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Abstract

In this work we review the effect of solar radiation pressure on the eccentricity of circumterrestrial orbits,
perturbed also by the oblateness of the Earth. We compute the equilibrium points of a reduced system
of equations describing the time evolution of the eccentricity, the longitude of the ascending node and the
argument of pericenter, and their linear stability. This analysis is the basis for understanding how the phase
space is organized in terms of central and hyperbolic orbits. The role of the initial phase with respect to the Sun
and of the magnitude of the inclination evolution is also examined. The results follow previous investigations
performed by the authors, providing a more complete picture of the whole dynamics, that can be applied to
design convenient end-of-life strategies for small satellites equipped with a solar sail or to determine quasi
stable Sun-following orbits for satellites swarms.

1. Introduction

The idea of this work stems from the will of finding a
unique description of the dynamics induced by Solar
Radiation Pressure (SRP) coupled with the oblate-
ness of the Earth. In the past, the long-term varia-
tion in orbital elements due to this kind of pertur-
bation was faced by different authors and the main
effect in eccentricity was described in terms of either
resonances or dynamics associated with equilibrium
points.

The pioneers in the identification of the role of
SRP coupled with J2 in the orbital evolution were
Musen [1] and Cook [2], who developed the corre-
sponding singly-averaged equations of motion, for
a satellite orbiting the Earth, in terms of Keple-
rian orbital elements, and remarked the existence of
six resonances. Later on, Hughes [3] expanded the
disturbing function associated with SRP using the
Kaula’s method up to high order terms, and pro-
vided some examples on whether they can be rele-
vant for Earth satellites. Breiter [4, 5] addressed the
analytical treatment of the perturbation in canoni-
cal coordinates, starting from a general description
concerning luni-solar perturbations.

The effect of the solar radiation pressure cou-
pled with the oblateness of a planet was also exten-
sively studied in the vast literature on the dynamics
of dust in planetary systems. Among them, Krivov
et al. [6] and Hamilton and Krivov [7] wrote the dy-
namics in a Hamiltonian form considering the singly-
averaged disturbing potential of SRP and J2 for a
dust particle around a planet and studied the eccen-
tricity oscillations. Krivov and Getino [8] applied the
same model for obtaining a graphical and analyti-
cal phase-space representation of the orbit evolution
in the eccentricity and the resonant angle for low-
inclination orbits and applied it to study the dynam-
ics of high-altitude balloons. Colombo et al. [9] per-
formed a parametric analysis of the SRP-J2 phase-
space for different values of semi-major axis and
area-to-mass ratio identifying the equilibrium condi-
tions for frozen orbits which maintains constant their
apses orientation with respect to the Sun, either he-
liotropic (apogee pointing towards the Sun) or anti-
heliotropic (perigee pointing towards the Sun) or-
bits. The in-plane equilibrium conditions where nu-
merically extended for non-zero inclinations. Differ-
ent applications were proposed for these equilibrium
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points, such as the use of heliotropic orbits for Earth
observation in the visible wavelength [9, 10], or the
use of heliotropic orbits at an oblate asteroid [11],
or also the use of anti-heliotropic orbits for geomag-
netic tail exploration missions [12, 13, 14].

In general, also the contour lines of the Hamil-
tonian of the SRP-J2 phase space, not necessarily
corresponding to equilibria, have some interesting
applications due to their natural evolution, such as
the study of planetary dynamics [6], the evolution of
a swarm of satellites-on-a-chip or a cloud of debris
fragments [15, 16]. Following the work of Krivov and
Getino [8] a particular application of this dynamics
was proposed by Lücking at al. [17, 18] for passive
deorbing of spacecraft at the end-of-life. The area-
to-mass ratio of the spacecraft can be deliberately
increased, by deploying a solar sail, at the end-of-life
of the satellite. In this way, the eccentricity of the
orbit will undergo large oscillation that can bring the
orbit perigee to enter in the drag-dominated region
and therefore to reach reentry through the enhance-
ment of the natural perturbation. The requirements
in terms of sail area for a given semi-major axis
and inclination were computed in [17, 18] by study-
ing the phase space line of the SRP-J2 Hamiltonian
originating from circular orbits and computing the
maximum attainable eccentricity for a given value of
the area-to-mass ratio. The time required for deor-
bit was also considered in the optimization process;
therefore, in the case of deorbiting through a hyper-
bolic equilibrium point, the area-to-mass ratio was
increased with respect to the minimum possible, to
have a bounded value of the deorbiting time. Later
on in [19] the requirements in terms of area-to-mass
ratio were computed for many values of the initial
altitudes and inclinations of a circular to elliptical
orbit through a numerical technique.

With the same aim of looking for natural per-
turbations which can support a reentry from Low
Earth Orbits (LEO) at the end-of-life, Alessi et al.
[20] performed an extensive numerical mapping of
the region and identified natural dynamical corri-
dors in inclination-eccentricity for given semi-major
axis which can be exploited with the aid of an area-
enhancing device. In [21], the same authors com-
pared the effect in eccentricity detected numerically,
for the six main SRP resonances, with the maximum
variation in eccentricity which can be predicted an-
alytically starting from the corresponding Lagrange
planetary equations. The width of the resonances
was also computed, following [22]. In [23], a nu-

Table 1: Argument ψj = n1Ω + n2ω + n3λS of the
periodic component in terms of n1, n2, n3.

j n1 n2 n3
1 1 1 -1
2 1 -1 -1
3 0 1 -1
4 0 1 1
5 1 1 1
6 1 -1 1

merical frequency portrait of the LEO region is pre-
sented, highlighting also the role that high-order res-
onances associated with SRP [3] might have.

In this work, the three-dimensional equations of
motion which describe the variation in eccentricity,
inclination, and a given angle accounting for the mo-
tion of the longitude of the ascending node and the
argument of pericenter are analyzed, and the con-
cept of resonance is linked with the one of equilib-
rium point. The corresponding stability is provided
for the six main resonances and the possible differ-
ent phase space portraits are presented to introduce
their exploitation for mission design and end-of-life
purposes.

2. Dynamical Model

Let us assume that the spacecraft moves under the
effect of the Earth’s monopole, the Earth’s oblate-
ness and the SRP. In particular, for the SRP the
so-called cannonball model is used, the orbit of the
spacecraft is entirely in sunlight and the effect of the
Earth’s albedo is negligible.

In the following, we denote as P the solar radi-
ation pressure, cR the reflectivity coefficient, taken
equal to 1 in this work, A/m the area-to-mass ratio
of the spacecraft, (a, e, i,Ω, ω) the Keplerian orbital
elements measured with respect to the Earth equato-
rial plane, n the mean motion of the spacecraft, λS
the longitude of the Sun measured on the ecliptic
plane, J2 the second zonal term of the geopotential
and r⊕ the equatorial radius of the Earth.

Under these hypotheses and notations, following
the description given in [6, 21], if CSRP = 3

2PcR
A
m

and
ψj = n1Ω + n2ω + n3λS , (1)

with n1, n2, n3 as in Table 1, the singly-averaged
equations of motion of the spacecraft can be writ-
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6∑
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Tj cosψj − Ω̇SRP cos i.

If we assume that the dynamics is driven by a
single term j at a time, that means that only one
periodic component sinψj (for e, i; cosψj for Ω, ω)
affects the motion at a time, then we can simplify
the description of the dynamics by analyzing the fol-
lowing system

de

dt

∣∣∣∣
j

= n2CSRP

√
1− e2
na

Tj sinψj , (5)

dψj
dt

= n1Ω̇(J2,j) + n2ω̇(J2,j) + n3nS ,

where nS is the apparent mean motion of the Sun,
and Ω̇(J2,j) and ω̇(J2,j) are intended to include the
contribution of J2 and the j contribution of the SRP.
In the following treatment, de

dt

∣∣
j
will appear as ė|j .

According to [22], the behavior in inclination can
be recovered at any time by means of the integral of
motion

Λ = (n2 cos i− n1)
√
µa(1− e2), (6)

where µ is the gravitational constant of the Earth.
Eq. (6) can be inverted to get

cos i =
Λ

n2
√
µa(1− e2)

+
n1
n2
. (7)

Note that the evolution of the dynamics is deter-
mined by three parameters, the semi-major axis a,
the area-to-mass ratio A/m and the integral of mo-
tion Λ. For resonance, we mean that the following
condition is satisfied

ψ̇j ≈ 0. (8)

Note that Eq. (8) depends on (a, e, i, ψj).
If, at the same time, the first equation in Eqs.

(5) cancels out, then an equilibrium point is com-
puted. This must happen in particular at ψj = 0 or
ψj = π.

The stability of the points can be evaluated by
computing the eigenvalues of the matrix

 ∂ė|j
∂e

∂ė|j
∂ψj

∂ψ̇j

∂e

∂ψ̇j

∂ψj

 ,

at the given equilibrium point, where

∂ė|j
∂e

= 0,

∂ė|j
∂ψj

= n2CSRP

√
1− e2
na

Tj cosψj ,

∂ψ̇j
∂e

= n1
∂Ω̇(J2,j)

∂e
+ n2

∂ω̇(J2,j)

∂e
, (9)

∂ψ̇j
∂ψj

= 0.

To calculate the third of Eqs. (9), taking into
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account Eq. (7), we can write
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and ∂Tj
∂i and ∂

∂e
∂Tj
∂i can be derived from these ex-

pressions by applying the half-angle trigonometric
formulae to Eqs. (3).

Given a value for the semi-major axis a∗,
the eigenvalues λ1,2 at a given equilibrium point
(e∗, i∗, ψ∗) are thus determined by the condition

λ2 −
(
∂ė|j

∂ψj

)(
∂ψ̇j

∂e

)
= 0. (10)

2.1 Resonances and Equilibrium Points

In Figs. 1–6, we show the values of eccentricity and
inclination which correspond to the resonant condi-
tion ψ̇j ≈ 0 for three different values of ψj , given
semi-major axis and area-to-mass ratio. For the
sake of conciseness, we limit the representation to
a = 9378 km, but similar figures can be provided for
the Medium Earth Orbits (MEO) and Geostationary
Orbit (GEO) regions. The plots are obtained by as-
suming ψj = 0 (left) and ψj = π (right), that is, they
provide the location of the equilibrium points, but

also assuming ψj = π/2 (middle), which, in turn,
is equivalent to consider the rate of precession of Ω
and ω independent to the SRP, but only due to J2.

For the lowest value of area-to-mass ratio dis-
played, namely A/m = 0.012 m2/kg, the curves
computed at the three values of ψj do not manifest
a meaningful variation one with respect the others.
This is the case of a typical spacecraft, where the ef-
fect of SRP is negligible in Ω̇ and ω̇. Considering an
area-augmentation device feasible with the current
technologies, that is, A/m = 1 m2/kg [24], in the
case of j = 1, 2 the range of inclination correspond-
ing to equilibrium points enlarges. The same is true
for j = 1, 2, 3, 4 when A/m = 20 m2/kg, a value that
can be attributable to a high area-to-mass fragment.

Note that the first equation in (5) states that the
steepest variation in eccentricity corresponds to the
resonant condition computed at ψj = π/2 or ψj =
3π/2. In particular, we have the steepest increase
for j = 1, 3, 5 at ψj = π/2, while for j = 2, 4, 6 at
ψj = 3π/2. On the other side, the steepest decrease
for j = 1, 3, 5 takes place at ψj = 3π/2, while for
j = 2, 4, 6 it takes place at ψj = π/2.

In Figs. 7–8, we show the stability of the equilib-
rium points computed for the six resonances, assum-
ing A/m = 1 m2/kg. Note that to interpret them
correctly (and exploit their information for practical
applications), the information on the value of Λ cor-
responding to that equilibrium point must be taken
into account. For instance, looking at Fig. 7 we can
see that we have two stable equilibria at e ≈ 0.2 for
a = 7378 km1, but they correspond to two different
values of inclination, and, although the difference is
low2, the corresponding value of Λ is such that the
object moves in two different regimes. We shall thus
look to equilibrium points corresponding to the same
value of Λ. Notice that it can happen that only one
equilibrium exists for a given (a,Λ, A/m). As an
example, in Fig. 9 on the left, the phase portrait
corresponding to a = 7378 km, e = 0.2, i = 41.63◦

is shown, assuming that only resonance 1 dominates
the dynamics and A/m = 1 m2/kg. On the other
hand, more than two equilibrium points can occur
for a given (a,Λ, A/m). An example is shown in
Fig. 9 on the right, for a = 8378 km, e = 0.13,
i = 38.74◦ assuming that only resonance 1 domi-
nates the dynamics and A/m = 1 m2/kg.

The number of equilibrium points that can be

1Neglect for the moment the fact that these values are
associated with a perigee below the surface of the Earth.

2For this specific example i = 41.63◦ for the equilibrium
at ψ1 = 0 and i = 41.46◦ for the equilibrium at ψ1 = π.
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Figure 1: Eccentricity-inclination values corresponding to the resonant condition ψ̇1 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended Low Earth Orbit (LEO) region. Left: ψ1 = 0,
middle: ψ1 = π/2, right: ψ1 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20
m2/kg.

Figure 2: Eccentricity-inclination values corresponding to the resonant condition ψ̇2 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended LEO region. Left: ψ2 = 0, middle: ψ2 = π/2,
right: ψ2 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20 m2/kg.
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Figure 3: Eccentricity-inclination values corresponding to the resonant condition ψ̇3 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended LEO region. Left: ψ3 = 0, middle: ψ3 = π/2,
right: ψ3 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20 m2/kg.

Figure 4: Eccentricity-inclination values corresponding to the resonant condition ψ̇4 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended LEO region. Left: ψ4 = 0, middle: ψ4 = π/2,
right: ψ4 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20 m2/kg.
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Figure 5: Eccentricity-inclination values corresponding to the resonant condition ψ̇5 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended LEO region. Left: ψ5 = 0, middle: ψ5 = π/2,
right: ψ5 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20 m2/kg.

Figure 6: Eccentricity-inclination values corresponding to the resonant condition ψ̇6 ≈ 0. The colorbar report
the value of the semi-major axis, assumed here in an extended LEO region. Left: ψ6 = 0, middle: ψ6 = π/2,
right: ψ6 = π. Top: A/m = 0.012 m2/kg, center: A/m = 1 m2/kg, bottom: A/m = 20 m2/kg.
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Figure 7: Eccentricity-inclination values corresponding to the resonant condition ψ̇1 ≈ 0 (top), ψ̇2 ≈ 0 (middle)
and ψ̇3 ≈ 0 (bottom), along with their stability character for the values of semi-major axis considered in Fig. 6
and A/m = 1 m2/kg. Left: ψj = 0, right: ψj = π. Green: stable; purple: unstable.
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Figure 8: Eccentricity-inclination values corresponding to the resonant condition ψ̇4 ≈ 0 (top), ψ̇5 ≈ 0 (middle)
and ψ̇6 ≈ 0 (bottom), along with their stability character for the values of semi-major axis considered in Fig. 6
and A/m = 1 m2/kg. Left: ψj = 0, right: ψj = π. Green: stable; purple: unstable.
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Figure 9: Phase portrait corresponding to Λ computed at a = 7378 km, e = 0.2, i = 41.63◦ (left) and a = 8378
km, e = 0.13, i = 38.74◦ (left), assuming that only resonance 1 dominates the dynamics and A/m = 1 m2/kg.

Figure 10: Equilibria location for resonance 1 for two different values of semi-major axis in the LEO (left) and
in the MEO (right) region, as a function of (Λ/

√
µ, e). Top: A/m = 1 m2/kg. Bottom: A/m = 20 m2/kg.
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obtained for a given value of (a,Λ, A/m) can be de-
rived by looking to the behaviour of the curves like
the ones in Fig. 10, which are analogous to Fig. 7 ex-
cept that instead of the inclination, the value of Λ is
represented in the x-axis. For a given Λ, the number
of intersections with the two curves gives the num-
ber of the equilibrium points. Notice that, when the
curves are parallel, to the y-axis, it corresponds to
the case where two coincident equilibria exists with
a different stability property, for example the stable
and the unable equilibrium at the same value of ψ
coexist for the same (a,Λ, A/m).

On the other hand, the representation in (e, i)
as in Figs. 7–8 shows the range of inclination, for
given area-to-mass ratio and semi-major axis, for
which the central and hyperbolic dynamics can be
exploited. In other words, for given (a,A/m) and
resonance j, outside the inclination range displayed
the motion is of pure circulation.

These results for i = 0 are in agreement with
the one of [9]; in that work the stable and unstable
equilibrium points for ψ = 0 and ψ = π3 where
computed, for different values of e, a and A/m. As
visible in Figure 3 of [9], for small semi-major axis
(on the x-label) only the equilibrium at ψ = π (φ =
0), exists at a given eccentricity. For higher values of
the semi-major axis two equilibria at ψ = 0 (φ = π)
appears, one stable, one unstable. When the dashed
and dotted line coincides (see dot symbol, the stable
and the unstable equilibrium coincides).

3. Applications

We present two examples of application of the dy-
namical description given above.

3.1 Deorbiting Strategies

The first application is the design of a deorbiting
strategy. As a matter of fact, the natural SRP per-
turbation coupled with J2 can be exploited to in-
crease the eccentricity as much as to reenter. This
was firstly proposed by Lücking at al. [17, 18] where
the requirements in terms of A/m for deorbiting
were derived from the phase space representation
(like the one in Fig. 9) studying the phase space line
in correspondence of the initial condition at ψ = π/2
or ψ = 3π/2 and e = 0. In that work an analytical
solution was found for planar orbits. For initially

3In [9] it is used φ = Ω + ω − λS + π so that so that
φ = ψ1 + π following the notation of the current paper.

inclined orbits, instead, a continuation method, to-
gether with a zero-solver were used as explained in
[19]. The phase space analysis presented in Section
2.1 can be used in the same way for finding the A/m
requirements for deorbiting from inclined orbits.

Let us consider, as an example, a quasi-circular
orbit, say e = 0.001 at a = 7578 km, and assume
that the mass of the satellite is such that it is allowed
to enhance its area-to-mass ratio up to 1 m2/kg with
a sail. In Fig. 11, we show the location of the equi-
librium points as a function of (i, e) under the above
hypotheses. The resonance computed at ψj = π/2
(not shown in the figure) lies in between the ψj = 0
and ψj = π curves. Note that the value of semi-
major axis and eccentricity considered simulates the
ones of the upcoming large constellations.

As noticed before, the figure shows, first of all,
the range of inclination where the SRP can be ex-
ploited to deorbiting. Each inclination of inter-
est, that is, resonance, yields, however, a different
change in eccentricity. The largest variation for
quasi-circular orbits corresponds to ψj = π/2 or
ψj = 3π/2, depending on the resonance.

Given the inclination (or the resonance j and
Λ), the maximum eccentricity that can be achieved,
starting from ψj = π/2 + kπ (k ∈ Z), corresponds
to the values (ψj , e) satisfying the conditions

ė|j = 0 (11)

dė|j

dt
= n2CSRP

√
1− e2
na

Tjψ̇j cosψj < 0.

Notice that the second derivative dė|j
dt written as-

sumes that the maximum occurs at either ψj = 0 or
ψj = π.

For the example considered, we write in Tab. 2
the initial conditions of departure for deorbiting
following the steepest increase in eccentricity, the
(ψj , e) conditions corresponding to the maximum
and the time needed to get there. These values
are computed numerically on the basis of Eqs. (11),
Eqs. (5), Eq. (7). Notice that in all the cases, ex-
cept for resonance 4 (see Fig. 12), there exists only
one equilibrium point corresponding to the given
Λ. Given the results obtained in [20], it is possi-
ble to deorbit by exploiting any of the first three
resonances. In particular from [20], for resonance 1
the spacecraft will reenter directly once reached the
value e = 0.145, while for resonance 2 and 3 it will
deorbit naturally by the effect of the atmospheric
drag. For resonance 2, this will take an additional
amount of about 10 years without the aid of the sail,
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Figure 11: Inclination-eccentricity location of the equilibrium points for a = 7578 km and A/m = 1 m2/kg.
On the right, a close view for feasible values of eccentricity.

for resonance 3 the sail shall remain open. Notice
that, looking at Figure 4 in [19], when one of these
resonances is exploited, the requirements in terms of
area-to-mass ratio for deorbiting are small.

From the point of view of the mission design,
the example shows that to place the satellites in the
neighborhood of any of the three values of inclina-
tion i0 for j = 1, 2, 3 will facilitate the end-of-life
procedures. Hence, it is recommendable to see if the
operational requirements can be met at any of these
inclinations.

On the other hand, it shall be noted that a reen-
try can be accomplished also if the spacecraft does
not move along the curve starting from e ≈ 0 and
ψj = π/2 +kπ (k = 1, 2), like the red one in Fig. 12.
This is, an eccentricity variation high enough to
achieve reentry can be attained also along the libra-
tion curves associated with the elliptic equilibrium
point. In this case, the required area-to-mass with
be slightly higher than the minimum one required,
or equivalently a small manoeuvre will be required
to achieve the initial condition of deorbiting, but the
total reentry time will be reduced [19].

3.2 Bounded Motion for geomagnetic tail explo-
ration mission

As an additional application, the equilibrium condi-
tions in Figs. 1–6 and Fig. 10 can be used for iden-
tifying frozen heliotropic or anti-heliotropic orbit as
done in [9] and [10]. For example a mission to study
the geomagnetic tail can be designed as proposed in
[12, 13, 14].

Figure 13 shows the location of the anti-
heliotropic equilibrium points for planar and inclined
orbits in the (e, i) space for different values of the
semi-major axis in the colorbar. These orbits are
corresponding to a frozen condition of Ω+ω−λS = 0,
therefore they are characterized by an apogee that
maintains its location always in the direction of the
Sun [14]. Indeed, for a mission that studies the ge-
omagnetic tail, elliptical, low-inclined orbits would
be ideal, with a perigee around 5 Earth radii and
apogee going from 5 to 30 Earth radii4. The lower
the inclination and the higher is the area-to-mass
ratio (i.e., the higher is the sail area considering

4See http://geo.phys.spbu.ru/∼tsyganenko/modeling.html

Figure 12: Phase portrait corresponding to Λ com-
puted at a = 7578 km, e = 0.001, i = 69.08◦, assum-
ing that only resonance 4 dominates the dynamics
and A/m = 1 m2/kg.
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Table 2: For each resonance j, assuming a = 7578 km, A/m = 1 m2/kg and e0 = 0.001 at the initial epoch,
we display the value Λ/

√
µ (in km1/2 units), corresponding to the initial inclination i0, and the maximum

eccentricity emax that can be achieved starting from ψ0 giving the steepest eccentricity increase, together with
the corresponding phase ψmax (rad) and time tmax (years).

j ψ0 i0 Λ/
√
µ ψmax emax tmax

1 π/2 40.62◦ -20.97 0 0.425 19.05
2 3π/2 77.92◦ -105.27 π 0.112 12.00
3 π/2 58.53◦ 45.44 π 0.081 19.44
4 3π/2 69.08◦ 31.08 0 0.377 78.13
5 π/2 52.46◦ -34.01 0 0.055 65.69
6 3π/2 68.96◦ -118.3 π 0.027 81.70

Figure 13: Equilibria location for resonance 1 (anti-heliotropic orbits) for different values of semi-major axis
and area-to-mass ratio. Top-left: A/m = 1 m2/kg, Top-right: A/m = 5 m2/kg, Bottom-left: A/m = 10
m2/kg, Bottom-right: A/m = 20 m2/kg.
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the same spacecraft mass), the more a stable anti-
heliotropic orbit can be maintained with higher ec-
centricity. Therefore a solar sail would be ideal for
this mission [12, 13, 14]. Alternatively also condi-
tion corresponding to libration around these equi-
libria point could be selected for this purpose.

4. Conclusions

In this work, we have presented the three-
dimensional singly-averaged equations of motion
corresponding to the perturbation due to the solar
radiation pressure coupled with the oblateness effect.
We have shown how the description of the dynamics
can be reduced to a differential system of two inde-
pendent variables and we have linked the concept of
resonance with the one of equilibrium point for the
aforesaid system.

This description proves to be a fundamental tool
to design deorbiting strategy at the end-of-life, but
also to design orbits for operational purposes. Here
we have shown possible applications for large con-
stellations in LEO and for geomagnetic tail obser-
vations, but other applications are foreseen in the
future.
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