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Abstract

A novel approach to investigate and evaluate the damping loss factor of a

planar multilayered structure is presented. A statistical analysis reveals the

connection between the damping properties of the structure and the trans-

mission of sound through the thickness of its laterally infinite counterpart.

The obtained expression for the panel loss factor involves all the derivatives

of the transmission and reflection coefficients of the layered structure with

respect each layer damping. The properties of the fluid for which the sound

transmission is evaluated are chosen to fulfil the hypotheses on the basis of

the statistical formulation. A transfer matrix approach is used to compute

the required transmission and reflection coefficients, making it possible to

deal with structures having arbitrary stratifications of different layers and

also granting high efficiency in a wide frequency range. Comparison with

alternative formulations and measurements demonstrates the effectiveness of

the proposed methodology.
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1. Introduction1

Passive damping treatments are widely used in engineering applications2

to reduce noise radiation, the amplitude of vibrations and the risk of fa-3

tigue failure. In particular, viscoelastic laminates have found application in4

many areas of structural acoustics due to the high damping levels that can5

be attained when the cross-sectional properties of the laminate are appropri-6

ately chosen. A key requirement for determining the optimal cross-sectional7

properties of a given laminate is an accurate model of its dynamics.8

Typically, at low frequencies, a finite element (FE) model provides a good9

description of the structural-acoustic behavior of the laminate. A Modal10

Strain Energy (MSE) analysis on the FE model can provide the loss factor of11

the structure in terms of the strain energy field of each mode [1]. At higher12

frequencies, the wavelengths of interest become small with respect to the lat-13

eral dimensions of the laminate and then the FE approach becomes impracti-14

cal. Indeed, Statistical Energy Analysis (SEA) [2] is a more suitable method15

for estimating the high-frequency responses of a structure under acoustic or16

mechanical excitation. In order to model a subsystem in SEA, it is necessary17

to determine the dispersion properties and the Damping Loss Factor (DLF)18

of each propagating wave type of the subsystem. An approach for evaluating19

the DLF of a structure is to simplify a real world component down to an20

equivalent 3-layer beam or plate system. This was first suggested by Ross,21

Kerwin, Ungar (RKU) [3, 4, 5], involving a fourth order differential equation22
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for a uniform beam under free-wave propagation with the sandwich construc-23

tion of the 3-layer laminate system represented as an equivalent, frequency24

dependent, complex stiffness. Several authors have described extensions to25

RKU analysis by involving different displacement fields to characterize the26

response of more general laminates [6, 7]. Typically, the assumption of a27

low-order displacement field is required in order to reduce analytical com-28

plexity. While simplified analytical models can provide physical insights29

into the behavior of certain laminates, the assumed displacement fields can30

often restrict the types of laminates that can be modeled. Numerical meth-31

ods to investigate the damping of laminated panels have been developed by32

several authors [8, 9, 10, 11, 12, 13]. By exploiting a plane wave expansion,33

the power dissipated by an isotropic poroelastic media within semi-infinite34

multilayered systems under arbitrary excitation has also been assessed [14].35

The loss factor of more general laminates can be explored by involving a one-36

dimensional FE mesh to describe the cross sectional deformation of a linear37

viscoelastic laminate, also including a three-dimensional displacement field38

within the laminate [15]. However, the model is computationally expensive39

due to the inversion of large matrices as a result of an increasing number of40

elements in the cross sectional thickness. Regardless of the model adopted41

to describe the cross sectional deformation, a dispersion problem must be42

solved by determining, at a specific frequency, ω, and for a specific direction43

of propagation, a finite number of complex wavenumbers, k, related to the44

free waves traveling in the structure. The solution of the dispersion prob-45

lem at discrete frequencies for a specific direction of propagation leads to a46

k − ω dispersion diagram where dispersion curves must be identified. Then,47
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the damping loss factor, ηi, for the i-th curve can be evaluated by means of48

the related eigenvectors. However, the number of curves and their intersec-49

tions rapidly grow with the frequency, making it more difficult to identify50

the curves. An alternative approach is to use an exact description of the51

through-thickness deformation of a laminate by means of a Transfer Matrix52

Method (TMM) [16]. The characteristic equation that describes free-wave53

propagation in a laminate can take the form of a nonlinear transcendental54

eigenvalue problem [17]. However, the computational burden and robustness55

of the root-tracking algorithms employed to determine dispersion solutions56

limit the usefulness of the approach.57

The scope of this work consists in defining the DLF of a planar structure,58

averaged among all dispersion curves, by avoiding both the solution of the59

dispersion problem and the modal approach. We are avoiding the solution of60

a dispersion problem because i) identify dispersion curves at high frequency61

could be prohibitive and ii) take into account the damping of all the prop-62

agating waves may be impractical. On the other hand, we are discarding63

the modal approach because i) it could be computationally prohibitive even64

at relatively low frequencies and ii) materials characterized by frequency de-65

pendent properties cannot be easily taken into account. A theory producing66

the DLF of a multilayered planar structure and overcoming the limitations of67

the above discussed approaches is proposed. A statistical analysis reveals the68

connection between the damping properties of the structure and the trans-69

mission of sound through the thickness of its laterally infinite counterpart.70

The incident diffuse acoustic field prescribed by the statistical approach to71

evaluate the sound transmission ensures the excitation of all the propagating72
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waves contributing to the damping of the medium, thus providing a mean73

loss factor for the structure. A TMM is used to evaluate the required trans-74

mission and reflection coefficients, making it possible to deal efficiently with75

structures having generic stratifications, possibly including in-plane periodic76

layers [18]. The wave approach on the basis of the TMM also avoids the77

need to set a specific kinematic model for the laminate, thus yielding high78

accuracy.79

The DLF of a multilayered planar structure is derived in Section 2 by80

means of a statistical analysis on the sound transmission through the thick-81

ness of the structure. A number of applications are then discussed and com-82

pared with alternative formulations and measurements.83

2. Layered Systems84

Let us consider a layered structure in which the i-th layer is characterized85

by hysteretic damping through the loss factor ηi(ω). The time-averaged86

power dissipated by the i-th layer, Πi, when the structure is subjected to87

harmonic excitation at angular frequency ω, can be expressed as [2]88

Πi = ωEiηi , (1)

where Ei is the time-averaged total energy stored in the layer. The DLF of the89

layered structure, ηs(ω), concerns the overall time-averaged power dissipated90

by the structure, Πdiss, when a diffuse reverberant field exists within it, and91

can be expressed as [2]92

ηs(ω) =
Πdiss

ωEs

=

∑N
i=1 Eiηi∑N
i=1Ei

, (2)
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where the total dissipated power, Πdiss, is the sum of the power dissipated93

by the N layers in the medium, and the total panel energy, Es, is the sum94

of the energies in all layers. We propose to derive the total energy stored in95

each layer of a planar structure, Ei, by means of the transmission and reflec-96

tion coefficients of the laterally infinite counterpart of the structure. Such a97

purpose draws legitimacy from the idea that the phenomenon of sound trans-98

mission through the thickness of the structure hides and carries the very same99

information as the dispersion problem for the medium. Such information are100

exposed by means of a statistical analysis of the sound transmission through101

the structure. The adopted statistical approach is here reliable at any fre-102

quency since an infinite extent is considered for the structure.103

2.1. Statistical Approach104

Sound transmission through the thickness of a planar structure can be105

investigated by placing the structure between two rooms. In the context of106

SEA, two energy paths can be identified between the rooms. The first one107

links the rooms without involving the resonance of the interposed wall, and108

depends only on the specific mass of the wall, the so-called non-resonant109

path. A second path treats the interposed structure as a subsystem, so110

involving its strain energy, the so-called reverberant path. The non-resonant111

path is therefore neglected in the following since it is not sensitive to the112

panel properties we are looking for, i.e. the energy field within the panel.113

The conditions under which such a choice may be effective are investigated114

afterwards (Section 2.2).115

Focusing on the reverberant path, the power balance of a panel perturbed116
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by incident acoustic power, Πinc, can be expressed as117

Πtra(ω, η1, . . . , ηN) + Πref(ω, η1, . . . , ηN) +
N∑
i=1

Πi(ω,Ei, ηi) = Πinc , (3)

where the transmitted power, Πtra, and the reflected power, Πref, depend on118

the damping of all layers. Therefore, the power balance for the panel, Eq. (3),119

can be written in normalized form:120

τd(ω, η) + rd(ω, η) +
ω

Πinc

N∑
i=1

Eiηi = 1 , (4)

where τd = Πtra/Πinc is the power transmission factor, rd = Πref/Πinc is the121

power reflection factor and vector η collects the damping factors. In the122

following analysis each layer energy, Ei, is evaluated assuming a laminate123

with null damping. In other words, the dynamics of the structure is evaluated124

by employing the kinematics related to the undamped counterpart of the125

structure. This assumption implies that the cross sectional displacement field126

of a given propagating wave is not significantly sensitive to the damping. It127

should be noted that this assumption is implicit in previous studies which128

assume a fixed displacement field for the cross section that is independent129

of damping, e.g. RKU and MSE. Therefore, by linearizing Eq. (4) around130

the undamped condition, η = 0, with respect to each layer damping, ηi, and131

invoking the conservative power balance (τd|η=0+ rd|η=0 = 1), we obtain the132

following set of N uncoupled equations:133

δηi

[
∂τd
∂ηi

+
∂rd
∂ηi

+
ω

Πinc

(
Ei +

N∑
j=1

∂Ej

∂ηi
ηj

)]
η=0

= 0 . (5)

Since Eq. (5) has to hold for any arbitrary damping perturbation, δηi, the134
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desired expression for the energy of the i-th layer of the panel is obtained:135

Ei = −Πinc

ω

(
∂τd
∂ηi

+
∂rd
∂ηi

)
η=0

. (6)

Finally, the expression for the ensemble average DLF, Eq. (2), becomes136

ηs =

∑N
i=1 Fiηi∑N
i=1 Fi

, (7)

where137

Fi =

(
∂τd
∂ηi

+
∂rd
∂ηi

)
η=0

(8)

is the frequency dependent loss function for the i-th layer.138

2.2. Weak coupling and non-resonant path139

The expression for the ensemble average DLF, Eq. (7), is derived under140

i) the hypothesis of negligibility of the non-resonant path in the power trans-141

mission and ii) the SEA hypothesis concerning the weak coupling between142

subsystems [19] (ηij ≪ min(ηi, ηj)). The only way to fulfil these hypothe-143

ses is to properly choose the properties of the fluid for which the sound144

transmission is evaluated. In particular, the non-resonant path in the sound145

transmission is related to the mass-law contribution, which is predominant146

below the acoustic coincidence. Moreover, a strong coupling between the two147

semi-infinite fluids (rooms) is due to coincidence phenomena. As a result,148

moving the coincidence region to low frequencies, well below the frequency149

range of interest, ensures both a negligibility of the non-resonant contribu-150

tion to the sound transmission and a weak coupling between the rooms. To151

this end, the speed of sound, c, must be small enough to fulfil the above152

discussed hypotheses at the minimum frequency at which the DLF is de-153

sired. Additionally, it can be observed that for a diffuse field at a given154
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frequency, ω, the modulus of the projection of the incident wave on the in-155

terface, kt =
√
k2
x + k2

y = ω sin(θ)/c, where θ defines the wave elevation,156

spans as 0 ≤ kt < ω/c. As a consequence, the speed of sound, c, must be157

set as small as possible to ensure the excitation of all the propagating waves158

contributing to the energy field within the medium. Moreover, the limit of159

the mechanical impedance of a thin plate can be expressed in terms of its160

mass per unit area, m, and flexural rigidity, B, as [16]161

lim
c→0

Zp = jω lim
c→0

(
m− Bk4

t

ω2

)
= −jω3B

sin4(θ)

c4
, (9)

where the panel mass and, consequently, the non-resonant contribution dis-162

appear. Instead, the choice of the fluid density, ρ, is less critical. In fact, a163

low speed of sound of the surrounding fluid yields to Z = ρc ≪ Zp, so grant-164

ing a weak coupling between the structure and the fluid and, consequently,165

between the rooms, regardless of the chosen density, ρ. The expression for166

the loss functions, Eq. (8), can therefore be modified as167

Fi(ω) = lim
c→0

(
∂τd(ω, ρ, c)

∂ηi
+

∂rd(ω, ρ, c)

∂ηi

)
η=0

∀ρ ∈ R+ , (10)

where the limit ensures fulfilment of the hypotheses involved to derive Eq. (7)168

in the frequency range of interest.169

2.3. Evaluation of the transmission and reflection coefficients170

The diffuse transmission factor, τd, and reflection factor, rd, can be de-171

fined by expressing the diffuse acoustic field in the reverberant room as a172

combination of plane waves traveling in all the possible directions [16]. At173

a given frequency, ω, each plane wave impinging upon the flat structure is174

defined by its amplitude, I, azimuth, α, and elevation, π/2 − θ. Both a175
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transmitted wave and a reflected wave therefore propagate from the medium176

and their amplitudes, T and R, depend on the properties of the barrier. As-177

suming a complete (0 ≤ θ ≤ π/2 , 0 ≤ α < 2π) and unitary (I = 1 ∀ θ, α)178

diffuse field, the classical expressions for the power transmission and reflec-179

tion factors [16] can be simplified as180

τd(ω) =
1

π

∫ 2π

0

∫ π/2

0

|T (ω, θ, α)|2 cos(θ) sin(θ)dθdα , (11)

and181

rd(ω) =
1

π

∫ 2π

0

∫ π/2

0

|R(ω, θ, α)|2 cos(θ) sin(θ)dθdα . (12)

A practical and efficient tool for evaluating the transmission and reflec-182

tion coefficients, T and R, of planar, stratified media is the TMM. This183

approach easily allows for multilayers made from a combination of elastic,184

porous and fluid layers. It assumes the multilayer of infinite extent and uses185

a representation of plane wave propagation in different media in terms of186

transfer matrices. The transfer matrix of a layered medium is obtained from187

the transfer matrices of individual layers by imposing continuity conditions188

at interfaces. Enforcing the impedance condition of the surrounding fluid, at189

both the excitation and the termination sides, allows calculation of the trans-190

mission coefficient, T , and the reflection coefficient, R. This methodology is191

explained in detail in chapter 11 of Ref. [16]. In the frame of linear vibro-192

acoustics, the wave approach on the basis of the TMM provides accuracy and193

efficiency in defining the sound transmission through planar structures with194

infinite extent, flat interfaces and homogeneous layers. However, the last two195

limitations can be overcome by involving a FE model for the periodic unit196

cell of each heterogeneous layer [18].197
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Even though the TMM is exact from a mathematical point of view, some198

researchers found divergences in its results for high frequencies and/or large199

layer thicknesses. The reason of this divergence has been ascribed to a bad200

numerical evaluation of the involved exponential terms because of the finite201

arithmetic. An alternative approach to determine the acoustic reflection202

and transmission coefficients of multilayered panels which avoids exponential203

terms is proposed in Ref. [20]. However, since no numerical issues were found204

for the treated laminates in the frequency range explored, the standard TMM205

[16] was used in the present work.206

3. Validation Examples207

The derivatives of the transmission and reflection coefficients required208

to compute loss functions, Fi, are evaluated by means of finite differences.209

A perturbing damping factor of 10−6 usually ensures satisfactory precision210

and avoids numerical issues. As prescribed by Eq. (10), the speed of sound211

of the fluid is reduced starting from a guess, c0, until every loss function,212

Fi, converges in the whole frequency range explored. A fluid density ρ =213

1.225 kgm−3 is used for all applications. At fixed fluid conditions and for each214

frequency of interest, ωj, N+1 evaluations of the transmission and reflection215

coefficients are needed to evaluate all the loss functions, Fi(ωj, ρ, c), where216

N is the number of layers. In case of structures characterized by symmetric217

stacking, the number of required analyses can be reduced by exploiting the218

symmetry of the sound transmission (Fi = FN+1−i).219
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3.1. Damping of a sandwich panel with soft core220

The first application involves a sandwich panel with a 1 mm-thick soft221

core (ρ = 1425 kgm−3, E = 4.186 MPa, ν = 0.495) and aluminum (ρ = 2700222

kgm−3, E = 71 GPa, ν = 0.3) 1 mm-thick skins. The configuration is typical223

of the application of viscoelastic materials with constraint layer and enables224

comparison of the present theory with the RKU method [3] for the evaluation225

of damping of a three-layer structure. In the RKU method, the contribution226

made by core damping to the total damping of the structure can be evaluated227

by setting a unitary core damping and null skin damping. Figures 1 and228

2 show the effects of the sound speed, c, and the damping perturbation229

employed for the finite differences, δη, on the core loss function, Fcore, scaled230

with respect to Fs = 2Fskin + Fcore. A good degree of agreement can be231

observed, in the frequency range explored, between the estimation acquired232

from the RKU method and the result obtained by means of the proposed233

methodology with c = 25 ms−1 and δη = 10−6. Higher values of sound234

speed prevent convergence at low frequencies, and a damping perturbation235

lower than 10−6 can imply numerical issues, especially at low frequencies.236

The value of sound speed which grants the convergence of the DLF at a237

specific frequency depends on the stacking properties of the laminate since238

it is related to coincidence phenomena. On the contrary, the discussion239

about the damping perturbation, δη, has general validity. Therefore, all the240

subsequent applications employ a damping perturbation δη = 10−6.241

3.2. Damping of a sandwich panel with honeycomb core242

The second application involves a sandwich panel [10] made of aluminum243

(ρ = 2700 kgm−3, E = 71 GPa, ν = 0.3296) with isotropic 0.6 mm-thick244
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Figure 1: Core contribution to the damping of a sandwich panel (δη = 10−6)
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Figure 2: Core contribution to the damping of a sandwich panel (c = 25 ms−1)
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skins and a 15 mm-thick honeycomb core made of hexagonal cells with a foil245

thickness of 0.0508 mm and a side length of 5.5 mm. The equivalent material246

properties for the core are obtained by means of a homogenization technique247

[21]. The DLF of the panel is computed according to Eq. (7) for a particular248

distribution of damping through thickness. As proposed by Cotoni et al [10],249

the internal damping loss factor of the core is kept constant at ηcore = 2%250

while the damping of the skins takes on the values ηskins = 1%, 3%, 5%. The251

predicted loss factors are shown in Figure 3 as functions of frequency. A252

speed of sound c = 40 ms−1 grants the convergence of the DLF in the whole253

frequency range explored. The results according to Nilsson [22] are plotted as254

a reference. They were obtained by substituting the undamped wavenumber255

into the expression of the strain energy and taking the ratio of the imaginary256

part over the real part. It can be seen that the damping loss factor depends257

on which part of the composite undergoes the most deformation. At low fre-258

quencies, the wave motion is essentially governed by the extensional motion259

of the skins, and the resulting loss factor is close to the skin loss factor. At260

high frequencies, the shear of the core governs wave motion, and the damping261

loss factor gets close to that of the core. This behavior is ruled by the loss262

functions Fskin and Fcore.263

3.3. Damping of laminates with multiple viscoelastic inclusions264

The last application involves some of the specimens tested in [23]. The265

laminates considered are made of 0.5 mm-thick aluminum plates (ρ = 2780266

kgm−3, E = 73.1 GPa, ν = 0.33) separated by 0.31 mm-thick foils made of267

styrene butadiene rubber (ρ = 1450 kgm−3, ν = 0.49). The identification268

of the viscoelastic properties of the rubber leads, in the frequency range269
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Figure 3: Loss factor of a sandwich panel with honeycomb core (ηcore = 2%)

100-2500 Hz, to the following approximations for the real part of the shear270

modulus271

ℜ(G) = [2.1282 log(f)− 5.5217] MPa , (13)

and damping272

η = [1.8487 log(f)− 5.1500] % . (14)

The DLF measured for three different batches (#15, #9 and #10 with 2,273

3 and 5 viscoelastic inclusions respectively [23]) are shown in Figures 4, 5274

and 6 along with the results obtained with a General Laminate model [15],275

implemented in the ESI VAOne code to predict subsystem properties in the276

frame of an SEA, the results obtained in terms of MSE [1], and the results ob-277

tained with the proposed methodology (TMM). Comparisons are satisfactory278

among all methods, thus proving that boundary effects are negligible.279
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16



4. Conclusions280

A connection is identified between the sound transmission through the281

thickness of a planar layered structure and its DLF. Complex dynamics in-282

volved in dissipative mechanisms are assessed by means of a statistical anal-283

ysis of the sound transmission. The exposed theory reveals the influence of284

each layer on the ensemble average loss factor of a structure. A loss func-285

tion in the frequency domain is assigned to each layer, making it possible to286

build the DLF of the whole structure once individual damping properties are287

assigned to each layer.288

Good agreement with respect to the RKU method was observed for a289

three-layered structure in terms of the influence of the core damping on the290

global damping of the structure. The effects of the speed of sound of the fluid291

for which the sound transmission is evaluated and of the damping pertur-292

bation employed to evaluate the finite differences have also been addressed.293

Results on a sandwich panel with honeycomb core highlight the role of loss294

functions in defining the ensemble average loss factor of a layered structure.295

The comparison with the DLF measured for some laminates with multiple296

viscoelastic inclusions demonstrates the effectiveness of the proposed method-297

ology even at low-medium frequencies in the case of complex layouts.298

Ultimately, the proposed methodology may represent a reliable tool for299

investigating the DLF of a layered structure. In particular, the so-called300

loss functions may guide an optimization process for the stacking of a lay-301

ered panel, e.g. when the optimal location of a damping material must be302

determined. Moreover, the transfer matrix approach adopted for evaluating303

the required transmission and reflection coefficients provides efficiency and304
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accuracy.305
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