When this is not the 
case, we use the A* algorithm to predict trajectories [13]: the 
shortest path between an initial node and a final node 
(adjacent cell sites), taking into account the geographic 
distance between the two nodes. Another predictive 
algorithm could have been used; we chose this one for 
reasons of simplicity. Finally, we eliminated all the 
duplications of one individual during a fifteen-minute period.

In conclusion, we have, respectively, 19,355,414, 
20,671,622 and 20,944,771individual trajectories for Fête de 
la Musique, Nuit Blanche and the standard weekend.

Collective dynamics

In this paper, we are not interested in individual 
dynamics but rather in collective dynamics within the city of 
Paris. We aggregate these trajectories in terms of nodes and 
edges in the mobile network:

Figure 2 shows the temporal dynamic of these 
trajectories for the three weekends. If the three weekends do 
not really differ in terms of the total number of traces, then 
the temporal profiles will give us relatively little 
information. The profiles are similar: the difference between 
Nuit Blanche and the standard weekend is slight, and there is 
nothing to suggest that it is caused by the event itself. The 

difference between Fête de la Musique and the standard 
weekend is substantially greater: the extra activity during the 
Saturday morning continues during the afternoon; there is a 
further peak between 9 and 11pm. The apparently greatest 
impact of Fête de la Musique is observed on Sunday; Paris’ 
collective hangover is a repercussion of this. This 
considerable difference on Sunday thus explains the lower 
number of trajectories for Fête de la Musique. Finally, it is 
worth noting that the city does not switch off during the 
night from Saturday into Sunday, unlike the previous night.

Figure 2. The total number of paths : Fête de la Musique (blue), Nuit 
Blanche (green) and Standard Week-End (red).

From routines to events

The impact of the two events on the city compared with 
a standard weekend cannot be analysed using the previous 
approach. We therefore think it is worthwhile to extend the 
analysis by distinguishing normal fluctuations from 
anomalous fluctuations.

Normal versus anomalous fluctuations

Mobile data have already been used to draw a 
distinction between fluctuations at city level [14]; we 
adapted it to our particular context. Indeed, we have just one 
standard weekend as a reference. The number of anomalous 
paths AP measures the discrepancy between urban behaviour 
during the events EP and during the course of the standard 
weekend NP:

Anomalous behaviour will thus be defined by 
comparison with the standard deviation:

σ (T ) = 1
N
. Aij (T )

2
ij∑

We take into consideration the fact that we only have 
one standard weekend as a reference: the error is thus 25%. 
Anomalous fluctuations are defined as follows:

APij (T ) ≥ 0.25.σ (T )

We also take into account the fact that the measurement 
taken at a cell site is much higher than between sites; we 
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therefore perform the previous calculation separately for the 
two situations and then reaggregate them.

Figure 3. Standard Week-End: the normal fluctuations.
Saturday, 10:45pm.

Musical and artistic dynamics

Figure 2 (red curve) and Figure 3 show the normal 
fluctuations seen for the city of Paris, in other words during 
the standard weekend. The urban dynamic is fairly 
conventional for a weekend: at night the city never switches 
off, unlike on weekdays; Sunday differs greatly from the 
other days of the week, particularly in the afternoon. Figure 
4 shows the anomalous fluctuations caused by the two events 
in the city of Paris.

Figure 4. The net anomalous paths.
Fête de la Musique (blue) and Nuit Blanche (green).

Fête de la Musique quickly and substantially upsets the 
normal order in the city because from the morning onwards 
and throughout Saturday day anomalous fluctuations account 
for one third of normal fluctuations. The size of the event 
requires organisation in terms of concert venues. The first 
concerts, aimed mainly at young people and families, begin 
in the early afternoon. 

While the standard Saturday peaks between 7.15 and 
7.29pm, the Saturday of Fête de la Musique peaks much 
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later, between 11.15 and 11.29pm: there are thus as many 
anomalous fluctuations as normal fluctuations. During this 
period, Fête de la Musique doubles the number of completed 
trajectories. In this way the highly popular event extends the 
Parisian evening. This later-than-normal time marks the end 
of part of Fête de la Musique: the very large mass concerts 
for young people and families in particular. 

Then, during the night and until the following morning, 
anomalous fluctuations still account for half of normal 
fluctuations. The impact is therefore still very great. It is less 
than previously noted, because of a high number of people 
leaving and a lower population density at the different 
venues as the night progresses. The after-effect of this event 
is seen on Sunday, with very strongly negative abnormal 
fluctuations. The city of Paris never really reawakens during 
Sunday, an upheaval which extends until Sunday evening.

Nuit Blanche also has a major impact on the city, but to 
a lesser degree: it never reaches the same magnitude as Fête 
de la Musique. The impact of the latter is much greater than 
that of the former. Figure 5 shows the correlation between 
the fluctuations during the two events in fifteen-minute 
periods. There is a very good quality purely linear 
relationship, with an R2 of 0.83. It is also high: the impact of 
Fête de la Musique is on average 6.3 times greater than that 
of Nuit Blanche. The two events do not radically alter the 
city in the same way.

Figure 5. Correlation between fluctuations.

The conclusion which emerges, quite simply, is that the 
musical event is a more popular event while the artistic event 
is more elitist.

Urban attraction and repulsion

The above analysis does not fully reflect the impact of 
the two events on the normal city, because it only takes into 
account net fluctuations. We thus distinguish positive 
fluctuations from negative fluctuations. The former include 
the urban nodes and edges which attracted a large number of 
spectators during the event. Conversely, the latter show that 
some nodes and edges lost users by comparison with a more 
standard weekend. By comparing these two forms of 
abnormal fluctuations we identify the urban nodes and edges 
which attracted and repelled spectators. 
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Figure 7 shows these fluctuations for Fête de la 
Musique. The previous trends do not change, but the figure 
shows us that during the day, some concerts attracted a 
number of spectators to the detriment of other 
neighbourhoods. On the other hand, at the peak of Fête de la 
Musique, in other words during the evening and the night, 
the concerts attracted increasing numbers of spectators 
without emptying neighbourhoods. Finally, Sunday suggests 
that no neighbourhood benefited from Fête de la Musique: 
on the contrary they experienced much lower activity than 
normal.
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Figure 7. Fête de la Musique.

Figure 8 shows these fluctuations for Nuit Blanche. The 
previous trends are confirmed again, but there are differences 
with Fête de la Musique. During Saturday daytime, null net 
fluctuations are caused by the attraction of some venues 
being offset by the repellency of others. At the peak of Nuit 
Blanche (Saturday evening and Sunday night), we see the 
same relationship as for Fête de la Musique: the arts venues 
attract many spectators but this is not to the detriment of 
other neighbourhoods. Finally, on Sunday a similar trend 
emerges, even if some events venues attract more 

individuals. However, these venues are railway stations and 
other stations, so it is more difficult to draw conclusions.
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Figure 8. Nuit Blanche.

In conclusion, the data shows that the two events 
substantially alter urban habits.

Detecting cultural scenes

In the section describing the specificities of the two 
events (not in this abstract), we suggested the similarity 
between a cultural scene within the mobile network and a 
community within a social network. We present the detection 
algorithm chosen for this study.

The edge betweenness

In network analysis there are various methods of 
detecting communities [15]: proximity within communities 
vs. distance between communities, where proximity and 
distance criteria depend on the context being studied. Two 
major characteristics suited to our study emerge: on the one 
hand, the need to focus on edges in order to take account of 
the mobility between the various small events in each 
festival; and on the other hand, the aim of starting with the 
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city as a whole to determine scenes, rather than starting with 
nodes and edges and aggregating them to determine scenes. 
For this reason, the algorithm developed by Newman and 
Girvan [16-18], often used in network analysis, seemed 
comparatively relevant.

This algorithm is founded on the betweenness of edges 
rather than nodes. The betweenness indicator measures the 
number of paths between all the pairs of nodes in the 
network running along an edge in the network. With a spatial 
network, we can therefore take into consideration traffic 
flows in a transport network [19], and paths in our radio-
mobile network. A high value thus represents an edge 
responsible for a connection between nodes, and by 
extension between communities. It is similar to the idea of 
weak ties which link two communities vs. strong ties which 
define the communities [20]. Granovetter’s urban adaptation 
is used in Jane Jacobs’ analyses [21].

The algorithm

The algorithm is founded on the usual measurement of 
betweenness in a network. Rather than taking account of all 
the paths running along an edge, it is based on the shortest 
path. The first step thus involves finding the shortest path 
between all the pairs of nodes in the network. In order to 
take account of the spatial component of the mobile network, 
the shortest path is determined using the A* algorithm: in 
this way we consider the distance between the nodes. This 
gives us the number of geographically shortest paths running 
along each edge in the network, SP*.

The second step consists in taking account of the fact 
that the network is valued. The idea developed by Newman 
and Girvan is to convert the value of an edge into a multi-
edge network: each edge with a value equal to AP becomes 
AP single valued edges. We adapt the analysis to take into 
account the fact that we also have valued nodes. We simply 
proportionally distribute the value of each node to its edges. 
This gives us the number of single paths for each edge in the 
network: AP*.

By combining the two steps we can identify, at a given 
moment, the edge with the highest score, in other words the 
edge which connects the most different urban scenes. The 
measure is as follows:

SP *ij (T )
AP *ij (T )

,i ≠ j

Illustration: Nuit Blanche

We will illustrate the relevance of our approach using 
the example of Nuit Blanche. This event takes place in 70 
well-defined venues, dispersed across the city, and linked 
together by the metro. Superposing the scenes and the 
different festival venues gives a very clear picture. The 
resulting partitioning is comparatively more accurate than 
that proposed by the official programme (four major scenes). 
It takes into account spectators’ actual usages. It also allows 
us to determine relative audiences. A more detailed analysis 
is performed in the article.

How does music drive Paris?

The same analysis is performed for Fête de la Musique. 
The 557 official venues for this festival do not take account 
of times and musical genres. It will be expanded upon in the 
full article, but because of a lack of space we cannot go into 
it any further in this abstract.
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Abstract 
In this talk we will give an overview of the “Friends and Family” study – a long term 
mobile phone experiment, in which a graduate family community is transformed into a 
living-lab for investigating a broad range of issues, including individual and group 
identity, real world decision making, social diffusion, social health, and privacy 
boundaries. In the first phase of the study, starting March 2010, a 100 Android based 
phones are distributed to selected participants in the community, equipped with our 
software platform that turns them into flexible social sensors and intervention-delivery 
mechanisms. By the time of the conference we should be able to also present some 
preliminary results. 

Introduction  
Today’s mobile  phones  are  becoming  powerful  computing  and  sensing  platforms. 
We are  investigating ways  to help people make use of  the knowledge collected by 
their own mobile phones, as well as aggregate data contributed by many users,  to 
improve their lives in constructive ways. In addition, we are investigating how this 
data can contribute to the understanding of societal and community related issues. 
 
In recent years our lab has developed the methodology of Reality Mining, which is 
defined  as  the  collection  and  analysis  of  machine‐sensed  environmental  data 
pertaining to human social behavior, and is a key component in the transformation 
of traditional social science into the emerging area of computational social science. 
To gather this information, we use both our own home‐brewed sensor platforms as 
well  as  smart‐phones.  We  have  already  performed  two  large‐scale  experiments 
using  close  to  a  hundred  phones  at  MIT  campus  in  recent  years.  One  study  was 
performed in 2005 with participants from the MIT Media Lab and the Sloan School 
of Management. The  second  study was performed at  an MIT undergraduate dorm 
during  the  2008‐2009  academic  year.  The  first  study was  within  a  population  of 
colleagues  and  co‐workers.  The  second  was  done  with  a  typical  undergraduate 
population.  
 
Our current goal is to pick a more “realistic” living community, with a population of 
couples and families that also have a community life and social interactions with one 
another. This community is a graduate family housing community at MIT, which has 
more than 400 residents. We would like to equip as many of these residents as we 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can with Android  smart‐phones  running our  software platform  for data  collection 
and other  study  related  applications. To begin with, we  are  starting with handing 
out approximately 100 Android OS phones to selected residents. 
 
The  broad  goal  for  this  experiment  is  to  develop  mathematical  models  of  social 
behavior of  individuals  and groups. These  include  (1) models of  real‐world  group 
dynamics (in contrast to group dynamics within organizations and other structured 
settings),  and  also  (2) models  of  the way  that  different  “things”  diffuse  through  a 
social network. “Things” can refer to a broad range – it would include the spread of 
behaviors,  attitudes,  and  opinions  ‐  like  exercise  habits,  smoking  habits,  music 
tastes,  or  political  opinions.  This  also  includes  the  spread  of  disease  like  the 
common  cold  or  the  flu.  It  is  likely  that  many  of  these  spread  through  social 
interaction  –  like  social  influence  of  one  person  on  another,  or  the mere  physical 
proximity between two people. The models we develop through this study would be 
then used to enhance mobile applications and software programs with the ability to 
comprehend  human  social  interactions,  and  consequently,  create  more  relevant, 
immersive, and privacy aware experience for the users. 

Research Methodology 
In  the  Friends  and  Family  study,  we  are  using  mobile  phones  as  in‐situ  social 
sensors to map users’ activity features, proximity networks, media consumption and 
behavior  diffusion  patterns.  The  phones  are  augmented  with  social  software  to 
periodically execute different “probes” that capture information like cell tower ids, 
wireless LAN (WLAN) ids, Bluetooth ids, accelerometer and compass data, call and 
SMS,  statistics  on  installed  phone  application  and  media  files  and  usage  and 
background noise/audio features. All phone numbers as well as any open text fields 
are encrypted using a one‐way hash function. 
 
The study involved the following data collection components:  

1. Data collection by the mobile phone. 
2. Surveys to establish “ground truth”. 
3. Establish participant spending patterns through purchase receipts.  
4. Opt‐in  component:  Facebook  application,  which,  analogously  to  the  phone 

probes, will collect data about the participant’s online social activity. 
 
The  first part of  the study (approx. 30‐60 days), which  is currently  launching,  is a 
baseline  phase,  where  data  is  collected  but  no  feedback will  be  presented  to  the 
users.  After  this  phase,  we  begin  a  series  of  intervention  phases.  A  simple 
intervention  would  be  exposing  participants  to  some  of  the  data  that  has  been 
collected  through  their  device,  and  observing  the  effect  on  their  behavior.  For 
example, the participant will be able to review the amount of their social activity, or 
information  about  their  approximate  sleep  hours  (which might  be  inferred  using 
data  from  the  phone's  accelerometer  and/or  information  from  an  alarm  clock 
application). Not  all  users will  necessarily  be  exposed  to  the  same  information  or 
information visualization to allow comparison.  Another example intervention is to 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allow participants to decide whether to share this information with people in their 
contact  list.   Such  feedback will help us  investigate  the effects of being exposed  to 
one's  own data,  as well  as  to  explore  privacy  issues  related  to  the  sharing  of  this 
information.  Participants  might  also  be  exposed  to  aggregate  information.  For 
example, informing them on what "people like you" are doing, or what "people you 
spend  time  with"  are  doing.  Such  feedback  must  be  carefully  aggregated  and 
anonymized so that it is not possible to infer information about specific participants.  

Research Questions 
The research questions we are trying to answer include a wide range of topics. Here 
are  some  examples  of  different  questions  that  we  expect  to  be  able  to  answer 
through our study: 
 

• In  the  context  of  individuals:  How  can  the  sensed  real‐world  behavioral 
data be used to construct a “rich identity” profile of the user, which is more 
detailed and dynamic than current static demographic profiles. How is media 
propagation  related  to  the  user's  face‐to‐face  social  network?  Do  social 
connectors play a major role? How is social influence defined in this context? 
Are  there  predictive  patterns  in  how  users  consume  and  share  media  or 
other  purchase  recommendations?  Can  mobile  devices  automatically  infer 
the user’s interest clusters and social groups, as well as recommend desired 
privacy settings based on these patterns?   
 

• Groups  within  a  community:  What  can  we  learn  about  group  dynamics 
through the data collected by the experiment? Can we infer which formal and 
informal social groups (ethnic, religious, shared hobbies, neighbors, parents 
of similar aged children, etc.) participants belong to, and which of these have 
more influence in different contexts? How can we use the phones and phone 
data  to  improve  community  operation?  (An  example  of  an  idea  to  improve 
community  operation  would  be  an  application  showing  when  different 
common areas are occupied.) 

 
• Community health and wellness: How can we use  the phones and phone 

data  to  improve  community health  and wellness?  (An example of data  that 
can be collected to improve health and wellness would be flu propagation. An 
example of an  idea  to  improve community wellness would be an app  to  let 
people know about exercise habits within the community.) 
 

• Questions  related  to  privacy  and data  interaction: We want  to  use  this 
experiment  as  a  platform  to  learn  how  to  deal  with  the  sensitivities  of 
collecting and using this deeply personal data. For example we would like to 
explore different techniques and methodologies to protect the users’ privacy 
while  being  able  to  generate meaningful  outputs  of  the  system. We would 
also  like  to  explore  different  user  interfaces  for  privacy  settings,  and  for 
visualizing this personal data to the user. 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I. INTRODUCTION

In this work we discuss the problem of collaborative mon-
itoring of mobile phones applications that are suspected of
being malicious. New operating systems for mobile devices
allow their users to download millions of new applications
created by a great number of individual programmers and
companies, some of which may be malicious or flawed. The
importance of defense mechanisms against an epidemic spread
of malicious applications in mobile networks was recently
demonstrated by Wang et. al [19]. In many cases, in order
to detect that an application is malicious, monitoring its
operation in a real environment for a significant period of
time is required. Mobile devices have limited computation
and power resources and thus can monitor only a limited
number of applications that the user downloads. We propose
an efficient collaborative application monitoring algorithm,
harnessing the collective resources of many mobile devices.
Mobile devices activating this algorithm periodically monitor
mobile applications, derive conclusion concerning their ma-
liciousness, and report their conclusions to a small number
of other mobile devices. Each mobile device that receives a
message (conclusion) propagates it to one additional mobile
device. Each message has a predefined TTL. The algorithm’s
performance is analyzed and its time and messages complexity
are shown to be significantly lower compared to existing state
of the art information propagation algorithms. In addition, we
analytically prove that the algorithm is tolerant to Byzantine
attacks aimed for injecting false information into the system.
The algorithm was also implemented and tested extensively in
a simulated environment.

II. SCOPE AND PARADIGM

Companies that are distributing new mobile devices op-
erating systems had created a market place that motivates
individuals and other companies to introduce new applications
(such as Apple’s App Store Google’s Android Market, Nokia’s
Ovi Store and others). The content of the marketplace is not
verified by the marketplace operators and thus there is no
guarantee that the marketplace does not contain malicious or
severely flawed applications. Downloading a malicious appli-
cation from the marketplace is not the only way that a mobile
device may be infected by malicious code. This may also
happen as a result of a malicious code that manages to exploit

a vulnerability in the operating systems and applications or
through one of the mobile phone communication channels
such as Bluetooth, Wi-Fi, etc’ [8], [19].

In many cases, in order to detect that an application is
malicious, monitoring its operation in a real environment for
a significant period of time is required. The monitored data is
being processed using advanced algorithms in order to assess
the maliciousness of the application [7], [10], [11].

Harnessing their collective resources, a large group of
limited devices can be shown to achieve a decentralized and
efficient information propagation capability. Using such a
service, participating users could significantly improve their
“defense utilization” — the ratio between the resources a user
is required to allocate for the collaborative service, and the
probability to block attack attempts.

We present a collaborative application monitoring algorithm
that provides high efficiency, scalability and robustness. The
algorithm is completely decentralized and no supervising
authority is assumed, nor do any central of hierarchical tasks
allocation or any kind of shared memory. Specifically, we show
that by sending O(lnn) messages, the number of applications
a device would have to monitor in order to become “vacci-
nated” is reduced by a factor of O(lnn). Using real-world
numbers, implemented as a service executed by 1,000,000
units, assuming 10,000 new applications are released every
month, we analytically show that by monitoring a single
application each month and sending 4 SMS messages per day,
a participating mobile device can be guaranteed to be immune
for 99% of all malicious applications.

III. RELATED WORK

Since the problem of finding the minimum energy transmis-
sion scheme for broadcasting a set of messages in a given net-
work is known to be NP-Complete [1], flooding optimization
often relies on approximation algorithms. For example, in [6],
[14] messages are forwarded according to a set of predefined
probabilistic rules, whereas in [13] a deterministic algorithm
which approximates the connected dominating set within a
two-hop neighborhood of each node is proposed.

In this work we applied a different approach — instead
of a probabilistic forwarding of messages, we assign a TTL
value for each message, using which we are able to guide
the flooding process. The analysis of the system is done by

Book of abstracts for NetMob 2010 72



2

Time Messages

TPP
using G(n, p) overlay

O
(

ζ
lnn

)
in most cases O(lnn)

O (n lnn)

Flooding O (Graph’s diameter) O(|E|)
Network Coded Flooding
[3] using G(n, p) overlay O

(
n−1 · p−2

)
O (n)

Neighborhood Epidemics
[4] using G(n, p) overlay

O(nc)
for some constant c

O(c · n)
for a constant c

Hierarchical Epidemics
[16] using α-tree overlay O(lnn)

O(α · n lnn)
branching factor α

LRTA* [9] in planar
degree bounded graphs O(n2) O(n2)

SWEEP [18]
in the Z2 grid O(n1.5) O(n1.5)

TABLE I
PERFORMANCE COMPARISON BETWEEN THE TPP ALGORITHM AND

AVAILABLE STATE OF THE ART ALGORITHMS.

modeling the messages as agents practicing random walk in a
random graph overlay of the network.

It is well known that the basic flooding algorithm, assuming
a single source of information, guarantees completion in a
worse case cost of O(n2) messages and time equals to the
graph’s diameter, which in the case of a random graph G(n, p)
is approximately O(log n) [2]. Variants of flooding algorithms
use various methods to improve the efficiency of the basic
algorithm, such as area based methods [12] or neighborhood
knowledge methods [15]. An extremely efficient flooding
algorithms in terms of completion time, is the network coded
flooding algorithm, discussed in [3]. In this work, a message
is forwarded by any receiving vertex k

d(v) times, while k
is a parameter which depends on the network’s topology.
Using this method, the algorithm achieves a completion time
of approximately O( n3

|E|2 ). This algorithm, however, is still
outperformed by our proposed algorithm. Specifically, our
algorithm performs faster in graphs with average degree of
less than O

(√
n

lnn

)
.

An alternative approach to be mentioned in this scope is
the use of epidemic algorithms [17]. There exist a variety of
epidemic algorithms, starting with the basic epidemic protocol
[5], through neighborhood epidemics [4] and up to hierarchi-
cal epidemics [16]. In general, all the various epidemic variants
has a trade-off between number of messages sent, completion
time, and previous knowledge required for the protocols.

Tables I and II present a summary of the performance of
the TPP algorithm compared to the main body of works in
this domain. The results of the second table assume that the
average degree of network vertices is relatively small, marking
the algorithm which guarantees best performance in gray. The
value of the constant ζ can be approximated as ζ = Ω(ln2 n)
for most real world networks.

IV. EXPERIMENTAL RESULTS

In order to examine its performance, we have implemented
the algorithm and conducted extensive simulations using var-
ious scenarios. In this section we describe one example, due
to space considerations. This example concerns a network of

Time Messages

TPP O
(

ζ
lnn

)
in most cases O(lnn)

O (n lnn)

Flooding O (lnn) O(n2p)
Network Coded Flooding O

(
n−1 · p−2

)
O (n)

Neighborhood Epidemics O(nc)
for some constant c

O(c · n)
for a constant c

Hierarchical Epidemics
using α-tree overlay O(lnn)

O(α · n lnn)
branching factor α

TABLE II
PERFORMANCE COMPARISON FOR RANDOM G(n, p) GRAPHS, WITH

p < O((n lnn)−0.5).

n = 1000 units, having access to N = 100 applications, one
of which was malicious1. Each unit is assumed to download 30
random applications, monitoring 1 application every week, and
allowed to send notification messages to 10 random network
members. Upon completion, at least 990 network members
are required to become aware of the malicious application,
and that this would hold in probability of 0.999. In addition,
we assumed that among the network members there are 100
adversaries, whose goal is to mislead at least 50 of the
network’s members to believe that some benign application
is malicious.

Figure 1 shows the time (in days) and messages required in
order to complete this mission, as a function of the decision
threshold ρ2. We can see that whereas the adversaries succeed
in probability 1 for ρ < 3, they fail in probability 1 for
any ρ ≥ 3. Note the extremely efficient performance of the
algorithm, with completion time of ∼ 260 days using only 5
messages and at most 30 monitored applications per user. The
same scenario would have resulted in 100 messages per user
using the conventional flooding algorithm, or alternatively, in
700 days and 100 monitored applications per user using a
non-collaborative scheme. Figure 2 demonstrates the decrease
in completion time and messages requirement as a result of
decreasing the penetration threshold, namely — the portion
of the network which we allow to be deceived by attackers. A
similar example concerning the effect of changing the graph’s
density (namely — the number of messages sent by each
unit, upon the identification of a malicious application) is
given in Figure 3. Figure 4 demonstrates the evolution in the
malicious application’s penetration probability throughout the
vaccination process.
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Fig. 1. An experimental result of a network of n = 1000 members, with
N = 100 applications, penetration threshold = 0.01, graph density = 0.01
and 100 adversaries that try to mislead at least 5% of the network into
believing that some benign application is malicious. Notice how changes in ρ
dramatically effect the adversaries’ success probability, with almost no effect
on the completion time.

Fig. 2. The effect of decreasing the penetration threshold on the algorithm’s
completion time and number of messages (ρ = 1).
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of the time, with ρ = 1 (on the left) and ρ = 20 (on the right).
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ABSTRACT
In this paper, we report our advances, choices and �rst in-
sights in the design of a mobile phone powered data collec-
tion platform. We believe that collecting such data is vital
to achieve a better understanding/modeling of several phe-
nomenons related to human activity (e.g. mobility, social
contacts, or terminal failures). However, designing such a
platform raised a lot of questions that we present in this
paper.

1. MOTIVATION

Context.
The ubiquity of geo-located devices (mobile/smart-phones,

GPS, etc.) permitted scientists to collect datasets contain-
ing mobility information. Mining reality (and mobility) out
of these datasets has drawn a lot of attention, for exam-
ple for studying the spread of viruses [9, 12], for designing
socially-aware network routing protocols [2, 8], and in the
raising dynamical networks community. These datasets can
also be used to design models of users behavior [5, 7, 17],
phone usage, etc.

Background.
We are interested in building resilient ubiquitous mobile

systems. To attain this goal, several aspects of these sys-
tems need to be investigated, from their formal foundations
to their experimental evaluation. As such, we worked on
distributed [16] and cooperative [10] algorithms for such sys-
tems, but also on both analytical [3] and experimental re-
silience evaluation [11] of mobile systems. One of the major
challenge when modeling a mobile distributed system is to
provide an adequate mobility and connectivity scheme, that
should represent, as precisely as possible, actual interactions
between human beings. Mobile devices are the �rst sensing
devices that are almost coupled with their carrier, allowing
to capture human activity with an unprecedented resolu-
tion. This drove us to dig in research on mobility datasets,
to perform experimental and analytical evaluation based on
actual mobility traces.

Indeed, as far as analytical evaluation is concerned, we
needed to use parameters representing the rate at which a

∗Contact author: Matthieu Roy
roy@laas.fr

Submitted to NetMob 2010.

node encounters a cooperating peer, the rate at which it gets
Internet connectivity, the rate at which it (or any peer) fails,
etc. We had to choose these parameters (and their distri-
bution law) by rule of thumb but de�nitely wanted to get
actual and accurate data to backup these estimates. Regard-
ing experimental evaluation, we are building an emulation
platform based on small robots that carry laptops running
the algorithms. At the moment we used prede�ned vehic-
ular scenarios but we want the platform to be able to use
proper mobility models.

Mobility and Social Models.
It is worth noticing that the whole mobile systems com-

munity struggles with classical random-* mobility models.
They are too far from the application scenarios to be sound.
Recent research works try to tackle this problem (e.g., in
[13]). Yet, there is still a need for extending mobility models
with failure models for small devices such as mobile phones.
Indeed, as these devices are mass-produced and carried by
users, they are more prone to failures: they move a lot, are
light, and henceforth are prone to fall; they have a small
battery and are prone to energy depletion; they are used for
gaming or multimedia purpose, users install a bunch of ap-
plications and henceforth they are prone to software failures.
For all these reasons, an ideal dataset would include informa-
tion about energy consumption, operating system reboots,
mobility, etc.

To the best of our knowledge, there is no dataset that sat-
is�es this speci�cation. Most of CRAWDAD1 datasets were
produced in a limited vicinity, either during a conference, or
on a campus. Very few available datasets include precise lo-
calization data [14], most of them focused on contact traces.
Unfortunately phone operators are not keen to release their
data and do so to only some lucky few [7,17]. Furthermore,
there are very few data collection tools available. For exam-
ple, the software used to build the Reality Mining dataset [4]
is not maintained anymore [15]. This drove us to decide to
build our own platform for collecting mobility, failure and
energy consumption data.

2. A PLATFORM FOR COLLECTION OF
MOBILITY AND SOCIAL TRACES

2.1 Operating System Platform
Recently, mobile phone platforms have drawn a lot of at-

tention from manufacturers and users, mainly due to the

1http://crawdad.cs.dartmouth.edu/

Book of abstracts for NetMob 2010 75

http://crawdad.cs.dartmouth.edu/


opportunity to embark what has become lightweight com-
puters in everyone's pocket. As such, current mid- to high-
end phones are now equipped with large screens, GPS, high
speed cellular network access, local wireless network inter-
faces, and various sensors (accelerometers, magnetometers,
etc). As for every computing device, interaction with hard-
ware is done through an operating system, using an API.
The di�erent phone manufacturers o�er platforms that dif-
fer radically in their operating system and API choices. In
this section, we describe the various options available, and
explain which platform we chose and why such a choice.

Indeed, from our point of view, the rationale to choose one
platform instead of another is drawn by two main reasons:

• the platform should o�er a simple way to access as
much important parameters on user's activity as pos-
sible,

• the platform should be desirable for users, so that users
will accept to use the platform as their main phone,
and run our software.

Most mid- to high-end phone on the market now provide
a GPS for mobility tracing, at least one wireless network
interface (bluetooth), and a large touchscreen. The di�er-
ence between available platforms resides in their operating
system and their development model (API and software dis-
tribution model). In our view, the best platform for perform-
ing a background collection of various parameters on a large
base of users appeared to us to be the Symbian platform: in-
formation for programming is easily available, development
tools are mature, the system is very stable, it can run multi-
ple applications in parallel, and it is actively developed and
maintained.

2.2 Hardware Platform
We want to provide many users with smartphones equipped

with our software. This led us to �nd a phone (1) that can
sense many parameters (at least GPS, WiFi, bluetooth), (2)
that has a good autonomy to support the additional energy
consumption necessary for our logging application, (3) that
is cheap and, last but not least, (4) that is considered desir-
able for users.

We �nally opted for the Nokia 5800 smartphone. Its retail
cost is about 230e, which is relatively cheap when consider-
ing that it provides all hardware we needed, a GPS chip, a
large (640∗360) touchscreen, an accelerometer, a compass, a
WiFi interface and a bluetooth interface in a small form fac-
tor (about 100g). Moreover, this phone is considered a good
one from the users point of view, due to its light weight, its
good camera, its free navigation system and the fact that it
can be used with video conference softwares such as Skype.

2.3 Design: what can be sensed
When designing our application, it appeared that the choice

of the programming language would have an impact on avail-
able data that can be sensed. In Java (be it Java Micro
Edition or Java Standard Edition), no platform allows a
program to get access to low-level parameter such as the list
of available WiFi interfaces. Thus, we had to use system-
oriented API and programming language. Symbian stan-
dard interface is a C++ API that gives the programmer
access to most of the capabilities of the phone. In our case,
we listed the following interesting sources of information:

• GPS information. Location information is essential
when building a mobility trace. This piece of infor-
mation will be sampled at �xed interval. It can also
generate events when passing near some prede�ned in-
terest points.

• WiFi access points, and WiFi usage.

• Cellular information.

• Nearby bluetooth devices.

• Battery level. This should be sampled, and the logging
software should collect power events (charging, battery
warning) when they occur.

• Phone calls.

• Accelerometer. Although this parameter is not per se
related to interactions or mobility, it may be used to
detect inactivity.

• Compass.

• Proximity Sensor senses wether the surface of the phone
is close to an object (a pocket, an ear)

• Light Sensor.

• Power consumption related resources: CPU usage, cur-
rent intensity drawn from the battery.

2.4 Implementation considerations
In our �rst implementation, we limited the logging to a

subset of available sources of information, as summarized in
Figure 1:

Information periodicity fixed/variable
source size

GPS periodic �xed
WiFi periodic variable

Bluetooth periodic variable
Battery level periodic �xed

Battery events sporadic �xed
Phone calls sporadic �xed

Reboots sporadic �xed

Figure 1: Logged sources of information

There are two reasons why we capture these sources of
information only. First, all above data are needed if we
want to capture user interaction with its environment and
with other users, as well as failure information. Second, due
to security restrictions in the Symbian OS, we would have to
certify our program with Symbian Foundation if we wanted
to log information such as the cell identi�er the phone is
connected to, or the signal strength of the 3G/HSDPA.

Logging.
Since the program runs on limited resources, much care

has been taken to have the smallest possible footprint on
the system. The program is divided in two: a graphical user
interface, to start/stop the service and to modify logging
parameters, and the logger application itself.

The graphical user interface is simple, and permits the
user to stop the logging service when he/she wants, modify
the frequency of scan for every data source, and turn on
or o� the logging for every parameter. A screen capture is
shown in Figure 2.

The logger is programmed using one thread only, by using
the concept of Active Objects. Active Objects is a system
mechanism that provides a comprehensive way to perform
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Figure 2: GUI for managing logger frequency

multiple tasks using system calls (e.g., reading of system
parameters such as GPS information) within a single thread
that acts as a scheduler. Hence, the resulting program uses
low system resources and optimizes battery usage.

The thread is programmed to scan all parameters shown
in Figure 1, and to store all information in a text file. The
chosen data format is a simple human readable line-based
log, that shows for each scanned parameter the time of log-
ging, the type of logging, and the value of the log, as shown
in Figure 3.

Starting scan
current parameters#GPS#1#WIFI#1#BATTERY#1#CALL#1#BT#1#
2009-10-2 13:50:39#GPS#+43.59407#+1.46388#+136.49504#+25.50000
2009-10-2 13:50:39#BATTERY#71#EPoweredByBattery
2009-10-2 13:50:39#POWER#BATTERY
2009-10-2 13:50:51#BT#berimbau#00:02:26:60:08:8b
2009-10-2 13:50:57#BT#euclide#00:01:14:45:51:1d
2009-10-2 13:50:58#BT#Nokia marco#00:02:24:40:04:4d
2009-10-2 13:51:23#BT#Mattmobile#00:02:21:1f:fc:c3
2009-10-2 13:51:32#BT##00:02:25:50:00:0c
2009-10-2 13:51:39#WIFI#Network 1#60#open#Infrastructure#\

00:23:33:78:7f:60#laas-welcome
2009-10-2 13:51:39#WIFI#Network 2#91#open#Infrastructure#\

00:25:45:b5:75:00#laas-welcome

Figure 3: Example of log

Gathering.
The program that runs on the mobile stores information

locally. We are currently developing a networking part, that
will opportunistically send logs to a secured server in the
laboratory. Although sending information to a server seems
a simple task, this requires additional work, due to security
risks put on users, particularly for privacy reasons. We are
investigating cryptographic mechanisms that would protect
users’ privacy, while still permitting analysis on gathered
data.

Obviously, we cannot just anonymize every data trace
with a fixed random identifier, because each trace contains

many personal information (localization, users interactions)
that could be used to ” de-anonymize” a trace [6].

3. ANALYSIS AND USE OF COLLECTED
DATA

Once the privacy-preserving database is filled with user
data, it can be used for different tasks: analysis of data
for social networks, resilience evaluation of mobility-aware
algorithms, and privacy preserving analysis of the database.

Social Links Engineering.
In the vein of recent work on social links engineering [17]

[7] [5], we plan to use this database, that contains more in-
formation than operators’ mobile phones logs, to derive re-
alistic mobility models. Current mobility models are mostly
random-based and thus do not take into account the fact
that devices are carried by humans.

In fact, the database will not only be useful for mobility
modeling but, more generally, will serve as a basis for so-
cial links analysis, and particularly to answer the following
questions:

� Does there exist social locality?, i.e., when social links
exist between a group of users, do these links imply
a more frequent co-locality in the physical world ?
Such a result would have a strong impact on possible
extensions of current social services (MySpace, Twit-
ter, Facebook) to geo-localized systems. Intuitively,
such locality principle should exist. However, mea-
surements would confirm or infirm this hypothesis, and
would allow to develop models that efficiently capture
this potential locality.

� Can we model expected interaction patterns between
users, so that we can build collaborative services that
are based on stable users interactions ?

� Are there patterns of interactions between users and
the environment that are more likely to appear than
others ?

Replying to these questions seems for us a prerequisite to
be able to design efficient and useful services for distributed
systems of mobile users.

Resilience evaluation.
Collected data will also serve as an input both for our re-

search on analytical evaluation of resiliency of algorithms [3]
and for our reduced-size experimental platform [11]. For an-
alytical evaluation, we will compute probabilistic laws for
useful evaluation parameters, such as the expected time of
users interaction, the expected time between failures, etc.

For experimental evaluation, we are interested in isolating
mobility patterns that will then be used as an input to our
experimental platforms, with the final goal of performing
controlled and realistic experimentation by testing different
algorithms on the same mobility patterns, a task that is
impossible in a real environment.

Privacy evaluation.
The last use of the collected data we foresee in the actual

evaluation its privacy-preserving features. From the very
start of the project, we were struggled by privacy issues.
Research results [6] [1] show that simple privacy-preserving
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strategies do not su�ce to protect users, due to the huge
amount of personal identifying data traces stored.

The more traces collected, the higher the threat on users'
privacy. As technology evolves, eventually almost every-
one will be able to dig into such information, and providing
users with means to protect their data will become a pri-
ority. Performing attacks on such a database will permit
us to detect wether our strategies for pseudonymation and
privacy-guarantee is robust.

4. CONCLUSION
We presented the design and implementation of a mobile

phone powered data collection platform. Our platform col-
lects data that, we believe, will ease the understanding and
modeling of several phenomenons related to human activity:
social links, mobility, etc.

We still have to de�ne the economical nature of data col-
lection. Users hardly want to have their privacy exposed
without a counter part. Such reward could consist of several
parts: (1) an economic part, by providing a free terminal,
(2) a service-oriented part, by providing services users are
not used to, such as free video-conference service, and, as
we hope, (3) an altruist academical part, providing users
the satisfaction to participate to a research program. It is
worth noticing that the chosen "remuneration scheme" will
imply a bias on collected data that will have to be studied. . .
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ABSTRACT
Cell phones are ubiquitous in modern life and the call records
collected by network operators are a powerful tool to study
the behavior of cell phone users, and how those users use net-
work resources, at previously impossible-to-achieve scales.
In this paper we report on results from the analysis of large
scale call records data, and more generally of the data gen-
erated by mobile users, at a large cellular operator. We con-
sider in particular three kinds of data, namely social network
data (who calls whom, how often, etc), location and mobility
data (who is where) and spectrum data (who uses how much
spectrum in which cell). We describe practical examples of
insights derived from mining that data, the impact of the
data on areas ranging from marketing to business models or
to security, and also consider interesting research challenges
ahead.

1. INTRODUCTION
The Internet has become a fundamental component of

modern economies, and it provide services, starting with
connectivity, that are strategic to companies, governments,
families and individual users, and in general to the well func-
tioning of modern life. A growing fraction of those services
are accessed by mobile users. Indeed, the size and strate-
gic importance of the mobile Internet, i.e. the Internet as
accessed via mobile devices such as laptops or cell phones,
is rapidly increasing. Recent reports indicate that the mo-
bile Internet is ramping up in size faster than the ”desktop
Internet” did in the 80’s and 90’s; in fact, the estimated to-
tal value of the mobile data industry grew by 20% in 2009
- a year of major economic crisis when the global economy
decreased by 5% - and mobile data revenues reached $284B
[5]. This is now larger than the total PC Internet economy,
including Internet content and advertising revenues plus all
subscription fees such as monthly dial up and broadband
access fees. Furthermore, the number of users of the mo-
bile Internet (measured by the number of users accessing
browser-based services on cell phones only) is estimated at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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between 500 million and 1 billion, almost on par with the
total number of PCs connected to the Internet [5, 1]. Thus,
cell phones already dominate the Internet, and their impor-
tance will continue to grow [4].

A key characteristic of cellular networks and devices is
their ability to capture and analyze (at least partial) infor-
mation on the behavior of mobile users. In particular, op-
erators have routinely captured large scale location data for
billing purposes, but also to improve location management
or satisfy legal requirements such as E911. More recently
they, as well as a number of analytics companies and aca-
demic research groups worldwide, have started analyzing a
growing variety of data including social network data (who
calls whom), location and mobility data (where users are
when they call or use services), click-stream data (which se-
quence of sites users visit, or which sequence of applications
and services they use), etc.

In this paper, we report on results from the analysis of
such data carried out at a large cellular operator. We con-
sider in particular three kinds of data, namely social network
data, location data and spectrum usage data (who uses how
much spectrum in which cell). We describe some of the in-
sights derived from mining that data and consider some of
the interesting research challenges ahead.

2. SOCIAL NETWORKS
We have analyzed a very large social network gathered

from call details records, which reflects the voice and SMS
interactions of more than ten million users through hundreds
of millions of calls and SMS exchanges. We examined the
distributions of the number of phone calls per customer; the
total talk minutes per customer; and the distinct number of
calling partners per customer. We found that these distri-
butions are skewed, and that they significantly deviate from
what would be expected by conventional wisdom, namely
power-law and lognormal distributions.

We found instead that our observed distributions (num-
ber of calls, of distinct partners, and of total talk time)
very closely fit a lesser known but more suitable distribu-
tion, namely the Double Pareto LogNormal (DPLN) distri-
bution [6]. We found good fits over time (morning-evening,
weekday-weekend) and space (US East Coast-West Coast,
urban-suburban).

More importantly, we also found that our graph evolved
over time in a way consistent with a generative process based
on geometric Brownian motion. Furthermore, this genera-
tive process lends itself to a natural and appealing social
wealth interpretation, and also allows for extrapolations and
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interpolations. We hope that our success with DPLN spurs
further studies involving other datasets and their underlying
generative processes. In particular, we hope that our “social
wealth” interpretation and analysis will serve as an incentive
for social scientists to study the large-scale evolutionary as-
pects of social characteristics. Indeed, we continue to collect
data from our social network for longer-term analysis.

3. LOCATION AND MOBILITY
We have also analyzed call records to understand the mo-

bility patterns of more than a million users over several thou-
sand square miles. We made two contributions to the anal-
ysis of mobility patterns of cell phone users. First, using
only coarse-grained location information, namely the loca-
tion of the cell tower associated with a user at the beginning
and end of each call, we examined the scaling laws of hu-
man mobility, in terms of distance and time. We found that
both the distance traveled as well as the duration of calls
(on periods) and pauses (off periods) are heavy tailed, in
agreement with earlier results (e.g. [3]). However, we found
that mobility patterns change during and in between calls,
and that patterns are correlated over time, with strength of
correlation dependent on activity.
Second, we developed a general technique, using tools

from stochastic geometry and Bayesian statistics [7], to re-
fine mobility models as more precise location information
becomes available [11]. Thus, we can correct the distribu-
tions of distance traveled and direction as coarse location
information is augmented by information such as distance to
the associated cell tower, signal strength, location of neigh-
boring cells towers, etc. To demonstrate the benefits of our
technique, we first showed, using timing measurements from
call records, that users are not uniformly distributed in cells.
We then showed how that location information impacts the
estimated distance distribution and then extended our ear-
lier technique, illustrating the impact of increasingly more
precise location information. Our approach is very general
and applicable not just to cellular networks, but to other
wireless networks such as wireless LANs (WiFi, ...) or ad-
hoc networks.

4. SPECTRUM USAGE
Most existing studies of spectrum usage have been per-

formed by actively sensing the energy levels in specific RF
bands including cellular bands. Our approach has been to
provide a unique, complementary analysis of cellular pri-
mary usage by analyzing a dataset collected inside a cellular
network. One of the key aspects of our dataset, compared
to others examined in related spectrum analysis, is its scale
- it consists of data collected over three weeks at hundreds
of base stations. We dissected this data along different di-
mensions to characterize and model primary usage as well as
understand its temporal and spatial variations. Our analysis
revealed several results that are relevant if Dynamic Spec-
trum Access (DSA) approaches are to be deployed for cellu-
lar frequency bands. For example, we found that call dura-
tions show significant deviations from the often-used expo-
nential distribution. Though this can complicate the model-
ing of primary usage, we found that a random walk process,
which does not use call durations, can be used for modeling
the aggregate cell capacity. Another novel result we found
is that spatial spectrum usage is highly non-uniform, espe-

cially during periods of high load, with clusters of sectors
whose intra-cluster usage patterns are correlated.

We also considered the more fundamental problem of whether
or not spectrum sensing is actually a viable approach to es-
timate when and how much secondary users can take advan-
tage of available capacity. Indeed, sensing mechanisms that
estimate the occupancy of wireless spectrum play a crici-
tal role in enabling non-interfering secondary usage. The
problem of designing such mechanisms is, therefore, crucial
to the success of approaches based on Dynamic Spectrum
Access. We developed key insights into this problem by
empirically investigating the design of sensing mechanisms
applied to check the availability of excess capacity in CDMA
voice networks. We focussed on power-based sensing mech-
anisms since they are arguably the easiest and the most
cost-effective.

We made three main contributions [9]. First, we found
that accurate single sensor spectrum sensing is essentially
unachievable, i.e. power at a single sensor is too noisy to
help us accurately estimate unused capacity. However, we
also found that there are well-defined signatures of call ar-
rival and termination events. Using these signatures, we
showed that we can derive lower bound estimates of unused
capacity that are both useful (non-zero) and conservative
(never exceed the true value). Finally, we used a combina-
tion of measurement data and analysis to deduce that mul-
tiple sensors are likely to be quite effective in eliminating
the inaccuracies of single-sensor estimates.

5. FUTURE RESEARCH: BUSINESS MOD-
ELS

The capture and availability of large scale cell phone data
has enabled, and will continue to enable, a wide range of
new services. For example, in the case of location and mo-
bility data, the capture and availability of such data has
enabled the development of many location-based or location-
aware services, and indeed an rapidly increasing number
of such services is now available, ranging from navigation
to location-aware advertising, friend finder, etc, and many
more are announced or launched on a daily basis. However,
this location data, since it enables new services and new
economic activities, is seen as economically valuable. This
raises the question then of how valuable it is, and how to
quantify that value. This is precisely the goal of our recent
research.

Using insights from cell phone data, we have developed
an analytic framework, namely models and the techniques
to solve them, to help quantify the economics of location
information [2]. Our aim has been to derive models which
can be used as decision making tools for entities interested
in or involved in the location data economics chain, such
as mobile operators or providers of location aware services
(mobile advertising, etc). We considered in particular the
fundamental problem of quantifying the value of different
granularities of location information, for example how much
more valuable is it to know the GPS location of a mobile user
compared to only knowing the access point, or the cell tower,
that the user is associated with. We have used our approach
to derive insights into what is arguably the quintessential
location-based service, namely proximity-based advertising.

To our knowledge, our work is the first one to present and
analyze economic models which can help understand the eco-
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nomic value generated by mobile users with location based
services, for different granularities of location information
in wireless networks. We believe that the work provides an
important first step towards a general analysis of not just
the data itself, but also of the business models enabled by
large scale cell phone data.
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